Enhanced Analysis of Falling Weight Deflectometer Data for Use With Mechanistic-Empirical Flexible Pavement Design and Analysis and Recommendations for Improvements to Falling Weight Deflectometers

PUBLICATION NO. FHWA-HRT-15-063

MARCH 2017

Research, Development, and Technology
Turner-Fairbank Highway Research Center
6300 Georgetown Pike
McLean, VA 22101-2296
FOREWORD

This report documents a study conducted to review the status of falling weight deflectometer (FWD) equipment, data collection, analysis, and interpretation, including dynamic backcalculation, and to develop enhanced analysis procedures and recommendations for the effective use of FWD technology as it relates to the flexible pavement models and procedures incorporated within the Mechanistic-Empirical Pavement Design Guide developed by the National Cooperative Highway Research Program and subsequently adopted by the American Association of State Highway and Transportation Officials. In this context, dynamic backcalculation refers to the modeling of the dynamic or impact nature of the FWD loading and resulting pavement response of in-service flexible pavements for pavement structural analysis and rehabilitation design. The research effort resulted in development analysis methodologies, software tools implementing those analysis methodologies and a potential list of recommendations for FWD equipment enhancements, all of which are detailed in this report. This report is intended for use by pavement engineers involved in structural evaluation and rehabilitation design of flexible pavements and researchers involved in development of new procedures for the modeling and analysis of in-service flexible pavements.

Cheryl Allen Richter
Director, Office of Infrastructure
Research and Development

Notice
This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement
The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.
Enhanced Analysis of Falling Weight Deflectometer Data for Use With Mechanistic-Empirical Flexible Pavement Design and Analysis and Recommendations for Improvements to Falling Weight Deflectometers

Karim Chatti, M. Emin Kutay, Nizar Lajnef, Imen Zaabar, Sudhir Varma, and Hyung Suk Lee

This report describes the efforts undertaken to review the status of falling weight deflectometer (FWD) equipment, data collection, analysis, and interpretation, including dynamic backcalculation, as they relate to the models and procedures incorporated in the Mechanistic-Empirical Pavement Design Guide. The work conducted in this project resulted in the following:

- Development of a backcalculation scheme (BACKLAVA) in the time domain using a quasi-static model (LAVA) as its forward solution and genetic algorithm (GA) as its search engine. BACKLAVA is a backcalculation algorithm for a constant asphalt concrete (AC) layer temperature.
- Development of a backcalculation scheme (BACKLAVAP) in the time domain using a quasi-static model (LAVAP) as its forward solution and GA as its search engine. BACKLAVAP is a backcalculation algorithm for a temperature profile in an AC layer.
- Development of a backcalculation scheme (BACKLAVAN) in the time domain using a quasi-static model (LAVAN) as its forward solution and GA as its search engine. BACKLAVAN is a backcalculation algorithm for a viscoelastic AC layer and a nonlinear base layer.
- Development of a backcalculation scheme (DYNABACK-VE) in the time domain using a time-domain viscoelastic dynamic model (ViscoWave-II) as its forward solution and a hybrid approach (GA and Levenberg-Marquardt algorithm) as its search engine. DYNABACK-VE is a backcalculation algorithm for a viscoelastic AC layer with temperature profile and linear unbound layers.
- Short list of recommendations for FWD equipment enhancements.

The tools developed in this project are standalone applications that could be used on most computers.
SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.305</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>kilometers</td>
<td>km</td>
</tr>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.2</td>
<td>square millimeters</td>
<td>mm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.093</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yard</td>
<td>0.836</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.405</td>
<td>hectares</td>
<td>ha</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.59</td>
<td>square kilometers</td>
<td>km²</td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.57</td>
<td>milliliters</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>liters</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.028</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.765</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
</tbody>
</table>

NOTE: volumes greater than 1000 L shall be shown in m³

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28.35</td>
<td>grams</td>
<td>g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.454</td>
<td>kilograms</td>
<td>kg</td>
</tr>
<tr>
<td>T</td>
<td>short tons (2000 lb)</td>
<td>0.907</td>
<td>megagrams (or "metric ton")</td>
<td>Mg (or "t")</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact degrees)

°F Fahrenheit 5 (F-32)/9 Celsius °C

or (F-32)/1.8

ILLUMINATION

| fc | foot-candles | 10.76 | lux | lx |
| fl | foot-Lamberts | 3.426 | candela/m² | cd/m² |

FORCE and PRESSURE or STRESS

| lbf | poundforce | 4.45 | newtons | N |
| lbf/in² | poundforce per square inch | 6.89 | kilopascals | kPa |

APPROXIMATE CONVERSIONS FROM SI UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.039</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.28</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>1.09</td>
<td>yards</td>
<td>yd</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
<td>0.621</td>
<td>miles</td>
<td>mi</td>
</tr>
<tr>
<td>mm²</td>
<td>square millimeters</td>
<td>0.0016</td>
<td>square inches</td>
<td>in²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>10.764</td>
<td>square feet</td>
<td>ft²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>1.195</td>
<td>square yards</td>
<td>yd²</td>
</tr>
<tr>
<td>ha</td>
<td>hectares</td>
<td>2.47</td>
<td>acres</td>
<td>ac</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometers</td>
<td>0.386</td>
<td>square miles</td>
<td>mi²</td>
</tr>
<tr>
<td>mL</td>
<td>milliliters</td>
<td>0.034</td>
<td>fluid ounces</td>
<td>fl oz</td>
</tr>
<tr>
<td>L</td>
<td>liters</td>
<td>0.264</td>
<td>gallons</td>
<td>gal</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>35.314</td>
<td>cubic feet</td>
<td>ft³</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meters</td>
<td>1.307</td>
<td>cubic yards</td>
<td>yd³</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
<td>0.035</td>
<td>ounces</td>
<td>oz</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
<td>2.202</td>
<td>pounds</td>
<td>lb</td>
</tr>
<tr>
<td>Mg (or "t")</td>
<td>megagrams (or "metric ton")</td>
<td>1.133</td>
<td>short tons (2000 lb)</td>
<td>T</td>
</tr>
</tbody>
</table>

TEMPERATURE (exact degrees)

°C Celsius 1.8°C+32 Fahrenheit °F

ILLUMINATION

| lx | lux | 0.0929 | foot-candles | fc |
| cd/m²| candela/m² | 0.2919 | foot-Lamberts | fl |

FORCE and PRESSURE or STRESS

| N | newtons | 0.225 | poundforce | lbf |
| kPa | kilopascals | 0.145 | poundforce per square inch | lbf/in² |

SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)
TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION .. 1
 BACKGROUND .. 1
 PROJECT SCOPE ... 1
 PROJECT OBJECTIVES ... 2
 REPORT STRUCTURE ... 2

CHAPTER 2. LITERATURE REVIEW ... 5
 REVIEW OF STATUS OF FWD EQUIPMENT ... 5
 FWD Manufacturers and Equipment .. 6
 Evaluation of Impulse Load Equipment ... 10
 REVIEW OF STATUS OF FWD DATA COLLECTION, ANALYSIS, AND INTERPRETATION .. 10
 Data Collection and Related Issues ... 10
 Analysis and Interpretation of FWD Data .. 12
 BACKCALCULATION COMPUTER PROGRAMS ... 15
 Static Backcalculation Programs ... 15
 Dynamic Backcalculation Programs ... 19
 MODELING ISSUES ... 22
 Static Versus Dynamic Response ... 22
 Time-Domain Versus Frequency-Domain Backcalculation .. 23
 Linear Versus Nonlinear Material Response ... 24
 Bedrock or Stiff Layer Effect .. 25
 Temperature and Moisture Effects ... 27
 Other Effects ... 27
 RELEVANCE TO MEPDG USE ... 27
 HMA Materials .. 27
 Unbound Materials .. 28
 Cementitiously Stabilized Materials ... 29
 Using Static Backcalculation in the Current MEPDG Procedure 29
 Feasibility of Using Dynamic Backcalculation for Future Versions of MEPDG 30

CHAPTER 3. LTPP DATA ANALYSIS .. 31
 PRELIMINARY STATISTICAL ANALYSIS OF LTPP FWD LOADING HISTORIES ... 31
 DETAILED STATISTICAL ANALYSIS ... 37
 Dynamic Behavior .. 37
 Nonlinear Behavior ... 39
 MEASUREMENT ISSUES ... 49
 CONCLUSION .. 50

CHAPTER 4. VISCOELASTIC APPROACH ... 53
 LAYERED VISCOELASTIC (LAVA) PAVEMENT MODEL .. 54
 Layered Viscoelastic (Forward) Algorithm (LAVA) ... 56
 Verification of the Proposed Layered Viscoelastic Solution (LAVA) 60
 IMPLEMENTATION OF TEMPERATURE PROFILE IN LAVA 63
LIST OF FIGURES

Figure 1. Diagram. FWD testing schematic ... 6
Figure 2. Photo. Grontmij Pavement Consultants FWDs .. 7
Figure 3. Drawings. Comparison of two Dynatest® FWDs 8
Figure 4. Photo. KUAB FWD ... 10
Figure 5. Equation. Objective function for the search algorithm 14
Figure 6. Equation. Search method using set of equations 15
Figure 7. Equation. Parseval theorem ... 23
Figure 8. Equation. DFT of a nonzero-mean function at zero frequency 24
Figure 9. Drawing and Graph. Plot of inverse of deflection offset versus measured
deflection .. 25
Figure 10. Equation. Calculation of the depth to the stiff layer using the modified Roesset’s
equations .. 26
Figure 11. Graph. Natural period T_d from sensor deflection time histories 26
Figure 12. Equation. Shear wave velocity ... 26
Figure 13. Graph. Example of time histories showing dynamic behavior for LTPP section
161020, station 1 .. 35
Figure 14. Graph. Example of time histories showing no dynamic behavior for LTPP
section 169034, station 3 .. 35
Figure 15. Graph. Example of stiffening behavior for LTPP section 81053, station 3 36
Figure 16. Graph. Example of softening behavior for LTPP section 87781 station 3 36
Figure 17. Graphs. Preliminary results—evidence of dynamic behavior by climatic
information: classification by season (top), temperature (middle), and climate zone
(bottom) .. 38
Figure 18. Graph. Mean and standard deviation of percent of sections with dynamics for
wet/dry and freeze/no freeze ... 39
Figure 19. Graphs. Distribution of load-to-deflection slope by sensor 41
Figure 20. Graphs. Distribution of linear versus nonlinear behavior for 5- to 7-percent
threshold load-to-deflection slope ... 43
Figure 21. Graphs. Distribution of linear versus nonlinear behavior for 8- to 10-percent
threshold load-to-deflection slope ... 44
Figure 22. Graphs. Percent of sections by season where nonlinear behavior was prevalent 46
Figure 23. Graphs. Percent of sections by temperature where nonlinear behavior was
prevalent ... 47
Figure 24. Graphs. Percent of sections by climate zone where nonlinear behavior was
prevalent ... 48
Figure 25. Graphs. Examples of measurement issues ... 50
Figure 26. Equation. Boltzmann’s superposition principle .. 54
Figure 27. Equation. Quasi-elastic approximation of a unit response function such as the
creep compliance .. 55
Figure 28. Equation. Hereditary integral using quasi-elastic approximation of a unit
response function such as the creep compliance ... 55
Figure 29. Equation. Hereditary integral using quasi-elastic approximation of unit vertical
deflection at the surface ... 56
Figure 30. Diagram. Typical flexible pavement geometry for analysis 56
Figure 31. Graph. Discretization of stress history in forward analysis ... 57
Figure 32. Equation. Sigmoid form of relaxation modulus master curve .. 57
Figure 33. Equation. Shift factor coefficient polynomial .. 57
Figure 34. Graph. Discretization of the relaxation modulus master curve 58
Figure 35. Equation. Quasi-elastic approximation of unit vertical deflection at the surface 58
Figure 36. Graph. Deflections calculated under unit stress for points at different distances from the centerline of the circular load at the surface ... 58
Figure 37. Equation. Discrete formulation ... 59
Figure 38. Graph. $d(\sigma_j)$ for each time step τ_j .. 59
Figure 39. Diagram. Example problem geometry .. 59
Figure 40. Graph. Examples of computed viscoelastic surface deflections at different radial distances from the centerline of the load .. 59
Figure 41. Graphs. Comparison of dynamic solutions (time delay removed) and viscoelastic solution for case 116 .. 60
Figure 42. Graphs. Comparison of dynamic solutions (time delay removed) and viscoelastic solution for case 120 .. 60
Figure 43. Diagram. Schematic of temperature profile .. 60
Figure 44. Graphs. Comparison of response calculated using (T-profile LAVA) LAVAP and original LAVA .. 65
Figure 45. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at temperature profile \{104, 86, 68\} °F and original LAVA at constant 104 °F temperature .. 66
Figure 46. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at temperature profile \{104, 86, 68\} °F and original LAVA at a constant temperature of 86 °F .. 66
Figure 47. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at temperature profile \{104, 86, 68\} °F and original LAVA at a constant temperature of 68 °F .. 67
Figure 48. Graph. Region of $E(t)$ master curve (at 66.2 °F reference temperature) used by (T-profile LAVA) LAVAP for calculating response at temperature profile \{104, 86, 68\} °F .. 67
Figure 49. Graphs. Relaxation modulus and shift factor master curves at a reference temperature of 66 °F .. 68
Figure 50. Graph. Comparison between LAVAP and ABAQUS at a temperature profile of \{66, 86\} °F (terpolymer) .. 69
Figure 51. Graph. Comparison between LAVAP and ABAQUS at a temperature profile of \{66, 86\} °F (SBS 64-40) .. 69
Figure 52. Equation. Resilient modulus ... 70
Figure 53. Equation. Resilient modulus as a function of stress invariant 70
Figure 54. Equation. Uzan’s nonlinearity model .. 71
Figure 55. Equation. Witczak and Uzan’s nonlinearity model ... 71
Figure 56. Equation. Generalized Uzan’s model ... 71
Figure 57. Equation. ME PDG model for resilient modulus .. 72
Figure 58. Equation. Elasticity constitutive equation ... 72
Figure 59. Equation. Nonlinear viscoelastic formulation for stress when relaxation modulus is a function of strain .. 73
Figure 93. Graph. Variation of error in backcalculated unbound layer moduli when FWD data run at different sets of pavement temperatures are used ... 92
Figure 94. Graph. Error in backcalculated $E(t)$ curve in optimal backcalculation temperature set analysis minimizing percent error ... 93
Figure 95. Graphs. Results for backcalculation at $\{50, 86\}$ °F temperature set: left side—only GA used, right side—GA+fminsearch used .. 94
Figure 96. Graphs. Results for backcalculation at $\{86, 104\}$ °F temperature set 95
Figure 97. Graphs. Results for backcalculation at $\{86, 104, 122\}$ °F temperature set 96
Figure 98. Equation. Normalized error in deflection history .. 97
Figure 99. Equation. Constraints in optimization model .. 97
Figure 100. Equation. Sigmoid variables in optimization model 97
Figure 101. Equation. Dynamic modulus in complex form ... 98
Figure 102. Equation. Real component of dynamic modulus .. 98
Figure 103. Equation. Imaginary component of dynamic modulus 98
Figure 104. Equation. Dynamic modulus and phase angle ... 98
Figure 105. Graph. Backcalculated $|E^*|$ master curve using FWD data at temperature set $\{50, 86\}$ °F, minimizing normalized error ... 99
Figure 106. Graph. Backcalculated $E(t)$ master curve using FWD data at temperature set $\{50-68-86\}$ °F, minimizing normalized error ... 99
Figure 107. Graph. Variation of ξ_{AC} at different FWD temperature sets 100
Figure 108. Graph. Variation of $\xi_{unbound}$ at different FWD temperature sets 100
Figure 109. Graphs. Backcalculation results obtained using modified sigmoid variables 101
Figure 110. Graphs. Viscoelastic properties of field mix in optimal temperature analysis.... 102
Figure 111. Graphs. Variation of error calculated over three ranges of reduced time—top = 10^{-5} to 1 s, middle = 10^{-5} to 10^{2} s, and bottom = 10^{-5} to 10^{3} s .. 103
Figure 112. Graphs. Applied stress and resulting deflection basin for multiple pulse loading analysis .. 104
Figure 113. Graph. Backcalculated $E(t)$ and deflection histories using the multiple stress pulses .. 105
Figure 114. Graphs. Comparison of actual and backcalculated values in backcalculation using temperature profile .. 107
Figure 115. Graph. Error in backcalculated $E(t)$ curve for a three-temperature profile 108
Figure 116. Graphs. Backcalculated and measured deflection time histories for LTPP sections 10101 and 350801 ... 112
Figure 117. Equation. Creep compliance power law ... 112
Figure 118. Equation. Relaxation modulus and creep compliance relationship 113
Figure 119. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 10101 .. 113
Figure 120. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 6A805 ... 114
Figure 121. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 06A806 ... 114
Figure 122. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 300113 .. 114
Figure 123. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 340801 .. 115
Figure 124. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 340802 .. 115
Figure 125. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 350801 .. 115
Figure 126. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 350802 .. 116
Figure 127. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 460804 .. 116
Figure 128. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 10101 .. 116
Figure 129. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 6A805 ... 117
Figure 130. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 6A806 ... 117
Figure 131. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 300113 .. 117
Figure 132. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 340801 .. 118
Figure 133. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 340802 .. 118
Figure 134. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 350801 .. 118
Figure 135. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 350802 .. 119
Figure 136. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 46804 .. 119
Figure 137. Graph. Elastic backcalculation of two-step temperature profile FWD data, assuming AC as a single layer in two-stage backcalculation ... 123
Figure 138. Graph. Elastic backcalculation of three-step temperature profile FWD data, assuming AC as a single layer in two-stage backcalculation ... 123
Figure 139. Graph. Elastic backcalculation of two-step temperature profile FWD data, assuming two AC sublayers in two-stage backcalculation ... 124
Figure 140. Graph. Elastic backcalculation of three-step temperature profile FWD data, assuming three AC sublayers in two-stage backcalculation ... 124
Figure 141. Graphs. Error in backcalculated $E(t)$ curve from two-step temperature profile FWD test data in two-stage backcalculation ... 125
Figure 142. Graphs. Error in backcalculated $E(t)$ curve from three-step temperature profile FWD test data in two-stage backcalculation ... 126
Figure 143. Graph. Nonlinear elastic backcalculated AC modulus for control and CRTB mixes using FWD data at different test temperatures ... 128
Figure 144. Graphs. Nonlinear elastic backcalculated unbound layer properties for control and CRTB mixes, using FWD data at different test temperatures ... 129
Figure 145. Graphs. Control mix backcalculation results from two-stage nonlinear viscoelastic backcalculation ... 130
Figure 146. Graphs. CRTB mix backcalculation results from two-stage nonlinear viscoelastic backcalculation ... 130
Figure 147. Graphs. Comparison of nonlinear viscoelastic backcalculated and measured $E(t)$ and $\alpha(T)$ for LTPP section 10101 ... 132
Figure 148. Graphs. Comparison of nonlinear viscoelastic backcalculated and measured $|E^*|$ and phase angle for LTPP section 10101 ... 132
Figure 149. Graphs. Comparison of surface deflections of a layered elastic structure using ViscoWave-II and LAMDA ... 137
Figure 150. Graph. Simulated FWD load .. 138
Figure 151. Graph. AC layer master curve for viscoelastic simulation 138
Figure 152. Graphs. Results from ViscoWave-II for viscoelastic simulations of thin (top), medium (middle), and thick (bottom) pavements ... 139
Figure 153. Graphs. Low- (left) and high- (right) temperature AC creep compliance curves used for ViscoWave-II simulation .. 140
Figure 154. Diagrams. Schematic of the pavement structure with half-space (left) and bedrock (right) .. 140
Figure 155. Diagrams. Axisymmetric FEM geometry (top) and FEM mesh (bottom) used for simulation of pavement response under FWD loading .. 141
Figure 156. Graphs. Surface deflections of a layered viscoelastic structure with a half-space at low temperature simulated using ViscoWave-II and ADINA 142
Figure 157. Graphs. Surface deflections of a layered viscoelastic structure with a bedrock at low temperature simulated using ViscoWave-II and ADINA 142
Figure 158. Graphs. Surface deflections of a layered viscoelastic structure with a half-space at high temperature simulated using ViscoWave-II and ADINA 143
Figure 159. Graphs. Surface deflections of a layered viscoelastic structure with a bedrock at high temperature simulated using ViscoWave-II and ADINA 143
Figure 160. Diagram. Pavement structure with soils having E-values increasing with depth .. 144
Figure 161. Graph and Diagram. AC layer parameters ... 145
Figure 162. Graphs. Surface deflections of pavement structure with shallow stiff layer and soils having E-values increasing with depth ... 146
Figure 163. Photos. FWD used during the field tests ... 148
Figure 164. Photo. Illustration of temperature measurement at different depths of the pavement .. 149
Figure 165. Graphs. Comparison of deflection response from ViscoWave-II and LAVA predictions for station 1 .. 151
Figure 166. Graphs. Comparison of deflection response from ViscoWave-II and LAVA predictions for station 3 .. 152
Figure 167. Graphs. Comparison of ViscoWave-II and LAVA solutions with measured deflections for station 1 .. 153
Figure 168. Graphs. Example time histories from ViscoWave-II with decreasing stiff layer modulus and measured sensor deflections for station 1 .. 155
Figure 169. Graph. Effect of stiff layer modulus on ratio of predicted to measured sensor deflections for station 1 .. 156
Figure 170. Graph. Effect of stiff layer modulus on predicted sensor deflection amplification for station 1 .. 156
Figure 171. Equation. Fitting steps of the Prony series ... 157
Figure 172. Equation. Optimization problem ... 158
Figure 203. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 35 ms... 184
Figure 204. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 40 ms... 185
Figure 205. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 45 ms... 185
Figure 206. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 50 ms... 186
Figure 207. Graph. Backcalculation results of the AC master curve for different pulse widths.. 187
Figure 208. Graph. Error in the backcalculated master curve for different pulse widths 188
Figure 209. Graph and Diagram. AC layer master curve and temperature profile............... 190
Figure 210. Graphs. Simulated FWD pulse and deflection time histories............................ 190
Figure 211. Graph. Average error in the backcalculated AC layer master curve for all runs in LM method .. 192
Figure 212. Graph. Average error in the backcalculated AC layer master curve for all runs 193
Figure 213. Graph. Average error in the backcalculated base layer modulus for all runs....... 193
Figure 214. Graph. Average error in the backcalculated subgrade modulus for all runs 194
Figure 215. Graph. Average error in the backcalculated stiff layer modulus for all runs 194
Figure 216. Graph. Average error in the backcalculated depth to the stiff layer for all runs 195
Figure 217. Graphs. Error in the backcalculated deflections for run 30 196
Figure 218. Graphs. Error in the backcalculated deflections for run 35 197
Figure 219. Graph. Backcalculated master curves for runs 30 and 35 198
Figure 220. Graph. Percent error in the backcalculated master curves for all combinations ... 199
Figure 221. Graphs. Measured FWD load and time histories for LTPP section 10101 202
Figure 222. Graph. Backcalculated master curves for LTPP section 10101 from all the drops.. 203
Figure 223. Graph. Backcalculated shift factors for LTPP section 10101 from all the drops... 203
Figure 224. Graph. Softening behavior for LTPP section 10101 ... 204
Figure 225. Graphs. Measured FWD load and time histories for LTPP section 6A805 205
Figure 226. Graph. Backcalculated master curves for LTPP section 6A805 205
Figure 227. Graph. Backcalculated shift factors for LTPP section 6A805 206
Figure 228. Graph. Load-to-deflection ratio for LTPP section 6A805 206
Figure 229. Graphs. Measured FWD load and time histories for LTPP section 6A806 207
Figure 230. Graph. Backcalculated master curves for LTPP section 6A806 208
Figure 231. Graph. Backcalculated shift factors for LTPP section 6A806 208
Figure 232. Graph. Load-to-deflection ratio for LTPP section 6A806 209
Figure 233. Graphs. Measured FWD load and time histories for LTPP section 300113 209
Figure 234. Graph. Backcalculated master curves for LTPP section 300113 210
Figure 235. Graph. Backcalculated shift factors for LTPP section 300113 211
Figure 236. Graph. Load-to-deflection ratio for LTPP section 300113 211
Figure 237. Graphs. Frequency response of geophone components 216
Figure 238. Diagram and Graph. A mechanical inertial seismometer with a natural frequency of 1 Hz.. 217
Figure 239. Graphs. Time-frequency content of the load for LTPP section 60565 218
Figure 240. Graphs. Time-frequency content of the load for LTPP section 320101 218
Figure 270. Graphs. Comparison of ABAQUS and LAVAN for nonlinear viscoelastic structure for the control mix where (top) LAVAN uses stress at \(r = 0 \), and (bottom) LAVAN uses stress at \(r = 3.5a \) ... 250

Figure 271. Graphs. Comparison of ABAQUS and LAVAN for nonlinear viscoelastic structure for the CRTB mix where (top) LAVAN uses stress at \(r = 0 \) and (bottom) LAVAN uses stress at \(r = 3.5a \) .. 251

Figure 272. Graph. Percent error \((PE_{peak})\) calculated using the peaks of the deflections for LAVAN-ABAQUS comparison (control mix) ... 252

Figure 273. Graph. Percent error \((PE_{peak})\) calculated using the peaks of the deflections for LAVAN-ABAQUS comparison (CRTB mix) .. 252

Figure 274. Graph. Average percent error \((PE_{avg})\) calculated using the entire time history for LAVAN-ABAQUS comparison (control mix) ... 253

Figure 275. Graph. Average percent error \((PE_{avg})\) calculated using the entire time history for LAVAN-ABAQUS comparison (CRTB mix) ... 253

Figure 276. Graph. \(E(t) \) used to compute the deflection basin in examples 1 and 2 255

Figure 277. Graphs. FWD deflection history for example 1 ... 256

Figure 278. Graphs. \(E(t) \) and deflection history at the initial (left) and final (right) backcalculation stage in example 1 .. 256

Figure 279. Graphs. Comparison of backcalculated and actual \(|E^*| \) and phase angle master curves for example 1 .. 257

Figure 280. Graphs. Applied stress and resulting deflection basin for example 2 258

Figure 281. Graph. Backcalculated \(E(t) \) using multiple stress pulses .. 258

Figure 282. Graphs. Comparison of backcalculated and actual \(|E^*| \) and master curves for example 2 ... 259

Figure 283. Graph. Stress history used in the constant frequency multiple pulse analysis 260

Figure 284. Graphs. Deflection at different sensors at different temperatures in example 1 261

Figure 285. Graph. Result for backcalculated \(E(t) \) curve in example 1 .. 261

Figure 286. Graph. Result for backcalculated \(E(t) \) curve in example 2 .. 262

Figure 287. Graphs. Deflections at different sensors at different temperatures for example 2 262

Figure 288. Equation. Equation of motion for a continuous medium ... 265

Figure 289. Equation. Stress-strain relationship for a linear, homogenous, and isotropic material ... 265

Figure 290. Equation. Strain-displacement relationship for a linear, homogenous, and isotropic material ... 265

Figure 291. Equation. Stress-strain relationship for a viscoelastic material 266

Figure 292. Equation. Stieljes convolution integral ... 266

Figure 293. Equation. Equation of motion in terms of displacements ... 266

Figure 294. Equation. Displacement vector in terms of potentials ... 266

Figure 295. Diagram. Coordinate system for axisymmetric layers on a half-space 267

Figure 296. Equation. Equation of motion in terms of the scalar potential 267

Figure 297. Equation. Equation of motion in terms of the vector potential 267

Figure 298. Equation. Vector potential \(H_\theta \) .. 268

Figure 299. Equation. Scalar potential \(\Psi \) .. 268

Figure 300. Equation. Relationship between radial displacement and potentials 268

Figure 301. Equation. Relationship between vertical displacement and potentials 268

Figure 302. Equation. Relationship between shear stress and potentials 268
LIST OF TABLES

Table 1. Comparison of JILSTM and Dynatest® FWD features ... 9
Table 2. Commonly available backcalculation computer programs for flexible pavements 17
Table 3. Dynamic backcalculation programs for flexible pavements .. 20
Table 4. LTPP sections used in the statistical analysis ... 31
Table 5. LTPP sections used in the statistical analysis ... 39
Table 6. Distribution of load-to-deflection slope by sensor ... 40
Table 7. Distribution of linear versus nonlinear behavior by sensor and percent slope 42
Table 8. Results of the t-tests on nonlinearity for wet/dry and freeze/no freeze conditions for all sensors .. 49
Table 9. Distribution of load-deflection slope by sensor .. 49
Table 10. LAVA computation times for different numbers of discrete time steps....................... 60
Table 11. Pavement properties used in LAVA validation with SAPSI and LAMDA 61
Table 12. Pavement properties used in (T-profile LAVA) LAVAP validation with ABAQUS 64
Table 13. Pavement section used in (T-profile LAVA) LAVAP validation 68
Table 14. Peak deflections at temperature profile {66, 86}°F and at a constant temperature of 86 °F using LAVA .. 69
Table 15. Pavement geometric and material properties for nonlinear viscoelastic pavement analysis ... 75
Table 16. Upper and lower limit values in backcalculation .. 75
Table 17. Pavement properties in viscoelastic backcalculation of optimal number of sensors .. 87
Table 18. Backcalculation runtime for GA-fminsearch seed runs .. 96
Table 19. Details of the pavement properties used in single FWD test backcalculation under a known temperature profile .. 106
Table 20. List of LTPP sections used in the analysis ... 109
Table 21. Structural properties of the LTPP sections used in the analysis 109
Table 22. AC temperature profile during LTPP FWD test .. 110
Table 23. Depths of stiff layer in each LTPP section estimated using Ullidtz’s method 110
Table 24. Elastic backcalculation results for LTPP sections ... 111
Table 25. Viscoelastic backcalculation results for LTPP sections ... 111
Table 26. Variables in two-stage linear viscoelastic backcalculation analysis 122
Table 27. Pavement properties in two-stage linear viscoelastic backcalculation analysis 122
Table 28. Pavement properties and test inputs in two-stage nonlinear viscoelastic backcalculation .. 127
Table 29. Pavement geometric and material properties in two-stage nonlinear viscoelastic backcalculation .. 127
Table 30. Typical FWD test load levels .. 128
Table 31. FWD test data from LTPP section 10101 for 2004–2005 ... 131
Table 32. Nonlinear elastic backcalculation results for LTPP section 10101 131
Table 33. Layer properties for elastic simulation using LAMDA and ViscoWave-II 136
Table 34. Layer properties for viscoelastic simulation using ViscoWave-II 138
Table 35. Layer properties for viscoelastic simulation of structure with stiff soils 144
Table 36. ViscoWave-II computational efficiency ... 147
Table 37. Waverly Road pavement section information .. 148
Table 38. Pavement properties used in dynamic analysis of station 1 with ViscoWave-II 150
Table 39. Pavement properties used in dynamic analysis of station 3 with ViscoWave-II ... 150
Table 40. Known and unknown parameters ... 157
Table 41. Bounds of the variables ... 158
Table 42. Layer properties for the simulated pavement structure .. 159
Table 43. Backcalculated layer moduli ... 160
Table 44. Backcalculated layer moduli ... 161
Table 45. Backcalculated layer moduli and subgrade thickness .. 164
Table 46. Bounds of the variables.. 167
Table 47. Known layer properties for Waverly Road ... 167
Table 48. Backcalculated layer parameters for drop 1 section 1—Waverly Road 168
Table 49. Known layer properties for LTPP section 350801 ... 172
Table 50. Backcalculated layer parameters for drop 1, station 1—LTPP section 350801 173
Table 51. Backcalculated layer parameters for drop 1 station 8 for LTPP section 350801 ... 178
Table 52. Layer properties for dynamic viscoelastic simulation ... 181
Table 53. Backcalculated layer parameters for different pulse durations 184
Table 54. Backcalculation algorithm computational efficiency using GA only 189
Table 55. Layer properties for the simulated pavement structure .. 189
Table 56. Runs information for the sensitivity analysis .. 191
Table 57. Optimal runs for the various search methods ... 196
Table 58. Backcalculated layer parameters for the simulated structure 197
Table 59. Identified LTPP sections for the verification of DYNABACK-VE 200
Table 60. Layer properties for LTPP sections .. 200
Table 61. Backcalculation results for LTPP section 10101 using DYNABACK-VE 201
Table 62. Backcalculation results for LTPP section 6A805 using DYNABACK-VE 205
Table 63. Backcalculation results for LTPP section 6A806 using DYNABACK-VE 207
Table 64. Backcalculation results for LTPP section 6A806 using DYNABACK-VE 210
Table 65. Pavement section used in the nonlinear comparison analysis 247
Table 66. Pavement section used in the nonlinear viscoelastic validation of k-θ model 249
Table 67. FWD Test information from station 1 (afternoon test) 285
Table 68. FWD Test information from station 3 (afternoon test) 285
Table 69. Temperature profile at section 1 ... 286
Table 70. Temperature profile at section 3 ... 286
ACRONYMS

2-D two-dimensional
3-D three-dimensional
AC asphalt concrete
ANN artificial neural network
BMFLC band-limited multiple Fourier linear combiner
CPU central processing unit
CRTB crumb rubber terminal blend
DFT discrete Fourier transform
DMI distance measuring instrument
EKF extended Kalman filter
FEA finite element analysis
FEM finite element method
FFT fast Fourier transform
FHWA Federal Highway Administration
FWD falling weight deflectometer
GA genetic algorithm
GB gigabyte
GPR ground penetrating radar
HMA hot mix asphalt
HPCC High Performance Computer Center
KF Kalman filter
LM Levenberg-Marquardt
LTPP Long-Term Pavement Performance
LVDT linear variable displacement transducer
M-E mechanistic-empirical
MDOT Michigan Department of Transportation
MEPDG *Mechanistic-Empirical Pavement Design Guide*
ML midlane
MPI message passing interface
NDT nondestructive testing
OW outer wheel
PC personal computer
PMS pavement management system
RAM random access memory
SNR signal-to-noise ratio
UMAT user-defined material
USACE-WES United States Army Corps of Engineers Waterway Experiment Station
WFLC weighted-frequency Fourier linear combiner
CHAPTER 1. INTRODUCTION

This report describes the efforts undertaken to develop methodologies for the determination of the damaged master curve and unbound material properties of in-service pavements from enhanced falling weight deflectometer (FWD) data.

BACKGROUND

Pavement characterization is important for determining cost-effective treatment type and allocation of funds and resources to maintain and rehabilitate the deteriorating highway infrastructure. The key element in the success of any pavement management system responsible for making preventive and corrective decisions is a proper assessment of the present status and an accurate prediction of the future performance of pavement structure. Characterizing pavement properties plays a critical role in both activities.

Nondestructive testing (NDT) is a well-recognized method for evaluating the structural capacity and integrity of highway and airfield pavements. The use of an FWD is one of the most frequently employed NDT methods for evaluating the structural integrity of an existing pavement. As its full name implies, the FWD is equipped with a falling mass mechanism capable of inducing an impact load on the pavement surface. Because of the nature of the impact load generated by a falling mass, the load typically has a short duration (usually 20 to 40 ms) and gives rise to a stress wave that propagates through the pavement structure. The resulting time-dependent response of the pavement structure, or more specifically, the vertical deflection at the pavement surface resulting from the stress wave, is measured at various radial distances from the load and is recorded for the structural analysis of the pavement system. FWD testing enables the use of a mechanistic approach for pavement design and rehabilitation by allowing for backcalculating in situ material properties from the measured field surface deflections through appropriate analysis techniques. In deflection methods, pavement deflections represent an overall system response of the pavement layers and the roadbed soil to an applied load. Pavement surface deflections have traditionally been used as an indicator of its structural capacity.

The need to accurately characterize the structural condition of existing pavements has increased with the recent development, release, and ongoing implementation of the Mechanistic-Empirical Pavement Design Guide (MEPDG). A number of different material inputs are required in the procedure, and it is important that these be adequately characterized and defined. The analysis of deflection data collected by the FWD provides a fast and reliable way of characterizing the properties of the paving layers, as well as assessing the load-carrying capacity of existing pavement structures. With the release of the new MEPDG, there is a strong need for identifying and evaluating the way that FWD testing is operated and integrated in the new design procedure.

PROJECT SCOPE

The MEPDG theoretical and empirical models predict response of flexible and rigid pavements. The dynamic modulus (|E^*|) master curve of asphalt concrete (AC) layer is a fundamental material property that is required as an input in MEPDG for a flexible pavement analysis. Knowledge of the |E^*| master curve of an in-service pavement using FWD data can lead to more accurate estimation of its remaining life.
The overall objective of the research was to theoretically determine a static and dynamic viscoelastic flexible pavement response model and relevant FWD data inputs to be used in a backcalculation scheme for determining damaged $E(t)$ master curve and unbound material properties of in-service pavements.

PROJECT OBJECTIVES

The objectives of the project are as follows:

- Review the status of FWD equipment, data collection, analysis, and interpretation, including dynamic backcalculation, as they relate to the models and procedures incorporated in the MEPDG.$^{(1)}$

- Conduct theoretical analyses to identify suitable data requirements from FWD in light of current FWD technology and feasible equipment enhancements.

- Develop methodologies for the determination of the damaged master curve and unbound material properties of in-service pavements from enhanced FWD data.

- Develop recommendations for FWD equipment enhancements.

REPORT STRUCTURE

The remaining chapters of this report are organized as follows:

- Chapter 2 reviews the status of FWD equipment, data collection, analysis, and interpretation, including dynamic backcalculation, as they relate to the models and procedures incorporated in MEPDG.$^{(1)}$

- Chapter 3 presents the detailed analysis of the Long-Term Pavement Performance (LTPP) Program database conducted to assess when dynamic effects and nonlinearity are prevalent.

- Chapter 4 outlines the development of a quasi-static viscoelastic flexible pavement response model (LAVA) and a backcalculation scheme (BACKLAVA).

- Chapter 5 describes a newly developed dynamic time-domain viscoelastic flexible pavement response model (ViscoWave-II) and a backcalculation algorithm (DYNABACK-VE). It presents the verification results for the developed algorithm. Verification was accomplished by comparing the simulation results from the developed algorithm to some of the other existing solutions. Then the iteration algorithms were tested using theoretically generated deflection time histories and field measured data.

- Chapter 6 provides recommendations for FWD equipment enhancements.

- Chapter 7 summarizes the work performed under this project, outlines the main research products developed, and presents the main findings of the study.
• Appendix A presents the results of the comparison between the LAVAN and the nonlinear finite element method (FEM) software MICHPAVE. The algorithm was compared for the cases when the unbound layer was considered as a single layer for nonlinearity calculations (Algorithm1) and when the layer was divided into two sections (Algorithm2).

• Appendix B describes the detailed analysis on the effect of using multiple pulses on the backcalculation results.

• Appendix C describes in detail the theoretical development of the new algorithm for ViscoWave-II. The theoretical development for the proposed methodology follows similar steps to those used for the development of LAMDA, the spectral element method, which used the discrete transforms for solving the wave equations. However, the proposed solution uses the continuous integral transforms (namely Laplace and Hankel transforms) that are more appropriate for transient, nonperiodic signals.

• Appendix D presents the FWD site/field data collected as part of this project and used for backcalculation.
CHAPTER 2. LITERATURE REVIEW

This chapter presents a comprehensive review of the status of FWD equipment, market-ready and prototype models, data collection, analysis, and interpretation as they relate to the models and procedures incorporated in the MEPDG.\(^{(1)}\)

REVIEW OF STATUS OF FWD EQUIPMENT

The FWD is an impulse load deflection device. According to ASTM D-4694-96, the basic components of an FWD (figure 1) are the following:\(^{(4)}\)

- **Load cell:** The FWD releases known variable weights (from 3,000 to more than 50,000 lbf) from a given height onto a load plate resting on the pavement structure, producing a load on the pavement that is similar in magnitude and duration to that of a moving wheel load. The system should display and store load measurement with a 45-lbf resolution.

- **Linear variable displacement transducer (LVDT), geophones, and accelerometers:** A series of sensors are located at fixed distances from the load plate, so that a deflection can be measured. The system should display and store deflection measurement with ±0.039 mil or less of resolution. The sensor spacing depends on the pavement surface being tested and the number of sensors on the FWD. For example, for basin testing, the LTPP FWD manual requires that the sensors should be placed at -12, 0, 8, 12, 18, 24, 36, 48, and 60 inches for a nine-sensor FWD and 0, 8, 12, 18, 24, 36, and 60 inches for a seven-sensor FWD.\(^{(5)}\)

- **Infrared temperature gauges:** pavement temperature, air temperature, surface temperature.

- **Electronic distance measurement.**

- **Control/data acquisition unit.**

Most FWDs are either trailer-towed or vehicle-mounted systems.\(^{(6)}\) Developed in the 1970s, the FWD emerged in the 1980s as the worldwide standard for pavement deflection testing. The equipment of four FWD manufacturers—Grontmij Pavement Consultants, Dynatest®, Foundation Mechanics, Inc. (JILSTM), and KUAB—are described in the following sections. The Federal Highway Administration (FHWA) has established four regional FWD calibration centers across the United States to provide annual calibrations of the FWD equipment to ensure the equipment is operating within allowable tolerances.
FWD Manufacturers and Equipment

Grontmij Pavement Consultants

The Grontmij Pavement Consultants Group (manufacturers of the Carlo Bro FWD) offers the following three types of FWDs with a modular equipment design ready for upgrade (figure 2):

- The trailer-mounted FWD is mounted to the tow vehicle by a double-axle trailer, and it is supplied with a personal computer (PC), PRIMAX Data Collection FWD software (RoSy DESIGN), time-history module, transport lock, distance-measuring instrument (DMI) integrated in the software, three temperature sensors, 4-split load plate (12 or 18 inches), and 10 to 18 geophones. The system generates forces up to 78,600 lbf.

- The vehicle-mounted FWD is identical to the trailer-mounted FWD except that it is integrated into a van and has up to 18 geophones.

- The portable LWD is delivered with 4- and 12-inch-diameter loading plates, a 22-lb weight, integrated load cell and electronic box, and a center-mounted geophone. Extension with a beam for two extra geophones is possible. A portable PC or a personal digital assistant with a data collection program installed is required.
Dynatest®

The Dynatest® FWD is a trailer-mounted system with an operations control computer located in the tow vehicle. The computer controls the complete operation of the FWD, including the lowering and raising of the load plate and deflection sensor bar as well as the sequencing of drop heights. Many FWDs are fitted with external cameras to help operators precisely align on selected testing locations.

Figure 3 shows a comparison of the two Dynatest® FWD trailer-mounted models, the 8000 and the 8082. The 8000 model supports drop masses from 110 to 770 lb, resulting in peak impact loads from 1,500 to 27,000 lbf, whereas the 8082 supports drop masses from 441 to 1,543 lb, resulting in peak impact loads from 6,500 to 54,000 lbf. (7) Typical testing production rates range from about 200 to 300 points per day, depending on traffic control requirements and specific testing locations.

Two different plate sizes can be used with the Dynatest® FWD—an 11.8-inch-diameter plate or a 17.7-inch-diameter plate. The smaller plate is typically used for street and highway pavements, whereas the larger plate is commonly used on airfield pavements (and generally on the heavy-weight FWD model 8082).

The Dynatest® FWD is used in FHWA’s LTPP Program, for which pavement deflection measurements have been routinely collected on more than 900 pavement sections since the late 1980s. Dynatest® also performs calibrations at its facilities in Florida and California, and some State transportation departments also have their own calibration facilities.
JILS™ (Foundation Mechanics, Inc.)

JILS™ produces three FWD systems: JILS-20, JILS-20HF, and JILS-20T with ground-penetrating radar (GPR). The JILS-20 is a trailer-mounted FWD. It is mounted on a double axle trailer. Like the Dynatest® FWDs, the system includes a 12-inch loading plate, DMI, temperature measurement hardware, and a video monitoring system. It has a separate gasoline engine with a 12-V alternator. Also, up to 10 sensors could be mounted in the vehicle. The company also provides its FWD data collection software.(8) The JILS-20HF is a heavy-load FWD. It is designed for testing pavement such as airfields or thick highway pavements. The specifications are similar to the JILS-20. The JILS-20T is identical to the JILS-20 except that it incorporates a GPR system with the FWD.

Applied Research Associates, Inc. (ARA) conducted an independent study to compare the JILS-20T and Dynatest® model 8002 FWDs.(9) Table 1 summarizes the key design and performance features of both FWDs. According to study findings, the two FWDs show similar trends. For AC pavement, the JILS™ FWD gave an average deflection
0.38 mil greater than the Dynatest® FWD, corresponding to a 2.4-percent average difference. In the case of chip seal, the average difference was 1.47 mil (3.4-percent difference). The study also compared backcalculated subgrade moduli, average deflection basins, and loading time history data. ARA concluded that both FWDs provided satisfactory data.\(^9\)

Table 1. Comparison of JILSTM™ and Dynatest® FWD features.

<table>
<thead>
<tr>
<th>Feature</th>
<th>JILSTM™ Model 20T</th>
<th>Dynatest® Model 8002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number and type of deflection sensors</td>
<td>9 geophones available</td>
<td>9 geophones available</td>
</tr>
<tr>
<td>Load column tilting mechanism</td>
<td>Air bags</td>
<td>Load plate swivel</td>
</tr>
<tr>
<td>Load plate type and diameter</td>
<td>12-inch solid plate</td>
<td>11.8-inch solid split plate and 17.7-inch solid plates are available as options</td>
</tr>
<tr>
<td>Measured cycle duration</td>
<td>24 ms</td>
<td>35 ms</td>
</tr>
</tbody>
</table>

KUAB (Engineering and Research International, Inc.)

The KUAB FWD is a trailer-mounted dynamic impulse loading device that can be towed by any suitable towing vehicle.\(^{10}\) Similar to other FWDs, the KUAB device has a loading system and series of deflection sensors. However, it also has its own defining characteristics, including a metal housing completely enclosing the loading system (see figure 4). A few other features include the following:

- **Two-mass configuration:** The initial load mass is dropped onto an intermediate buffering system. It transmits the force to another buffering system, which in turn transmits the load to the load plate. The use of the two-mass system creates a smoother load pulse that simulates the actual effects of a moving vehicle.\(^{11}\)

- **Segmented load plate:** This type of plate ensures a uniform pressure distribution over the full area of the plate.

- **Seismometers:** Seven seismometers contact the surface during testing and measure the deflection from the plate. One sensor is placed over the load, while the other six are situated behind and in front of the load to measure displacement at different distances from the plate. Each seismometer includes an LVDT. Compared with other FWD sensors, seismometers may provide more direct deflection readings and have a larger measurement range. The deflection measuring sensors have a range of 0 to 200 mil.

Four KUAB models are available (KUAB 50, KUAB 120, KUAB 150, and KUAB 240), with the primary difference being the magnitude of the load that can be applied. The KUAB 50 is the lightest, with a standard load range of 3,000 to 14,000 lbf. It could be used on highway, street, and parking lot pavements. The KUAB 120 adds an 18-inch segmented load plate and has a standard load range of 1,500 to 27,000 lbf. The KUAB 150 model offers a standard load range of 3,000 to 33,000 lbf, making it a
suitable testing device for airport pavements, as well. The heaviest KUAB 240 device can impart a load of 66,000 lbf, making it suitable for use in airfield applications. All four models support up to seven deflection sensors.

As with the Dynatest® FWD, the KUAB has two loading plates available: 11.8 or 17.7 inches in diameter.

Evaluation of Impulse Load Equipment

The FWDs described in the previous section have the ability to closely simulate the loading characteristics of a moving wheel load and to measure the deflection basin. However, these FWDs are relatively complex electromechanical systems, require traffic control when performing testing, and have a high initial cost.

One characteristic that should be considered when interpreting FWD deflection data is the loading time. The loading time is important to consider when evaluating differences in backcalculated moduli of viscoelastic materials because shorter loading times generally result in higher backcalculated modulus values for hot mix asphalt (HMA). The Dynatest® FWD produces a loading time of about 28 to 35 ms, whereas the JILS™ and KUAB devices produce a loading time of about 24 and 80 ms, respectively. The Carlo Bro FWD produces a loading time of about 20 to 30 ms.

REVIEW OF STATUS OF FWD DATA COLLECTION, ANALYSIS, AND INTERPRETATION

Data Collection and Related Issues

Typical testing patterns for FWD testing vary depending on the purpose of the testing. For network-level testing, deflection testing is conducted at 500 to 1,500 ft in a single traffic lane. This level of testing is normally sufficient to provide a general indicator of structural adequacy of the pavement network. For project-level testing, the test point spacing should be adequate to capture the variability in structural capacity of the
Typical project-level testing intervals for HMA pavements are between 100 and 500 ft, with the shorter testing interval warranted for pavements in poorer condition and the larger testing interval appropriate for pavements in better condition. The recommended testing locations are on the outer wheel (OW) path of the outer traffic lane.

The primary issues related to FWD data analysis and interpretation are (1) errors in measurement (relevant to static and dynamic backcalculation) and (2) signal noise and truncation (relevant for dynamic analysis only).

FWD Data Errors

According to Irwin, there are three main sources of errors in FWD data: seating errors, random errors, and systematic errors. Irwin, Yang, and Stubstad showed that even very small deflection errors (on the order of 2 microns or less) can lead to very large errors in the backcalculated moduli. Irwin found the following:

- **Seating errors:** Seating errors were caused by the rough texture of pavements and were of more critical importance in the testing of HMA pavements. These errors could typically be eliminated by applying a seating drop at each new test point, allowing the deflection sensors to become seated. Seating drop data should not be used in analyzing the pavement structure.

- **Random errors:** Random errors were associated with the analog-to-digital conversion of the deflections. They were on the order of ±2 microns. Random errors could not be completely eliminated; however, they could be reduced by taking multiple readings and averaging the results. This reduction was proportional to the square root of the number of observations used in computing the mean. For example, if four replicate FWD drops (with the same height) at the same point were averaged, the random error would be reduced by half. Care must be taken to ensure that the multiple readings were random, i.e., that they were not consistently increasing or decreasing owing to liquefaction or compaction caused by the additional drops.

Systematic Errors

Systematic errors are associated with the particular FWD equipment and its specific sensors. Systematic errors are on the order of ±2 percent. FWD specifications therefore call for an accuracy of ±2 percent or ±2 microns, whichever is greater. This specification combines the systematic error and the random error. Systematic errors can be reduced to 0.3 percent or less for each individual sensor, including the load cell, through calibration.

Noise and Truncation of FWD Sensor Signals

The sensitivity of dynamic backcalculation solutions to signal noise is high. Basically, noisy data alter the error function surface enough to cause optimization errors. This can cause the search algorithm to diverge or to converge to a different modulus when regularization techniques are used. The remedy to noise is to preprocess the raw data by filtering out the high-frequency content of the signal (anything above 100 Hz) in deflection and load pulse data. Also, if synchronization problems occur, the dynamic
backcalculation algorithm may not work as well, although one could shift the signals similar to what was done in the quasi-static viscoelastic solution.

Another issue that is relevant to dynamic analysis is signal truncation. This problem can lead to large errors in the backcalculated layer parameters when using a frequency-based solution. Therefore, signal truncation will affect the frequency-domain backcalculation. On the other hand, the time-domain backcalculation is not affected by FWD signals truncation. In fact, this is one of the major reasons the research team pursued development of a new time-domain dynamic viscoelastic solution.

Integration Drift

The use of numerical integration of acceleration or velocity information from inertial sensors to obtain position information inherently causes errors to grow with time, which is commonly known as “integration drift.” The main problem is that integrating a signal contaminated with noise and drift leads to an output that has a root mean square (RMS) value that increases with integration time even in the absence of any motion of the sensor. For a single integration, the errors are a function of the duration of the signal. For that reason, to correct for the drift, estimation of deflections using inertial sensors is usually performed with the help of externally referenced aided sensors or sensing systems or prior knowledge about the motion. With aided sensors or sensing systems, Kalman filters (KFs) or extended-Kalman filters (EKFs) are commonly used to fuse different sources of information in an attempt to correct for the drift. A more detailed discussion about the drift is presented in chapter 6, in the subsection entitled Effects of Numerical Errors and Drifts.

Analysis and Interpretation of FWD Data

Deflection measurements can be used for backcalculating the elastic moduli of the pavement structural layers and for estimating the load-carrying capacity for HMA pavements. A number of factors affect the magnitude of measured pavement deflections, which makes the interpretation of deflection results difficult. The major factors that affect pavement deflections can be grouped into the following categories: pavement structure (thickness), pavement loading (load magnitude and type of loading), and climate (temperature and seasonal effects).

There are various approaches for FWD data analysis and interpretation. These can be grouped into two categories: (1) methods of analysis for calculating pavement response (forward analysis) and (2) methods for interpretation of pavement response (backcalculation).

Forward Analysis

Methods of calculating pavement response (forward calculation) include the following: (1) closed-form solutions based on Boussinesq’s original half-space solution, (2) layered elastic solutions based on Burmister’s original two- and three-layer solutions, and (3) FEM-based solutions.

The method of equivalent thicknesses is based on Odemark’s assumptions. This closed-form solution is reported to produce results that are as good as or better than those from static layered elastic and FEM solutions. The method can also be adapted to
handle nonlinear subgrade materials. However, the method cannot be used to determine
the dynamic modulus master curve of an existing HMA layer.

The layered elastic solutions are the most commonly used among all methods. They are
generally restricted to linear elastostatic analysis. The basic assumptions of the solution
are the following:

- Surface load is uniformly distributed over a circular area.
- All layers are homogeneous, isotropic, and linearly elastic.
- Upper layers extend horizontally to infinity.
- Bottom layer is a semi-infinite half-space.

These solutions have been shown to produce good results if material behavior remains in
the linear range; however, they cannot be used to determine the dynamic modulus master
curve of an existing HMA layer.

The available computer programs that use the layered elastic solutions include, but are
not limited to, CHEVRON, ELSYM5, and BISAR, NELAPAV, PADAL, VESYS, and
KENPAVE. (See references 21–27.)

Finite element analysis (FEA) has also been used for pavement analysis, including three-
dimensional (3-D) general-purpose programs, such as SAP, ABAQUS, and ANSYS, and
pavement-specific programs for two-dimensional (2-D) axisymmetric (e.g., ILLIPAVE
and MICHPAVE) and 3-D solutions (CAPA-3D). The main advantage of FEA is the
ability to handle material variability and nonlinearity in both vertical and horizontal
directions and to include any number of sophisticated constitutive models. Some of these
programs do allow dynamic and/or viscoelastic analyses. However, they are either
restricted to a particular constitutive model that may not be suitable for the
backcalculation of the dynamic modulus master curve, and/or they involve a large
number of elements and input parameters and therefore are much more time consuming
to set up and to run.

In addition to the methods discussed here, efficient dynamic solutions were also used for
pavement analysis. Computer programs for dynamic analysis of pavement systems use
either dynamic damped-elastic finite-layer or FEM models for their forward solutions.
The finite layer solutions are based on Kausel’s formulation, which subdivides the
medium into discrete layers that have a linear displacement function in the vertical
direction and satisfy the wave equation in the horizontal direction.(28) Examples of
programs containing such solutions include UTDYNAF, UTFWD, GREEN, SAPSI, and
SCALPOT. (See references 29–33.)

Backcalculation Analysis

The following paragraphs describe static and dynamic backcalculation methods.

Static Backcalculation Methods: Most existing static backcalculation routines can be
classified into three major categories, depending on the techniques used to reach the
solution. The first category is based on iteration techniques, which repeatedly use a
forward analysis method within an iterative process. The layer moduli are repeatedly adjusted until a suitable match between the calculated and measured deflection basins is obtained. The second category is based on searching a database of deflection basins. A forward calculating scheme is used to generate a database, which is then searched to find a best match for the observed deflection basin. The third and final category is based on the use of regression equations fitted to a database of deflection basins generated by a forward calculation scheme. In principle, these three techniques can be applied to any of the forward analysis methods previously discussed. However, the iterative method is arguably the easiest to implement for dynamic backcalculation solutions.

Most iterative solutions use a search algorithm that is achieved by minimizing an objective function of any set of independent variables (i.e., layer moduli, thicknesses, etc.), which is commonly defined as the weighted sum of squares of the differences between calculated and measured surface deflections, which minimizes to the equation shown in figure 5.

\[f = \sum_{j=1}^{m} a_j (w_{jm} - w_{jc})^2 \]

Figure 5. Equation. Objective function for the search algorithm.

Where:

- \(m \) = Number of sensors.
- \(w_{jm} \) = Measured deflection at sensor \(j \).
- \(w_{jc} \) = Calculated deflection at sensor \(j \).
- \(a_j \) = Weighing factor for sensor \(j \).

The equation shown in figure 5 can be solved using nonlinear optimization methods, which locate the least value of the objective function. Many minimization techniques are available in the literature, including the following: \(^{(34)}\)

- Factored secant update method.
- Modified Levenberg-Marquardt (LM) algorithm.
- Modified Powell hybrid algorithm.

One of the problems of this approach is that the multidimensional surface represented by the objective function may have many local minima. As a result, the program may converge to different solutions if a different set of seed moduli is used. Another problem is that the convergence can be very slow, requiring numerous calls to a forward analysis program.

An example of an iterative program for static backcalculation is EVERCALC, which uses a modified LM algorithm. \(^{(35)}\) The program seeks to minimize an objective function formed as the sum of squared relative differences between the calculated and measured surface deflections.
The search method can also take the form of solving the linear set of equations, as shown in figure 6.

\[
[F]^k \{d\}^k = \{r\}^k
\]

Figure 6. Equation. Search method using set of equations.

Where:

\([F]^k\) = \(k\)th iteration of the \(m\) by \(n\) matrix of partial derivatives \(\partial f_j / \partial E_i\), where \(j = 1\) to \(m\) and \(m\) is the number of deflections measured, and \(i = 1\) to \(n\) where \(n\) is the number of layers in the pavement with unknown moduli.

\(\{d\}^k\) = \(k\)th iteration difference vector, \(E_{i+1}^k - E_i^k\), between the new and old moduli.

\(\{r\}^k\) = \(k\)th iteration residual vector, \(w_{jc} - w_{jm}\), between the most recently calculated and the measured surface deflections.

An example of an iterative program using the above search method is MICHBACK, which uses the modified Newton-Raphson (also called secant) method. The method of least-squares is used to solve the over-determined system of equations (\(m\) equations in \(n\) unknowns, \(m > n\)) in figure 6. If desired, weighting factors can be used for each sensor measurement to emphasize some deflection measurements over others.

Dynamic Backcalculation Methods: Most dynamic backcalculation methods use dynamic, damped-elastic finite-layer or FEMs for their forward solutions. Dynamic backcalculation methods are based on either frequency- or time-domain solutions. For the former procedure, the applied load and measured deflection time histories are transformed into the frequency domain by using the fast Fourier transform (FFT). Backcalculation of layer parameters is done by matching the calculated steady-state (complex) deflection basin with the frequency component of the measured sensor deflections at one or more frequencies. In time-domain backcalculation, the measured deflection time histories are directly compared with the predicted results from the forward analysis. One of the advantages of this method is that matching can be achieved for any time interval desired. Uzan compared the two methods and concluded that time-domain backcalculation was preferred over frequency-domain backcalculation.\(^{36}\)

BACKCALCULATION COMPUTER PROGRAMS

Static Backcalculation Programs

Numerous computer programs for performing automated backcalculation have been developed. Some of the known static backcalculation computer programs and their characteristics are presented in table 2. Different versions of these programs exist, with improved and/or updated editions being periodically released. Most of the automated backcalculation programs rely on static analysis and a linear elastic layer program. Notable exceptions include ELMOD, which can use either Odemark’s method or the FEM in addition to the layered elastic solution, and MODCOMP and EVERCAL, which can handle nonlinear material properties.
Accuracy and Reliability

Many of the programs developed for production purposes are intended to get to an “accurate” solution reliably. While most static backcalculation programs usually converge to a solution reasonably quickly and reliably, one cannot assert the uniqueness of the set of layer moduli derived from any search method. For this reason, many programs use various controls to guide the iterative search toward an “acceptable” set of layer moduli. These include making some assumptions about the type of pavement system being analyzed (e.g., assuming that layer moduli decrease with depth, that the subgrade modulus is constant with depth, that a rigid layer exists a certain depth, etc.) and limiting the acceptable range of moduli for each individual layer type.

Required Inputs

Required inputs typically include peak sensor deflections and their location, peak load values, the number of layers in the pavement system and their thicknesses, and assumed values for Poisson’s ratios. Most programs also require seed moduli as input, although some have methods that generate these from the measured deflections or from regression equations.

Resulting Outputs

Typical outputs include the measured and calculated deflections, the differences and percent differences, the final set of layer moduli, and the error sums. Most of the existing backcalculation programs allow for 3 to 5 layers; a notable exception is the MODCOMP5 program, which allows up to 15 layers.
<table>
<thead>
<tr>
<th>Program Name</th>
<th>Developer</th>
<th>Forward Calculation Method</th>
<th>Forward Calculation Subroutine</th>
<th>Backcalculation Method</th>
<th>Nonlinear Analysis</th>
<th>Layer Interface Analysis</th>
<th>Maximum Number of Layers</th>
<th>Seed Moduli</th>
<th>Range of Acceptable Modulus</th>
<th>Ability to Fix Modulus</th>
<th>Convergence Scheme</th>
<th>Error Weighting Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BISDEF</td>
<td>U.S. Army Corps of Engineers—Waterway Experiment State (USACE-WES)</td>
<td>Multilayer Elastic Theory</td>
<td>BISAR</td>
<td>Iterative</td>
<td>No</td>
<td>Variable</td>
<td>Number of deflections; best for 3 unknowns</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of squares of absolute error</td>
<td>Yes</td>
</tr>
<tr>
<td>BOUSDEF</td>
<td>Zhou et al. (Oregon State University)</td>
<td>Method of Equivalent Thickness</td>
<td>MET</td>
<td>Iterative</td>
<td>Yes</td>
<td>Fixed (rough)</td>
<td>At least 4 deflections; best for 3 unknowns</td>
<td>Required</td>
<td>Required</td>
<td>—</td>
<td>Sum of percent errors</td>
<td>—</td>
</tr>
<tr>
<td>CHEVDEF</td>
<td>USACE-WES</td>
<td>Multilayer Elastic Theory</td>
<td>CHEVRON</td>
<td>Iterative</td>
<td>No</td>
<td>Fixed (rough)</td>
<td>Number of deflections; best for 3 unknowns</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of squares of absolute error</td>
<td>Yes</td>
</tr>
<tr>
<td>COMDEF</td>
<td>USACE-WES</td>
<td>Multilayer Elastic Theory</td>
<td>BISAR</td>
<td>Database</td>
<td>No</td>
<td>Fixed (rough)</td>
<td>3</td>
<td>No</td>
<td>No</td>
<td>—</td>
<td>Various</td>
<td>No</td>
</tr>
<tr>
<td>DBCONPAS</td>
<td>Ti et al. (University of Florida)</td>
<td>Finite Element</td>
<td>FEACONS III</td>
<td>Database</td>
<td>Yes?</td>
<td>Yes?</td>
<td>—</td>
<td>No</td>
<td>No</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ELMODELCON</td>
<td>Ullidtz (Dynatest®)</td>
<td>Method of Equivalent Thickness</td>
<td>MET</td>
<td>Iterative</td>
<td>Yes (subgrade only)</td>
<td>Fixed (rough)</td>
<td>4 (exclusive of rigid layer)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Relative error of 5 sensors</td>
<td>No</td>
</tr>
<tr>
<td>ELSDEF</td>
<td>Texas A&M, USACE-WES</td>
<td>Multilayer Elastic Theory</td>
<td>ELSYM5</td>
<td>Iterative</td>
<td>No</td>
<td>Fixed (rough)</td>
<td>Number of deflections; best for 3 unknowns</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of squares of absolute error</td>
<td>Yes</td>
</tr>
<tr>
<td>EMOD</td>
<td>PCS/Law Engineering</td>
<td>Multilayer Elastic Theory</td>
<td>CHEVRON</td>
<td>Iterative</td>
<td>Yes (subgrade only)</td>
<td>Fixed (rough)</td>
<td>3</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of relative squared error</td>
<td>No</td>
</tr>
<tr>
<td>EVERCALC</td>
<td>Mahoney et al.</td>
<td>Multilayer Elastic Theory</td>
<td>WESLEA</td>
<td>Iterative</td>
<td>Yes</td>
<td>Variable</td>
<td>5</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of absolute error</td>
<td>Yes</td>
</tr>
<tr>
<td>FPEDD1</td>
<td>Uddin</td>
<td>Multilayer Elastic Theory</td>
<td>BASINF?</td>
<td>Iterative</td>
<td>Yes</td>
<td>Fixed (rough)</td>
<td>—</td>
<td>Program Generated</td>
<td>—</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ISSEM4</td>
<td>Ullidtz, Stubstad</td>
<td>Multilayer Elastic Theory</td>
<td>ELSYM5</td>
<td>Iterative</td>
<td>Yes (finite cylinder concept)</td>
<td>Fixed (rough)</td>
<td>4</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Relative deflection error</td>
<td>No</td>
</tr>
<tr>
<td>MICHBACK</td>
<td>Harichandran et al.</td>
<td>Multilayer Elastic Theory</td>
<td>CHEVRONX</td>
<td>Newton method</td>
<td>No</td>
<td>Fixed (rough)</td>
<td>Number of deflections; best for 3 unknowns</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of relative squared error</td>
<td>—</td>
</tr>
<tr>
<td>MODCOMP5</td>
<td>Irwin, Szebenyl</td>
<td>Multilayer Elastic Theory</td>
<td>CHEVRON</td>
<td>Iterative</td>
<td>Yes</td>
<td>Fixed (rough)</td>
<td>2 to 15 layers; maximum of 5 unknown layers</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Relative deflection error at sensors</td>
<td>No</td>
</tr>
<tr>
<td>MODULUS</td>
<td>Texas Transportation Institute</td>
<td>Multilayer Elastic Theory</td>
<td>WESLEA</td>
<td>Database</td>
<td>Yes?</td>
<td>Fixed?</td>
<td>4 unknown plus stiff layer</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of relative squared error</td>
<td>Yes</td>
</tr>
<tr>
<td>Program Name</td>
<td>Developer</td>
<td>Forward Calculation Method</td>
<td>Forward Calculation Subroutine</td>
<td>Backcalculation Method</td>
<td>Nonlinear Analysis</td>
<td>Layer Interface Analysis</td>
<td>Maximum Number of Layers</td>
<td>Seed Moduli</td>
<td>Range of Acceptable Modulus</td>
<td>Ability to Fix Modulus</td>
<td>Convergence Scheme</td>
<td>Error Weighting Function</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>PADAL</td>
<td>Brown et al.</td>
<td>Multilayer Elastic Theory</td>
<td>—</td>
<td>Iterative</td>
<td>Yes (subgrade only)</td>
<td>Fixed?</td>
<td>—</td>
<td>Required</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Sum of relative squared error</td>
</tr>
<tr>
<td>RPEDD1</td>
<td>Uddin</td>
<td>Multilayer Elastic Theory</td>
<td>BASINR</td>
<td>Iterative</td>
<td>Yes</td>
<td>Fixed?</td>
<td>—</td>
<td>Program Generated</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>WESDEF</td>
<td>USACE-WES</td>
<td>Multilayer Elastic Theory</td>
<td>WESLEA</td>
<td>Iterative</td>
<td>No</td>
<td>Variable</td>
<td>5</td>
<td>Required</td>
<td>Required</td>
<td>Yes</td>
<td>Sum of squares of absolute error</td>
<td>Yes</td>
</tr>
<tr>
<td>RoSy DESIGN</td>
<td>Grontmij Pavement</td>
<td>LET</td>
<td>—</td>
<td>LET</td>
<td>Yes</td>
<td>No</td>
<td>4 in LET</td>
<td>User setting</td>
<td>No</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PRIMAX-design</td>
<td>Grontmij Pavement</td>
<td>Leaf and LET</td>
<td>—</td>
<td>Backfaa and LET</td>
<td>Yes</td>
<td>No</td>
<td>4 in LET and 10 in Backfaa</td>
<td>User setting</td>
<td>Yes user setting</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

— Indicates not applicable.
LET = Linear elastic theory.
User Friendliness

Because many of the backcalculation programs are developed for production purposes, they are user friendly, require minimum involvement from the user, and provide various features intended to be useful for project-level analysis. Conversely, those programs written for use in research tend to lack the features needed for production. They also usually allow and require significant involvement from the user. These include dynamic backcalculation programs that rely on dynamic analysis to calculate the deflection time histories and those that use available general-use FEM programs.

Advantages and Disadvantages

Attempting to do a one-to-one comparison of different backcalculation programs for the purpose of identifying the best one is a difficult task. Each of these programs has pros and cons, and each may be particularly useful in a specific situation. Before making such comparisons, one should first define the purpose in doing backcalculation and the evaluation criteria that one will use. In general, the advantage of using simpler methods is that they are very fast and easy to use. Their disadvantage is that they are limited in their interpretation of the FWD data. For example, most static backcalculation programs are limited to five layers. This may not be sufficient to characterize realistic pavement profiles that comprise five or more layers, and such programs cannot be used to allow for variation in subgrade modulus with depth, for example. On the other hand, more advanced methods of backcalculation, which theoretically allow backcalculation of a larger number of parameters, are computationally expensive and time consuming. Also, they are not guaranteed to converge when using real field-measured data. For most State transportation departments, the ultimate purpose of backcalculation is to aid in rehabilitation design so that purpose should be a strong criterion for selecting a program.

Dynamic Backcalculation Programs

A number of computer programs have been developed for dynamic backcalculation of flexible pavement layer parameters. Each program employs a particular forward model and a specific backcalculation scheme. All of these programs require the time histories of the load and deflection sensors. Theoretically, because these time histories contain more information than just the peak values of load and deflection, dynamic backcalculation programs can backcalculate a larger number of parameters when using synthetically generated deflection time histories. However, there are serious challenges when using measured field data. For example, the frequency-domain solutions can lead to large errors if the measured FWD records are truncated before the motions fully decay in time.

Time-domain backcalculation solutions present another set of challenges. For example, the time synchronization between the load and sensor records and the digitization of the response can be problematic. Noise in the data and the ill-posed nature of the inversion problem can be amplified when matching traces of time histories, requiring special filtering and regularization techniques that are not easy to implement. In addition, unlike frequency-domain analysis, where the properties are backcalculated at each frequency independently, time-domain backcalculation precludes making a choice on the behavior of material properties with frequency; that is, they either assume a constant HMA modulus (similar to static backcalculation) or a prescribed function of the HMA layer modulus with frequency (e.g., linear relation in the log-log space).
While this assumption may be acceptable for unbound materials, it may significantly affect the predicted response of the HMA layer because of its viscoelastic nature. Finally, none of these programs are considered ready for production mode, because they usually require a lot of involvement from the user, are computationally very expensive, and have not been fully evaluated for use with field-measured data. Some of the dynamic backcalculation computer programs and their characteristics are presented in table 3. A brief overview of the programs developed to date is also provided.

Table 3. Dynamic backcalculation programs for flexible pavements.

<table>
<thead>
<tr>
<th>Program</th>
<th>Domain</th>
<th>Inverse Method</th>
<th>Forward Program</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKGREEN</td>
<td>Frequency</td>
<td>Nonlinear least-square optimization</td>
<td>GREEN</td>
<td>31</td>
</tr>
<tr>
<td>No formal name</td>
<td>Frequency/time</td>
<td>Newton’s method</td>
<td>UTFWIBM</td>
<td>37</td>
</tr>
<tr>
<td>PAVE-SID</td>
<td>Frequency</td>
<td>System Identification (SID)</td>
<td>SCALPOT</td>
<td>33</td>
</tr>
<tr>
<td>FEDPAN</td>
<td>Time</td>
<td>Linear least squares</td>
<td>SAP IV</td>
<td>38</td>
</tr>
<tr>
<td>No formal name</td>
<td>Frequency</td>
<td>LM</td>
<td>SAPSI</td>
<td>39</td>
</tr>
<tr>
<td>No formal name</td>
<td>Frequency</td>
<td>Secant Update, LM, Powell Hybrid</td>
<td>LAMDA</td>
<td>40</td>
</tr>
<tr>
<td>No formal name</td>
<td>Time</td>
<td>Gauss-Newton method</td>
<td>FEM</td>
<td>41</td>
</tr>
<tr>
<td>DYNABACK</td>
<td>Frequency/time</td>
<td>Newton’s method with least-square or singular value decomposition</td>
<td>SAPSI</td>
<td>15, 42, and 43</td>
</tr>
<tr>
<td>EVERCALCII</td>
<td>Time</td>
<td>Nonlinear least square optimization with Tikhonov regularization and continuation method</td>
<td>FEM</td>
<td>44</td>
</tr>
</tbody>
</table>

BKGREEN models the pavement as a layered elastic system in terms of dynamic Green flexibility influence functions using Kausel’s formulation of discrete Green functions for dynamic loads in linear viscoelastic layered media.\(^{28,31}\) Backcalculation is done at multiple frequencies, and the set of layer moduli is determined using a nonlinear least squares technique. The solution can cause some computational difficulties at certain frequencies because of the numerical complications associated with implementing infinite integration in computer codes.

Uzan presented two dynamic linear backcalculation procedures—one in the time domain and the other in the frequency domain.\(^{37}\) Both approaches use the program UTFWIBM as the forward model and Newton’s method as the backcalculation solution. UTFWIBM uses the finite layer solutions (based on Kausel’s formulation), which subdivides the medium into discrete layers that
have a linear displacement function in the vertical direction and satisfy the wave equation in the horizontal direction.

PAVE-SID is a computer program that uses the SCALPOT program to generate frequency response curves; a system identification technique is applied for matching computed frequency data to extract pavement properties. SCALPOT computes the dynamic response of a horizontally layered viscoelastic half-space to a time-dependent surface pressure distribution.

FEDPAN is a FEM program that can perform both static and dynamic backcalculation for three-layer pavement systems using the CHEVDEF backcalculation algorithm. This program can simulate the effects of pavement inertia and damping in the dynamic analysis and material nonlinearity in the static analysis.

Losa used SAPSI as the forward program and a nonlinear least squares optimization technique (LM method) for multifrequency backcalculation. The HMA and subgrade materials were assumed to be frequency dependent while the base/subbase material was assumed to be frequency independent.

Al-Khoury et al. developed an axisymmetric layered solution as a forward model using the spectral element technique and used the modified LM and Powell hybrid methods for solving the resulting system of nonlinear equations.

Meier and Rix developed an artificial neural network (ANN) solution that has been trained to backcalculate pavement layer moduli for three-layer flexible pavement systems using synthetic dynamic deflection basins. The dynamic pavement response was calculated using an elastodynamic Green function solution based on Kausel’s formulation.

Work by Chatti developed the DYNABACK computer program that allows for different dynamic backcalculation algorithms for both frequency-based and time-based solutions. The DYNABACK program uses the SAPSI program as its forward solution and an expanded version of the modified Newton-Raphson algorithm in the MICHBACK program as its backcalculation solution. The solution uses the least squares minimization technique to solve the over-determined set of equations, which are real-valued and correspond to the peak transient deflections and their corresponding time lags relative to the peak load. The DYNABACK program includes two basic solutions with several options for backcalculating different layer parameters: (1) frequency-domain backcalculation at one or multiple frequencies and (2) time-domain backcalculation using peak responses or time history traces. Theoretically, single frequency backcalculation can be used to backcalculate up to 8 parameters while multiple frequency backcalculation can be used to backcalculate up to 15 parameters. The same is true for time-domain backcalculation using peak responses and traces, respectively. However, when using measured deflection time histories, the number of backcalculated parameters must be reduced to fewer than eight.

Finally, Turkiyyah has been developing an improved EVERCALCII program that uses the complete FWD sensor time histories to recover pavement layer moduli distribution and thicknesses using thin computational layers that discretize the profile. In this solution, physical layer thicknesses can be obtained, after backcalculation of thin computational layer moduli, by
grouping thin layers of similar moduli values. Two regularization techniques are employed. One involves the absolute values of the moduli to prevent physically unrealistic solutions with large layer moduli, while the second controls the gradient of the moduli in the vertical direction to prevent convergence to profiles with neighboring layers that alternate between high and low moduli. In addition, a “continuation scheme” is used to control the weights on the regularization terms to overcome the ill-posed nature of the optimization problem. Because this solution relies on backcalculating the moduli of the relatively large number of elements that make up these thin computational layers, the computational effort for solving the inverse problem is very significant. Efforts are underway to speed up the forward (FEM) solution.

MODELING ISSUES

Several specific modeling issues must be considered when selecting backcalculation solutions, as described in the following subsections.

Static Versus Dynamic Response

The FWD test consists of dropping a large weight from a specified height, which creates a 20- to 60-ms impulse load, simulating a moving wheel load. This creates waves in the pavement system and underlying subgrade soil. These elastic waves propagate with distance and are partly reflected at the interface between any given two successive layers, with the remaining wave energy penetrating and propagating to the next layer, and the process is repeated. These waves bounce up and down a few hundred times in a given test. The deflection time histories lag the load pulse, with the time lag increasing as the distance between the load plate and the sensor increases. So, clearly, the FWD test is a dynamic test. Therefore, to maximize the effective interpretation of FWD data, the forward solutions must be able to account for the following physical conditions encountered in FWD testing:

- Transient nature of the FWD load (i.e., time varying pulse load of arbitrary shape).
- Dynamic effects (i.e., ability to model viscous and inertial internal forces).
- Wave propagation effects (i.e., the ability to model the propagation of the stress waves imparted by the FWD impulse in time and space).
- Viscoelastic effects (i.e., the ability to incorporate a frequency-dependent HMA dynamic modulus or its viscoelastic equivalent, the time-dependent relaxation modulus).

The difference between static response and dynamic response can be defined in terms of the internal forces involved. In static analysis, only elastic forces are considered. On the other hand, viscous and inertial forces are considered in addition to the elastic forces in dynamic analysis. The question therefore is whether the effects of viscous and inertial forces are significant enough that one cannot afford to ignore them when characterizing the in situ conditions of a pavement system under an FWD test. Most pavement engineers argue that backcalculation is an exercise that determines pavement parameters—not properties—that are to be used within a given mechanistic framework. Therefore, it is acceptable to use static analysis and to backcalculate parameters that are compatible with the current mechanistic-empirical design framework that is grounded in static and not dynamic
analysis. However, advocates for dynamic analysis maintain that such an approach takes advantage of more information provided by the test, which allows for backcalculating more parameters such as layer thicknesses or, perhaps more important, the modulus versus frequency curve of the HMA layer. Also, in certain cases, such in the presence of a stiff layer or water table at shallow depth, the effect of dynamics on pavement response is more important.

Time-Domain Versus Frequency-Domain Backcalculation

Uzan compared the two methods and concluded that time-domain backcalculation is preferred over frequency-domain backcalculation.\(^{36}\) Measured field data from FWD tests using current technology contain several types of measurement and calibration errors, and thus the developed algorithms and computer programs for dynamic backcalculation, must address the following serious challenges:

- Large errors can be introduced when the measured deflection signals are truncated before the motions fully decay in time. Such errors are observed when frequency-domain solutions are used.
- The periodicity of the signal assumed in the discrete Fourier transform (DFT) algorithm cannot accurately disclose the frequency content of the transient FWD time histories with short duration.
- The DFT is very sensitive to noise, which is always present in the FWD.\(^{42,50,51}\)
- The DFT is impractical for representing the fundamental properties of a viscoelastic material, such as creep compliance or dynamic modulus, because of a large number of harmonics necessary for modeling them.\(^{52,53}\) This is also the reason most of the frequency-domain solutions use the damping ratio concept and hence fail to model and/or backcalculate the fundamental properties of a viscoelastic material.
- The means of an FWD load pulse and corresponding deflection time histories are all nonzero. Dynamic solutions that have been developed in the context of soil dynamics and earthquake engineering take advantage of the FFT, which reduces computation time by orders of magnitude. However, the FFT algorithm assumes a zero mean function. This assumption is valid for earthquake records but not for an FWD pulse. By default, the output of the FFT algorithm is equal to \((A*N)/2\), where \(A\) is the amplitude of the input series except for the first element of the Fourier series (when the frequency is equal to zero). The standard magnitude of the DFT of the input series is equal to the FFT amplitude normalized such that the sum of the squares of the inputs is equal to the mean of the squares of the outputs (i.e., the total power determined from the time series equals the mean power determined from the spectrum) as shown in the equation in figure 7.

\[
\sum_{n=0}^{N-1}|x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^2 \quad \text{or} \quad \sum_{n=0}^{N-1}|x[n]|^2 = \sum_{k=0}^{N-1}|X[k]|^2 = \sum_{k=0}^{N-1} \frac{|X[k]|^2}{\sqrt{N}}
\]

Figure 7. Equation. Parseval theorem.
Where $x[n]$ is the deflection time series; $X[k]$ is the DFT of $x[n]$, both of length N. With the normalization shown in figure 7, the DFT of a nonzero-mean function at zero frequency will be the equation shown in figure 8.

$$X[0] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x[n]$$

Figure 8. Equation. DFT of a nonzero-mean function at zero frequency.

However, when the input has a nonzero mean, the amplitude of the DFT at zero frequency should be the mean value of the input. Therefore, this normalization is correct only if the input series has a steady state component that is equal to the mean value. However, FWD loading is a transient loading with a mean value but not a steady state component. Also, functions with a nonzero average value may produce a zero frequency component that obscures more interesting components. Adding a large enough quiet zone to a transient nonzero mean signal is a workaround that is often used. However, doing so affects analysis time, and it may not be useful in this case.

All the above issues emphasized the necessity of using a time-domain-based dynamic solution that is also able to model the viscoelastic response of the HMA layer(s).

Linear Versus Nonlinear Material Response

When pavement structures are thin enough or the applied loads and corresponding stresses are high enough, the subgrade material will likely exhibit stress-softening, nonlinear behavior (i.e., its response increases at a higher rate than the load or stress increases). This behavior translates to the subgrade modulus changing with depth and radial distance from the load. If the forward model uses a layered solution that assumes linear material behavior, it can only use one modulus value for an entire layer. Consequently, the backcalculated modulus to match the measured deflections is an averaged value. Typically, the backcalculated subgrade modulus is higher than the value obtained from laboratory measurement by a factor of 2 to 3, although this difference is not entirely caused by nonlinear material response.

On the other hand, granular (cohesionless) materials used in bases and subbases are stress dependent in a different (positive) way (i.e., their modulus increases with increasing confinement). Similar to the subgrade modulus, this leads to a base/subbase modulus that varies with depth and radial distance from the load, and any linear backcalculation exercise can only lead to an averaged modulus value. The combination of these phenomena often leads to a base modulus that is lower than the subgrade modulus despite the base material being superior to the subgrade material. One way of addressing this problem is to introduce an artificial layer. However, a more direct way of addressing the problem is to treat the subgrade as a nonlinear elastic material with a stress-dependent modulus i.e., with a modulus that varies with stress.\(^{(54)}\) Ullidtz argued that the effect of the positive nonlinearity in granular base/subbase layers on backcalculation results was less important.\(^{(54)}\)

Ideally, only the FEM can model the variation of moduli with depth and radial distance. However, some models based on layered elastic theory can handle nonlinear behavior approximately (e.g., NELAPAVE and KENPAVE). Ullidtz combined the method of equivalent
thickness with a stress-dependent subgrade modulus to handle material nonlinearity and reported that this approach was superior to FEM.\(^{(54)}\)

Bedrock or Stiff Layer Effect

A stiff layer condition can exist if there is shallow bedrock, a stiff clay layer, or a groundwater table. The effect of a stiff layer at a shallow depth can be very significant. Assuming the subgrade layer to be a semi-infinite half-space, while in reality the subgrade layer is only a few yards thick, causes the backcalculated moduli for the upper pavement layers to be incorrect. Generally, when the stiff layer is deeper than about 39 ft, its presence has little or no influence on the backcalculated moduli. The depth to the stiff layer can be evaluated by using a relationship between the deflection, \(\delta_Z\), and \(1/r\), where \(r\) is the radius at which it occurs (see figure 9). Several regression equations for different HMA layer thicknesses can be used as a function of \(r_o\) and deflection basin parameters.\(^{(55)}\)

Credit: Washington State Department of Transportation

Figure 9. Drawing and Graph. Plot of inverse of deflection offset versus measured deflection.\(^{(55)}\)

An alternative and arguably better way to determine the depth to the stiff layer is to use the free vibration response from FWD deflection sensor measurements and one-dimensional wave propagation theory.\(^{(56)}\) Chatti et al. modified Roesset’s equations to account for different conditions, as shown in the equations in figure 10 (for saturated subgrade with bedrock, use the first equation; for nonsaturated subgrade with bedrock or groundwater table, use the second equation).\(^{(42)}\)
Figure 10. Equation. Calculation of the depth to the stiff layer using the modified Roesset’s equations.

Where:

\[D_b = \frac{V_s \cdot T_d}{1.35} \]
\[D_b = \frac{V_s \cdot T_d}{(\pi - 2.24 \cdot u)} \]

Where:

\(V_s \) = S-wave velocity of subgrade material.
\(T_d \) = Natural period of free vibration (see figure 11).
\(u \) = Poisson’s ratio of subgrade.

Figure 11. Graph. Natural period \(T_d \) from sensor deflection time histories.

The procedure for estimating the depth to the stiff layer described above requires knowledge of
the shear wave velocity of the subgrade \(V_s \), which is a function of the modulus value as shown in
figure 12.

\[V_s = \sqrt{\frac{G}{\rho}} = \sqrt{\frac{E_{sg}}{2(1+\nu)}} \]

Figure 12. Equation. Shear wave velocity.

However, in the analysis of field data, subgrade properties (shear-wave velocity, unit weight \(\rho \), and
Poisson ratio \(u \)) are not generally known and therefore need to be either measured or assumed. The
method proposed by Lee et al. can be used for estimating the modulus of the subgrade \(E_{sg} \).
Temperature and Moisture Effects

Temperature and moisture conditions in the pavement vary over time. This variation occurs daily as well as seasonally. A pavement is strongest during the freezing season (in a freezing climate) because of the frozen state of the underlying materials. On the other hand, even in a freezing environment, the pavement can be at its weakest state during a thaw period, even if it is temporary (e.g., on a sunny day in late winter or during the warmest hours around midday). In areas where there is little or no freezing, seasonal variations can be very important in terms of moisture changes, which affect the modulus of the subgrade and to a lesser extent that of the base layer. For the HMA layers, hourly temperature variations during a given day need to be taken into account because temperature gradients exist in the pavement that can lead to modulus variation with depth. Also, seasonal variations can have a major effect on the modulus of an HMA layer. These effects must be considered when performing backcalculation. It is crucial to test the pavement at different times of the year to gain information about the seasonal variation. Testing should also be conducted at different times during the day to account for daily temperature variations.

Other Effects

Several other issues may need to be addressed in backcalculation analysis, including the following:

- Major cracks in the pavement or testing near a pavement edge or joint can cause the deflection data to depart drastically from the assumed conditions.
- Layer thicknesses are often not known, and subsurface layers can be overlooked.
- Layer thicknesses are not uniform, and materials in the layers are not homogeneous.
- Some pavement layers are too thin to be backcalculated in the pavement model.

RELEVANCE TO MEPDG USE

The required input material properties for HMA pavements in the new MEPDG that are relevant to the use of FWD data and backcalculation results are the following: (1) the time-temperature dependent dynamic modulus, E^*, for the HMA layer(s), (2) the resilient moduli for the unbound base/subbase and subgrade materials, and (3) the elastic modulus of the bedrock, if present.$^{(1)}$ The MEPDG also provides an option for considering nonlinear material parameters for the unbound layers for level 1 analysis.$^{(1)}$ However, the performance models used in the software have not been calibrated for nonlinear conditions.

HMA Materials

For HMA materials, level 1 analysis requires conducting E^* (complex modulus) laboratory testing at loading frequencies and temperatures of interest for the given mixture. Level 2 analysis does not require E^* laboratory testing; instead, the user can enter asphalt mix properties (gradation parameters) and laboratory binder test data (from G^* testing or other conventional binder tests).$^{(4)}$ The MEPDG software calculates the corresponding asphalt viscosity values; it then uses the modified Witczak equation to predict E^* and develops the master curve for the
HMA mixture.(1) The same procedure is used for level 3 analysis to estimate the HMA dynamic modulus, except no laboratory test data are required for the binder.

For rehabilitation design, the determination of the HMA layer dynamic modulus follows the same general concepts described above, except that the software allows for a modified procedure to account for damage incurred in the HMA layer during the life of the existing pavement. The procedure therefore determines a “field damaged” dynamic modulus master curve as follows:

- For level 1 analysis, the MEPDG calls for the following procedure:(1)

1. Conduct FWD tests in the OW path over the project to be rehabilitated; calculate the mean backcalculated HMA modulus, E_i, for the project, including cracked as well as uncracked areas; record the HMA layer temperature at the time of testing; and determine the layer thickness along the project from coring or GPR testing.

2. Determine mix volumetric parameters and asphalt viscosity parameters from cores and follow the same procedure for determining binder viscosity-temperature properties as for new or reconstruction design.

3. Develop an undamaged dynamic modulus master curve using the data from step 2 and the modified Witczak equation.

4. Estimate damage, $d_j = E_i/E^*$, with E_i obtained from step 1 and E^* obtained from step 3 at the same temperature recorded in the field.

5. Calculate $\alpha' = (1 – d_j) \alpha$, where α is a function of mix gradation parameters.

6. Determine the field damaged dynamic modulus master curve using α' instead of α in the modified Witczak equation.

- For level 2 and level 3 analyses, no FWD testing is required. The level 2 procedure is similar to the level 1 procedure, except that the indirect resilient modulus, M_{ri}, obtained from laboratory tests (NCHRP 1-28A) on specimens from field cores, is used in the damage parameter calculation, $d_j = M_{ri}/E^*$.(57) For the level 3 procedure, no coring or testing is required; instead, typical estimates of HMA mix parameters are entered, and the software calculates the undamaged master curve. The damage factor d_j is estimated from visual condition data.

Unbound Materials

For unbound materials (and bedrock), only level 1 analysis calls for FWD testing in rehabilitation and reconstruction designs. The resilient modulus, M_r, for each unbound layer (including the subgrade) can be either determined in the laboratory using cyclic triaxial tests or backcalculated using standard backcalculation procedures. As discussed in the previous section, while the MEPDG does allow for the generalized nonlinear, stress-dependent model in the design procedure, this approach is not recommended at this time because the performance models in the software have not been calibrated for nonlinear conditions; therefore, the MEPDG does not discuss the option of backcalculating the k_1, k_2, and k_3 parameters in the nonlinear model. The discussion in MEPDG only includes the backcalculation and use of “effective” moduli that would account for any stress sensitivity, cracks, or any other anomalies in any layer.
within the existing pavement. For level 2 analysis, correlations with strength test data are used. For level 3, the guide lists typical modulus values based on soil classification but warns that they are very approximate and strongly recommends some form of testing, especially using FWD testing and backcalculation (level 1).\(^{(1)}\)

The MEPDG notes that the reason for caution is related to using the wrong assumptions. Either a fairly strong subgrade material may be erroneously assumed to be semi-infinite while it may actually be less than 3 ft thick (e.g., as part of an embankment) or, conversely, a weak subgrade soil may be assumed to be semi-infinite while it may, in reality, be overlying a stronger soil or bedrock. The MEPDG also notes that for granular materials, moduli values that matched FWD backcalculated results were 50- to 70-percent higher than the typical laboratory-tested values, while for subgrade soils, they were two to three times the typical laboratory-determined values.\(^{(1)}\)

Cementitiously Stabilized Materials

Similar to unbound materials, only level 1 analysis calls for FWD testing in rehabilitation and reconstruction designs. The modulus, \(E\) or \(M_r\), for any cementitiously stabilized layer (including lean concrete and cement stabilized base, as well as lime/cement/flyash stabilized soils) can be either determined in the laboratory or backcalculated using standard backcalculation procedures. Layer thicknesses can be obtained by coring or using NDT techniques such as the GPR. The MEPDG recommends performing limited testing on cored lime-stabilized soil specimens to verify/confirm the backcalculated values and notes that backcalculation of modulus values for layers less than 6 inches thick located below other paving layers may be problematic, thus requiring laboratory testing. For level 2 analysis, correlations with strength test data are used. For level 3, the MEPDG calls for estimating the moduli based on experience or historical records and lists typical modulus values. The MEPDG also notes that semi-rigid cementitiously stabilized materials are more prone to deterioration due to repeated traffic loads when used in HMA pavements and suggests some typical (minimum) values for such deteriorated materials.\(^{(1)}\)

Using Static Backcalculation in the Current MEPDG Procedure

It should be clear from the previous discussion that the analysis in the MEPDG software always uses an \(E^*\) master curve and therefore does not accept a constant modulus value for the HMA layer(s). This is necessary because the analysis calculates different HMA moduli for the different sublayers comprising the HMA layer(s) as a function of depth, speed, and temperature, as explained in appendix CC of the MEPDG.\(^{(1)}\) For rehabilitation of existing pavements, the current MEPDG procedure (level 1) calls for (static) backcalculation of layer moduli, which leads to constant backcalculated moduli for all layers, including the HMA layer. To maintain compatibility of backcalculated layer moduli with the forward analysis in the software, the MEPDG procedure calls for adjusting the HMA dynamic modulus using the damage factor \(d_j\) (ratio of backcalculated HMA modulus to predicted \(E^*\) value using Witczak equation). This effectively shifts the undamaged master curve down while essentially maintaining the variation with frequency as predicted by the Witczak equation. The procedure also calls for adjusting the master curve using the aged viscosity value in the predictive \(E^*\) equation, which would shift the master curve upward; however, this upward shift would be negligible compared with the downward shift using the backcalculated modulus for the damaged HMA layer, \(E_i\) (as explained previously in the HMA Materials section).
Feasibility of Using Dynamic Backcalculation for Future Versions of MEPDG

Ideally, one should be able to determine a curve of HMA layer moduli as a function of frequency using a (dynamic) frequency-based backcalculation algorithm. This would give a more direct estimation of the HMA layer modulus with frequency from actual field conditions as opposed to relying on a laboratory-derived curve such as the Witczak equation. However, care should be taken in interpreting and using such data with the existing MEPDG performance predictions because they have been calibrated using laboratory-derived moduli. Also, recent analyses showed that while dynamic backcalculation methods can backcalculate layer moduli and thicknesses accurately from synthetically generated FWD data for pavement systems with three or more layers, they must address some serious challenges when using field data.\(^{(43)}\) The frequency-domain method can lead to large errors if the measured FWD records are truncated before the motions fully decay in time. Dynamic, time-domain backcalculation algorithms present another challenge in that they cannot directly determine the HMA modulus as a function of frequency. They either assume a constant HMA modulus (similar to static backcalculation) or a prescribed function of the HMA layer modulus with frequency.
CHAPTER 3. LTPP DATA ANALYSIS

This chapter describes the results of the statistical analysis performed on a relatively large sample of FWD data from the LTPP database to assess the following: (1) prevalence of dynamic effects, (2) prevalence of nonlinear behavior; and (3) measurement issues based on evidently erroneous deflection sensor time histories. The data cover all climatic zones, seasons, and temperature ranges.

PRELIMINARY STATISTICAL ANALYSIS OF LTPP FWD LOADING HISTORIES

For this analysis, the research team randomly selected 1,224 tests (17 States, 6 sections per State, 3 stations per section, and 4 load levels). Table 4 summarizes the data extracted from the LTPP database. The time-history plots for each test were visually reviewed, and then the sections were classified using the following criteria:

- **Dynamic behavior**: Vibrations in the deflection histories.
- **Nonlinear behavior**: The load-to-deflection ratio shows a consistent trend with load level.

<table>
<thead>
<tr>
<th>State</th>
<th>Section</th>
<th>Date</th>
<th>Time</th>
<th>LTPP Code</th>
<th>Climate Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>10101</td>
<td>20050428</td>
<td>16:00</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>10102</td>
<td>20050429</td>
<td>9:00</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>10103</td>
<td>20050429</td>
<td>13:30</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>10505</td>
<td>20050421</td>
<td>9:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>10504</td>
<td>20050420</td>
<td>15:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>10504</td>
<td>20090324</td>
<td>16:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td>Arizona</td>
<td>40502</td>
<td>20080915</td>
<td>13:37</td>
<td>SPS-5</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>40506</td>
<td>20080915</td>
<td>11:00</td>
<td>SPS-5</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>40509</td>
<td>20080915</td>
<td>10:00</td>
<td>SPS-5</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>41003</td>
<td>20110326</td>
<td>11:45</td>
<td>GPS-6S</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>41006</td>
<td>20110223</td>
<td>10:00</td>
<td>GPS-6S</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>41024</td>
<td>20070116</td>
<td>11:00</td>
<td>GPS-6S</td>
<td>DF</td>
</tr>
<tr>
<td>Arkansas</td>
<td>50113</td>
<td>20050512</td>
<td>11:00</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>50115</td>
<td>20050511</td>
<td>11:15</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>50117</td>
<td>20050511</td>
<td>13:30</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>50118</td>
<td>20050510</td>
<td>14:00</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>50122</td>
<td>20050510</td>
<td>9:30</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>50123</td>
<td>20050510</td>
<td>10:30</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td>State</td>
<td>Section</td>
<td>Date</td>
<td>Time</td>
<td>LTPP Code</td>
<td>Climate Zone</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>California</td>
<td>62038</td>
<td>20110415</td>
<td>10:00</td>
<td>GPS-6B</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>62038</td>
<td>20100507</td>
<td>8:37</td>
<td>GPS-2</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>67491</td>
<td>20101207</td>
<td>12:30</td>
<td>GPS-6S</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>68150</td>
<td>20100316</td>
<td>12:15</td>
<td>GPS-6B</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>68153</td>
<td>20090730</td>
<td>13:36</td>
<td>GPS-6B</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>68156</td>
<td>20110322</td>
<td>13:30</td>
<td>GPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td>Colorado</td>
<td>81029</td>
<td>20101026</td>
<td>13:18</td>
<td>GPS-6</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>81053</td>
<td>20101027</td>
<td>12:30</td>
<td>GPS-6</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>87035</td>
<td>20101013</td>
<td>11:40</td>
<td>GPS-7</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>87780</td>
<td>20101015</td>
<td>12:35</td>
<td>GPS-6</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>87781</td>
<td>20110928</td>
<td>12:00</td>
<td>GPS-6</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>87783</td>
<td>20101021</td>
<td>12:14</td>
<td>GPS-6</td>
<td>DF</td>
</tr>
<tr>
<td>Florida</td>
<td>120101</td>
<td>20090506</td>
<td>12:00</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>120105</td>
<td>20050117</td>
<td>13:45</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>120161</td>
<td>20050117</td>
<td>10:15</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>120502</td>
<td>20090504</td>
<td>10:30</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>120508</td>
<td>20090504</td>
<td>15:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>120509</td>
<td>20090504</td>
<td>17:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td>Georgia</td>
<td>130502</td>
<td>20050503</td>
<td>13:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>130508</td>
<td>20050503</td>
<td>10:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>130566</td>
<td>20050505</td>
<td>10:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>130563</td>
<td>20050505</td>
<td>9:00</td>
<td>SPS-5</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>134096</td>
<td>20090331</td>
<td>9:30</td>
<td>GPS-2</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>134420</td>
<td>20090514</td>
<td>11:00</td>
<td>GPS-6</td>
<td>WNF</td>
</tr>
<tr>
<td>Idaho</td>
<td>161001</td>
<td>20090410</td>
<td>10:15</td>
<td>GPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>161007</td>
<td>20110622</td>
<td>11:15</td>
<td>GPS-6</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>161020</td>
<td>20110428</td>
<td>12:00</td>
<td>GPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>161020</td>
<td>20111003</td>
<td>11:35</td>
<td>GPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>165025</td>
<td>20090422</td>
<td>8:40</td>
<td>GPS-7</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>169034</td>
<td>20110525</td>
<td>11:55</td>
<td>GPS-1</td>
<td>DF</td>
</tr>
<tr>
<td>Illinois</td>
<td>171002</td>
<td>20090408</td>
<td>13:40</td>
<td>GPS-1</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>171003</td>
<td>20050525</td>
<td>13:10</td>
<td>GPS-1</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>17A310</td>
<td>20040901</td>
<td>12:37</td>
<td>SPS-3</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>17B320</td>
<td>20040526</td>
<td>10:17</td>
<td>SPS-3</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>17A340</td>
<td>20040902</td>
<td>11:00</td>
<td>SPS-3</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>17B350</td>
<td>20040527</td>
<td>12:15</td>
<td>SPS-3</td>
<td>WF</td>
</tr>
<tr>
<td>State</td>
<td>Section</td>
<td>Date</td>
<td>Time</td>
<td>LTPP Code</td>
<td>Climate Zone</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Louisiana</td>
<td>220113</td>
<td>20100219</td>
<td>15:40</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>220115</td>
<td>20100219</td>
<td>12:10</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>220117</td>
<td>20100219</td>
<td>13:00</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>220119</td>
<td>20100218</td>
<td>10:20</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>220121</td>
<td>20100218</td>
<td>12:52</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>220123</td>
<td>20100218</td>
<td>15:20</td>
<td>SPS-1</td>
<td>WNF</td>
</tr>
<tr>
<td>Maryland</td>
<td>240504</td>
<td>20090408</td>
<td>13:40</td>
<td>SPS-5</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>240505</td>
<td>20050525</td>
<td>13:10</td>
<td>SPS-5</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>240563</td>
<td>20050629</td>
<td>12:37</td>
<td>SPS-5</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>240903</td>
<td>20100622</td>
<td>10:17</td>
<td>SPS-9</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>242401</td>
<td>20101202</td>
<td>11:00</td>
<td>GPS-2</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>242805</td>
<td>20100623</td>
<td>12:15</td>
<td>GPS-6 S</td>
<td>WF</td>
</tr>
<tr>
<td>Michigan</td>
<td>260115</td>
<td>20101110</td>
<td>12:40</td>
<td>GPS-6S</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>260116</td>
<td>20101109</td>
<td>10:00</td>
<td>GPS-6S</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>260118</td>
<td>20101108</td>
<td>09:30</td>
<td>GPS-6S</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>260123</td>
<td>20101109</td>
<td>12:00</td>
<td>GPS-6S</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>260124</td>
<td>20101109</td>
<td>11:00</td>
<td>GPS-6S</td>
<td>WF</td>
</tr>
<tr>
<td></td>
<td>260159</td>
<td>20101109</td>
<td>09:00</td>
<td>GPS-6S</td>
<td>WF</td>
</tr>
<tr>
<td>Montana</td>
<td>300113</td>
<td>20100712</td>
<td>10:15</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>300115</td>
<td>20100712</td>
<td>11:15</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>300117</td>
<td>20100713</td>
<td>12:00</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>300121</td>
<td>20100714</td>
<td>08:40</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>300123</td>
<td>20100713</td>
<td>11:55</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>300119</td>
<td>20100713</td>
<td>11:35</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td>Nevada</td>
<td>320101</td>
<td>20090622</td>
<td>10:15</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>320102</td>
<td>20040331</td>
<td>11:15</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>320106</td>
<td>20090623</td>
<td>12:00</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>320108</td>
<td>20090623</td>
<td>11:35</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>320110</td>
<td>20050322</td>
<td>08:40</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>320112</td>
<td>20090623</td>
<td>11:55</td>
<td>SPS-1</td>
<td>DF</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>400114</td>
<td>20100317</td>
<td>09:45</td>
<td>SPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>400116</td>
<td>20100317</td>
<td>12:20</td>
<td>SPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>400118</td>
<td>20100317</td>
<td>11:00</td>
<td>SPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>400120</td>
<td>20100318</td>
<td>10:30</td>
<td>SPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>400121</td>
<td>20100318</td>
<td>11:45</td>
<td>SPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>400124</td>
<td>20100318</td>
<td>14:30</td>
<td>SPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td>State</td>
<td>Section</td>
<td>Date</td>
<td>Time</td>
<td>LTPP Code</td>
<td>Climate Zone</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Texas</td>
<td>480901</td>
<td>20101005</td>
<td>9:50</td>
<td>SPS-9N</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>480903</td>
<td>20101005</td>
<td>12:00</td>
<td>SPS-9N</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>481092</td>
<td>20101006</td>
<td>14:15</td>
<td>GPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>481096</td>
<td>20101006</td>
<td>10:00</td>
<td>GPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td></td>
<td>482108</td>
<td>20110131</td>
<td>14:00</td>
<td>GPS-2</td>
<td>WNF</td>
</tr>
<tr>
<td></td>
<td>483865</td>
<td>20110715</td>
<td>10:45</td>
<td>GPS-1</td>
<td>DNF</td>
</tr>
<tr>
<td>Washington</td>
<td>530801</td>
<td>20110512</td>
<td>10:00</td>
<td>SPS-8</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>530801</td>
<td>20090415</td>
<td>9:48</td>
<td>SPS-8</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>530802</td>
<td>20110512</td>
<td>11:18</td>
<td>SPS-8</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>531005</td>
<td>20090408</td>
<td>9:53</td>
<td>GPS-6B</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>536056</td>
<td>20100520</td>
<td>14:00</td>
<td>GPS-6A</td>
<td>DF</td>
</tr>
<tr>
<td></td>
<td>537322</td>
<td>20090413</td>
<td>12:18</td>
<td>GPS-6D</td>
<td>DF</td>
</tr>
</tbody>
</table>

SPS = Specific pavement studies.
GPS = General pavement studies.
WF = Wet freeze.
WNF = Wet no-freeze.
DF = Dry freeze.
DNF = Dry no-freeze.

Figure 13 and figure 14 show examples of FWD time histories exhibiting free vibrations (dynamic behavior) and no dynamic behavior, respectively. Figure 15 and figure 16 show examples of nonlinear behavior with stress stiffening and softening, respectively.

The research team observed that dynamics were present in about 65 percent of the cases while nonlinearity could be prevalent in a range of as low as 24 percent of the cases to as high as 65 percent of the cases, depending on severity level and sensor location. Nonlinearity was more prevalent for the sensors that were far from the center of the load. A more detailed analysis was performed to identify when dynamics and nonlinearity were prevalent.
Figure 13. Graph. Example of time histories showing dynamic behavior for LTPP section 161020, station 1.

Figure 14. Graph. Example of time histories showing no dynamic behavior for LTPP section 169034, station 3.
Figure 15. Graph. Example of stiffening behavior for LTPP section 81053, station 3.

Figure 16. Graph. Example of softening behavior for LTPP section 87781 station 3.
DETAILED STATISTICAL ANALYSIS

Dynamic Behavior

As explained above, the time(histories plots for each test were visually reviewed, and then the sections were classified as follows: (1) season, (2) air temperature, (3) wet/dry, or (4) freeze/no freeze. Figure 17 shows the percentage of sections per category where dynamics were prevalent.

The results showed no particular trend with season and temperature, and the sections in the dry and freeze climate zones appeared to be more prone to dynamic behavior. t-tests were performed to assess whether the means of the two groups (wet/dry and freeze/no freeze) were statistically different from each other. Table 5 shows the results of the t-tests. The analysis showed that the difference between dry and wet as well as freeze and no-freeze was statistically significant, with dynamics statistically more prevalent in dry freeze sections (figure 18).
Figure 17. Graphs. Preliminary results—evidence of dynamic behavior by climatic information: classification by season (top), temperature (middle), and climate zone (bottom).
Table 5. LTPP sections used in the statistical analysis.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Wet</th>
<th>Dry</th>
<th>Freeze</th>
<th>No-Freeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean percentage of dynamic cases (dynamic = 1; no dynamics = 0)</td>
<td>0.46</td>
<td>0.84</td>
<td>0.79</td>
<td>0.55</td>
</tr>
<tr>
<td>Variance</td>
<td>0.10</td>
<td>0.03</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>Number of observations</td>
<td>51</td>
<td>51</td>
<td>49</td>
<td>53</td>
</tr>
<tr>
<td>Hypothesized mean difference</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>81</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t stat</td>
<td>-7.15</td>
<td>4.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value(^1)</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Statistically significant if less than 0.05.

Figure 18. Graph. Mean and standard deviation of percent of sections with dynamics for wet/dry and freeze/no freeze.

Nonlinear Behavior

The following two separate analyses were considered to determine when nonlinearity was prevalent: (1) using all the sections that showed a nonlinear behavior and (2) using only the sites that exhibited no dynamics. The purpose of the second analysis was to investigate the interaction between dynamic and nonlinear effects because both affect the farther sensors. However, the number of sections for the second analysis was small (91 sections) and did not cover all climatic zones, seasons, and temperature ranges, which made the results from the second analysis not reliable. Therefore, only the results from the analysis using all the data are reported. In the analysis, the sections were classified as follows according to the slope of the load-to-deflection ratio trend:

- **Softening**: The slope is negative.
- **Stiffening**: The slope is positive.
Table 6 and figure 19 show the distributions of load-to-deflection slope for all sensors. It can be seen that the slope was mainly within ±20-percent range and that it shifted from more positive (stiffening) to more negative (softening) with increasing sensor number, i.e., increasing sensor distance from the load. This means that, as expected, stress softening was more prevalent in the lower pavement layers.

Table 6. Distribution of load-to-deflection slope by sensor.

<table>
<thead>
<tr>
<th>Slope (percent)</th>
<th>Sensor 1</th>
<th>Sensor 2</th>
<th>Sensor 3</th>
<th>Sensor 4</th>
<th>Sensor 5</th>
<th>Sensor 6</th>
<th>Sensor 7</th>
<th>Sensor 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-20</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>-15</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>-10</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>-5</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>20</td>
<td>26</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>23</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>22</td>
<td>19</td>
<td>16</td>
<td>16</td>
<td>13</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1Stiffening when negative slope and softening when positive slope.
Figure 19. Graphs. Distribution of load-to-deflection slope by sensor.
To further examine the degree of nonlinearity observed, the research team filtered the data by varying the minimum threshold on the slope for defining when nonlinear behavior was observed. For example, if the threshold for nonlinear behavior was ±5 percent, then any section that exhibited a load-to-deflection slope of more than ±5 percent would be considered as exhibiting nonlinear behavior (stiffening if the slope was positive and softening if the slope was negative). The thresholds were set at 5, 6, 7, 8, 9, and 10 percent. Table 7, figure 20, and figure 21 show the percent of sections showing linear versus nonlinear behavior for the various thresholds and for each sensor. The table and figures also show the split between stiffening versus softening behavior (within those exhibiting nonlinear behavior).

Table 7. Distribution of linear versus nonlinear behavior by sensor and percent slope.

<table>
<thead>
<tr>
<th>Threshold Slope (percent)</th>
<th>Category</th>
<th>Sensor 1</th>
<th>Sensor 2</th>
<th>Sensor 3</th>
<th>Sensor 4</th>
<th>Sensor 5</th>
<th>Sensor 6</th>
<th>Sensor 7</th>
<th>Sensor 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Linear</td>
<td>48</td>
<td>47</td>
<td>43</td>
<td>41</td>
<td>39</td>
<td>35</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>52</td>
<td>53</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>65</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Stiffening</td>
<td>45</td>
<td>43</td>
<td>37</td>
<td>31</td>
<td>23</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Softening</td>
<td>55</td>
<td>57</td>
<td>63</td>
<td>69</td>
<td>77</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Linear</td>
<td>55</td>
<td>53</td>
<td>50</td>
<td>49</td>
<td>47</td>
<td>42</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>45</td>
<td>47</td>
<td>50</td>
<td>51</td>
<td>53</td>
<td>58</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Stiffening</td>
<td>47</td>
<td>43</td>
<td>37</td>
<td>29</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Softening</td>
<td>53</td>
<td>57</td>
<td>63</td>
<td>71</td>
<td>80</td>
<td>85</td>
<td>88</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>Linear</td>
<td>63</td>
<td>59</td>
<td>56</td>
<td>55</td>
<td>54</td>
<td>49</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>37</td>
<td>41</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>51</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Stiffening</td>
<td>51</td>
<td>44</td>
<td>37</td>
<td>28</td>
<td>19</td>
<td>13</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Softening</td>
<td>49</td>
<td>56</td>
<td>63</td>
<td>72</td>
<td>81</td>
<td>87</td>
<td>91</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>Linear</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>58</td>
<td>58</td>
<td>57</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>31</td>
<td>35</td>
<td>39</td>
<td>42</td>
<td>42</td>
<td>43</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Stiffening</td>
<td>54</td>
<td>43</td>
<td>36</td>
<td>29</td>
<td>19</td>
<td>11</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Softening</td>
<td>46</td>
<td>57</td>
<td>64</td>
<td>71</td>
<td>81</td>
<td>89</td>
<td>92</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>Linear</td>
<td>72</td>
<td>69</td>
<td>66</td>
<td>63</td>
<td>62</td>
<td>66</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>28</td>
<td>31</td>
<td>34</td>
<td>37</td>
<td>38</td>
<td>34</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Stiffening</td>
<td>55</td>
<td>46</td>
<td>37</td>
<td>28</td>
<td>18</td>
<td>7</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Softening</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>72</td>
<td>82</td>
<td>93</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>Linear</td>
<td>76</td>
<td>74</td>
<td>69</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Nonlinear</td>
<td>24</td>
<td>26</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Stiffening</td>
<td>54</td>
<td>46</td>
<td>36</td>
<td>25</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Softening</td>
<td>46</td>
<td>54</td>
<td>64</td>
<td>75</td>
<td>86</td>
<td>94</td>
<td>93</td>
<td>89</td>
</tr>
</tbody>
</table>
Figure 20. Graphs. Distribution of linear versus nonlinear behavior for 5- to 7-percent threshold load-to-deflection slope.
Assuming a minimum slope of ±5 percent as a threshold for defining nonlinear behavior, the lowest percent of sections with nonlinear behavior was 52 percent (sensor 1) while the highest was 65 percent (sensor 6). Increasing the threshold to ±10 percent reduced these percentages by about half; the lowest percent of sections with nonlinear behavior became 24 percent, and the highest became 33 percent.

Within the sections exhibiting nonlinear behavior, the percent of sections showing stress softening versus stress stiffening was fairly similar irrespective of the threshold on the slope. The split was about 50-percent softening and 50-percent stiffening for the close sensors and gradually

Figure 21. Graphs. Distribution of linear versus nonlinear behavior for 8- to 10-percent threshold load-to-deflection slope.
shifted to about 85- to 90-percent softening and 10- to 15-percent stiffening for the intermediate and most distant sensors.

The sections were also classified by: (1) season, (2) temperature, (3) wet/dry, or (4) freeze/no freeze for each sensor, with the nonlinearity threshold slope set at ±5 percent. Figure 22 through figure 24 show the percentage of sections by season, temperature, and climatic zone, respectively, for each sensor where nonlinearity was prevalent.

Figure 22 shows that the percent of sections that exhibited nonlinearity for sensors 1 through 5 was generally highest for summer, followed by fall and spring, and lowest in winter. Sensors 6 through 8 exhibited more nonlinear behavior in the fall. The trend with seasons suggests that nonlinearity is more prevalent when the pavement system is less stiff, as expected. This trend was also generally true with temperature, as shown in figure 23, although there was more variability in the data. Figure 24 shows that there was no particular trend with climatic zone, however. Nonlinear and linear behavior seems to have been evenly split between wet and dry climates and freeze and no-freeze climates. *t*-tests were performed to assess whether the means of the two groups (wet/dry and freeze/no freeze) were statistically different from each other for all the sensors. Table 8 shows the results of the *t*-tests. It appears that climate had no effect on the number of sections that exhibited nonlinearity. Table 9 show the distribution of load-deflection slope by sensors in sections that exhibited nonlinearity.
Figure 22. Graphs. Percent of sections by season where nonlinear behavior was prevalent.
Figure 23. Graphs. Percent of sections by temperature where nonlinear behavior was prevalent.
Figure 24. Graphs. Percent of sections by climate zone where nonlinear behavior was prevalent.
Table 8. Results of the t-tests on nonlinearity for wet/dry and freeze/no freeze conditions for all sensors.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Mean (percent)</th>
<th>p-Value</th>
<th>Significance</th>
<th>Mean (percent)</th>
<th>p-Value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wet</td>
<td>Dry</td>
<td></td>
<td>Freeze</td>
<td>No Freeze</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>43.2</td>
<td>57.2</td>
<td>0.07</td>
<td>No</td>
<td>45.4</td>
<td>54.7</td>
</tr>
<tr>
<td>2</td>
<td>51.0</td>
<td>56.9</td>
<td>0.47</td>
<td>No</td>
<td>53.9</td>
<td>54.0</td>
</tr>
<tr>
<td>3</td>
<td>59.5</td>
<td>57.6</td>
<td>0.81</td>
<td>No</td>
<td>56.1</td>
<td>60.8</td>
</tr>
<tr>
<td>4</td>
<td>64.6</td>
<td>56.9</td>
<td>0.33</td>
<td>No</td>
<td>57.1</td>
<td>64.1</td>
</tr>
<tr>
<td>5</td>
<td>69.0</td>
<td>57.8</td>
<td>0.13</td>
<td>No</td>
<td>61.5</td>
<td>65.1</td>
</tr>
<tr>
<td>6</td>
<td>71.8</td>
<td>64.3</td>
<td>0.26</td>
<td>No</td>
<td>69.6</td>
<td>66.6</td>
</tr>
<tr>
<td>7</td>
<td>68.1</td>
<td>63.6</td>
<td>0.51</td>
<td>No</td>
<td>64.9</td>
<td>66.8</td>
</tr>
<tr>
<td>8</td>
<td>67.5</td>
<td>60.6</td>
<td>0.30</td>
<td>No</td>
<td>62.3</td>
<td>65.7</td>
</tr>
</tbody>
</table>

Table 9. Distribution of load-deflection slope by sensor.

<table>
<thead>
<tr>
<th>Slope</th>
<th>Sensor 1</th>
<th>Sensor 2</th>
<th>Sensor 3</th>
<th>Sensor 4</th>
<th>Sensor 5</th>
<th>Sensor 6</th>
<th>Sensor 7</th>
<th>Sensor 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-20</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>-15</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>-10</td>
<td>21</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>22</td>
<td>32</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>-5</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>25</td>
<td>21</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>0</td>
<td>26</td>
<td>22</td>
<td>14</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MEASUREMENT ISSUES

During the analysis of the LTPP FWD data, signs of measurement issues were also encountered in some tests. Figure 25 presents some samples of these errors. These issues included erroneous deflection sensors (middle row: section 130508 station 1 and section 130566 station 1) or drift (bottom row, left: section 260116 station 1), or data truncation (top row: section 220125 station 3 and section 220125 station 6; and bottom row, left: section 482108 station 1).
CONCLUSION

In this chapter, detailed exploratory analyses on a relatively large sample of FWD test results from the LTPP database were conducted to assess (1) prevalence of dynamics, (2) prevalence of nonlinear behavior, and (3) measurement issues based on apparently erroneous deflection sensor time histories. The data covered all climatic zones, seasons, and temperature ranges. It was
observed that dynamics were present in about 65 percent of the cases, while nonlinearity could be prevalent in a range as low as 24 percent of the cases to as high as 65 percent of the cases, depending on severity level and sensor location. Nonlinearity was more prevalent for the sensors that were far from the center of the load. Because of the prevalence of dynamic behavior (in the form of free vibrations of deflection sensor time histories) observed in the large sample of LTPP FWD test data, it was hypothesized that in the great majority of the cases, the stiff layer condition might not correspond to the presence of shallow bedrock. Such bedrock would be highly unlikely given that it typically lies at much greater depths. Instead, the stiff layer condition could be manifested anytime the soils below the subgrade layer are stiffer than the subgrade layer itself. This could be caused by increased confinement with depth, overconsolidation, or existence of a shallow groundwater table, for example; these situations are very common in any soil profile. This would explain the high percentage of sections from the LTPP database that showed dynamic behavior.
CHAPTER 4. VISCOELASTIC APPROACH

Flexible pavements are multilayered structures typically with viscoelastic AC as the top layer and with unbound/bound granular layers below it. The combined response of linear viscoelastic and elastic materials that are in perfect bonding is linear viscoelastic. Assuming there is full bonding between the asphalt layer and the underlying base and subgrade layers, the overall response of the entire pavement system becomes viscoelastic. The characteristic mechanistic properties of an isotropic-thermorheologically simple viscoelastic systems are the relaxation modulus $E(t)$, the creep compliance $D(t)$, the complex (dynamic) modulus $|E^*|$, and the time-temperature shift factors ($\alpha_T(T)$). These characteristic properties are often expressed at a specific reference temperature, in terms of a “master curve.” For thermorheologically simple materials, these characteristic properties can be generated at any time (or frequency) and temperature using the time-temperature superposition principle. It can be shown that if any of the three properties $E(t)$, $D(t)$, or $|E^*|$ is known, the other two can be obtained through an interconversion method such as the Prony series. The dynamic modulus ($|E^*|$) master curve of an AC layer is a fundamental material property that is required as an input in the MEPDG for a flexible pavement analysis. Knowledge of the $|E^*|$ master curve of an in-service pavement using FWD data can lead to a more accurate estimation of its remaining life and rehabilitation design.

The specific objectives of this component of the project were to (1) develop a layered viscoelastic flexible pavement response model in the time domain; (2) investigate whether the current FWD testing protocol generated data that were sufficient to backcalculate the $|E^*|$ master curve using such a model; and (3) if needed, recommend enhancements to the FWD testing protocol to be able to accurately backcalculate the $|E^*|$ master curve as well as the unbound material properties of in-service pavements. Readers should note that the methods presented in this report were developed for a single AC layer. However, in-service pavements may be composed of multiple layers of different types of asphalt mixtures. In such cases, the present form of the backcalculation algorithms would provide a single equivalent $|E^*|$ master curve for the asphalt mixture sublayers.

The models presented in this chapter can consider the unbound granular material as both linear elastic as well as nonlinear stress-dependent material. Depending on the assumed unbound granular material property, two generalized viscoelastic flexible pavement models were developed. The developed forward and backcalculation models for linear viscoelastic AC and elastic unbound layers are referred to as LAVA and BACKLAVA, respectively, in this report. The developed forward and backcalculation models for linear viscoelastic AC and nonlinear elastic unbound layers are termed LAVAN and BACKLAVAN, respectively, in the report. The LAVA and BACKLAVA algorithms assumed a constant temperature along the depth of the AC layer. The algorithms were subsequently modified for the temperature profile in the AC layer, and modified versions are referred to as LAVAP and BACKLAVAP in this report. The viscoelastic properties backcalculated from FWD data included two functions—a time function and a temperature function. The time function referred to the relaxation modulus master curve $E(t, T_0)$ in which t was physical time and T_0 was the corresponding (constant) reference temperature. The temperature function referred to the time-temperature shift factor $\alpha_T(T)$, which was a positive definite dimensionless scalar. In the present study, AC was assumed to be thermorheologically simple, which allowed applying $E(t, T_0)$ for any temperature level T.

53
(different than T_0) by simply replacing physical time with a reduced time $t_R = t/a_T(T)$; therefore, $a_T(T)$ is a function of both T and T_0, such that $a_T(T) = 1$ if $T = T_0$.

Typically, a load-displacement history of 60 ms is recorded in an FWD test (which constitutes 25 to 35 ms of applied load pulse); it is generally observed that the later portion of deflection history (after the peak) is not reliable. This is due to the numerical error generated by velocity integration. (Most FWD sensors measure velocity or acceleration, which is integrated to obtain the deflections.) This can give only limited information about the time-varying $E(t)$ behavior of the AC layer. However, in theory, it should be possible to obtain the two sought-after functions (i.e., $E(t)$ and $a_T(T)$). In this report, two different approaches are discussed to obtain the comprehensive behavior of asphalt: (1) using series of FWD deflection time histories at different temperature levels and (2) using uneven temperature profile information existing across the thickness of the asphaltic layer during a single or multiple FWD drops deflection histories. Both of the models are presented in detail. Finally, the models were validated using frequency and FEM-based solutions.

Further, the effect of FWD test temperatures and number of surface deflection sensors on backcalculation of the $|E^*|$ master curve were studied. These suitable FWD test data requirements are discussed in the key findings from the study.

LAYERED VISCOELASTIC (LAVA) PAVEMENT MODEL

Traditionally, flexible pavements are analyzed using analytic multilayered elastic models (e.g., KENLAYER, BISAR, and CHEVRONX), which are based on Burmister’s elastic solution of multilayered structures. (See references 21, 23, 27, and 61–64.) These models assume the material in each pavement layer is linearly elastic. However, the AC (typically the top layer) is viscoelastic at low strain. As with any viscoelastic material, it shows properties dependent on time (or frequency) as well as temperature.

In the proposed approach, the AC pavement system was modeled as a layered half-space, with the top layer as a linear viscoelastic solid. All other layers (base, subbase, subgrade, and bedrock) in the pavement were assumed linear elastic. Assuming there was full bonding between the AC layer and the underlying base and subgrade layers, the overall response of the entire pavement system became viscoelastic. Therefore, its response under arbitrary loading was obtained using Boltzmann’s superposition principle (i.e., the convolution integral) as shown in figure 26.

$$R_{ee}(x,y,z,t) = \int_{\tau=0}^{t} R_{e}(x,y,z,t-\tau) \frac{dI(\tau)}{d\tau} d\tau$$

Figure 26. Equation. Boltzmann’s superposition principle.
Where:

\[R^{ve}(x,y,z,t) \] = the linear viscoelastic response at coordinates \((x,y,z)\) and time \(t\).

\[R^{ve}_H(x,y,z,t) \] = the (unit) viscoelastic response of the pavement system to a Heaviside step function input \((H(t))\).

\[dI(\tau) \] is the change in input at time \(\tau\).

It is worth noting that for a uniaxial viscoelastic system (e.g., a cylindrical AC mixture), if response \(R^{ve} = c(t) \) = strain, then \(R^{ve}_H = D(t) \) = creep compliance and \(I(t) = \sigma(t) \) = stress. Using Schapery’s quasi-elastic theory, the viscoelastic response at time \(t\) to a unit input function was efficiently and accurately approximated by the elastic response obtained using relaxation modulus at time \(t\) as shown in figure 27.\(^{(67,68)}\)

\[R^{ve}_H(x, y, z, t) \cong R^{ve}_H(x, y, z, E(t)) \]

Figure 27. Equation. Quasi-elastic approximation of a unit response function such as the creep compliance.

Where \(R^{ve}_H(x, y, z, E(t)) \) is the unit elastic response at elastic modulus equal to relaxed modulus \((E(t))\). Flexible pavements are exposed to different temperatures over time, which in turn influence their response. For thermorheologically simple materials, this variation in response can be predicted by extending the equations shown in figure 26 and figure 27 to the equation shown in figure 28.

\[R^{ve}(x, y, z, t) = \int_{\tau=0}^{t_R} R^{ve}_H(x, y, z, E(t - \tau)) \frac{dI(\tau)}{d\tau} d\tau \]

Figure 28. Equation. Hereditary integral using quasi-elastic approximation of a unit response function such as the creep compliance.

Where:

\[t_R = t/a_T(T). \]

\[a_T(T) = a_1 \left(T^2 - T_{ref}^2\right) + a_2 \left(T - T_{ref}\right) \] is the shift factor at temperature \(T\).

\(T_{ref} \) = the reference temperature

\(a_1 \) and \(a_2 \) are the shift factor’s polynomial coefficients.

Using figure 28, the formulation for predicting vertical deflection of a linear viscoelastic AC pavement system subjected to an axisymmetric loading can be expressed as the equation shown in figure 29.
Figure 29. Equation. Hereditary integral using quasi-elastic approximation of unit vertical deflection at the surface.

Where:

\[u_{\text{vertical}}^v(r, z, t) = \int_{\tau=0}^{t_R} u_H^v - \text{vertical}(E(t_R - \tau), r, z) \frac{d\sigma(\tau)}{d\tau} d\tau \]

\[u_H^v, \text{vertical}(E(t_R - \tau), r, z) \]

\[i \]

\[\sigma(t) \]

Detailed derivation of the equation in figure 29 can be found in Levenberg’s research and are not repeated here for brevity.\(^{(69)}\) In this implementation, the vertical surface displacements, i.e., \(u_{H}^e(t) \) values at the points of interest, were computed using the CHEVRONX layered elastic analysis program. Then the convolution integral in figure 29 was used to calculate the viscoelastic deflection \(u^v(t) \). A description of the algorithm is given in the following section.

Layered Viscoelastic (Forward) Algorithm (LAVA)

The algorithm steps were as follows:

1. Define the geometric (layer thicknesses, contact radius) and material \((E(t), E_{\text{base}}, E_{\text{subgrade}}, \text{and Poisson’s ratio}) \) properties of a layered system similar to the one in figure 30.
2. Select a stress versus time history \((\sigma(t)) \) and divide the data into \(N_s \) discrete intervals as shown in figure 31.

Figure 30. Diagram. Typical flexible pavement geometry for analysis.
3. Divide the relaxation modulus master curve into N_E, the number of time steps in log scale. The relaxation modulus $E(t)$ can be approximated with a sigmoid function as shown in figure 32.

$$\log(E(t)) = c_1 + \frac{c_2}{1 + \exp(-c_3 - c_4 \log(t_R))}$$

Figure 32. Equation. Sigmoid form of relaxation modulus master curve.

Where t_R is the reduced time ($t_R = t/a_T$) and c_i are sigmoid coefficients. The shift factor coefficients were computed using the second order polynomial given in figure 33.

$$\log(a_T(T)) = a_1(T^2 - T_{ref}^2) + a_2(T - T_{ref})$$

Figure 33. Equation. Shift factor coefficient polynomial.

Where a_1 and a_2 are the shift factor coefficients.

4. Calculate the elastic response (i.e., vertical surface deflections) of the structure to a unit stress using $E(t)$ evaluated at different reduced times (i.e., t_1, t_2, t_3 ... t_{NE}). In this implementation, the surface deflections at several radial distances to a circular plate load shown in figure 30 were of interest. Therefore, these surface deflections were computed using the CHEVRONX program with the AC modulus value corresponding to different times in figure 34 (i.e., $E(t_1)$, $E(t_2)$, $E(t_3)$, $E(t_4)$... $E(t_{NE})$) as shown in figure 35.\(^{(67,68)}\)
Figure 34. Graph. Discretization of the relaxation modulus master curve.

\[u_{H}^{v}(t_{i}) \approx u_{H}^{e} \]

Figure 35. Equation. Quasi-elastic approximation of unit vertical deflection at the surface.

The equation in figure 35 is calculated using \(E(t_{i}) \) where \(i = 1, 2, 3 \ldots N_{E} \). Figure 36 shows the \(u_{H}^{e} \) values calculated for points at different distances from the centerline of the circular load at the surface. These curves are called unit response master curves.

Figure 36. Graph. Deflections calculated under unit stress for points at different distances from the centerline of the circular load at the surface.

5. Calculate the viscoelastic response using the discrete form of figure 29 given in figure 37. The equation was evaluated at each discrete time \(t \) using the stress history shown in figure 38. Figure 38 illustrates the \(d\sigma(t_{j}) \) in figure 37 for each time step \(\tau_{j} \).
Figure 37. Equation. Discrete formulation.

\[u^{\infty}(t_i) = \sum_{j=0}^{l} u^e_{H_j}(t_i - \tau_j) d\sigma(\tau_j) \]

Where \(I = 1, 2, \ldots N_s \).

Figure 38. Graph. \(d\sigma(\tau_j) \) for each time step \(\tau_j \).

To illustrate an example, the viscoelastic surface deflections of the three-layer pavement structure shown in figure 39 were computed. Figure 40 shows the vertical surface deflections at points located at different radial distances from the centerline of the load. Figure 40 clearly shows the relaxation behavior of deflection at each point.

Figure 39. Diagram. Example problem geometry.
One of the primary reasons for implementing Schapery’s quasi-elastic solution is its extreme computational efficiency. Using a Pentium 2.66 GHz computer with 3.25 gigabytes (GB) of random access memory (RAM), the computation of the results shown in figure 40 took 1.96 s to calculate the solution for the three-layer system shown in figure 39 and $N_S = 50$, $N_E = 50$.

Table 10 shows the computation times for different numbers of discrete time steps in the three-layer system.

<table>
<thead>
<tr>
<th>N_S</th>
<th>N_E</th>
<th>Computation Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>1.96</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>2.88</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>3.03</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>3.05</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>5.01</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>5.13</td>
</tr>
</tbody>
</table>

Verification of the Proposed Layered Viscoelastic Solution (LAVA)

The layered viscoelastic algorithm was verified by using two pavement structures selected from the SPS-1 experiment of the LTPP database (table 11). Surface deflections at different radial distances due to a circular loading pulse of 0.045 s followed by 0.055-s rest period were calculated using two commonly known software packages, SAPSI and LAMDA, and compared with the layered viscoelastic solution implemented in this research. SAPSI is based on damped-elastic layer theory and FEM, whereas LAMDA is based on the spectral element technique, axisymmetric dynamic solution. These software packages were selected because they were known to provide robust dynamic solutions, and their algorithms were based on frequency-
domain calculations. This allows truly independent verification because the layered viscoelastic solution is in the time domain, whereas SAPSI and LAMDA are in the frequency domain.

Table 11. Pavement properties used in LAVA validation with SAPSI and LAMDA.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Physical Layer</th>
<th>Elastic Modulus</th>
<th>Thickness (inches)</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>AC</td>
<td>$E^* - f_{ro}$</td>
<td>3.9</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>TB base</td>
<td>29 ksi</td>
<td>12.0</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Subgrade (SS)</td>
<td>14.5 ksi</td>
<td>Infinity</td>
<td>0.45</td>
</tr>
<tr>
<td>120</td>
<td>AC</td>
<td>$E^* - f_{ro}$</td>
<td>3.6</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>PATB base</td>
<td>26.1 ksi</td>
<td>4</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>GB base</td>
<td>21.8 ksi</td>
<td>8</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Subgrade (SS)</td>
<td>14.5 ksi</td>
<td>Infinity</td>
<td>0.45</td>
</tr>
</tbody>
</table>

TB = Treated base.
SS = Sandy subgrade.
PATB = Permeable asphalt treated base.
GB = Granular base.

Figure 41 and figure 42 show the comparison between the layered viscoelastic solution and solutions calculated with SAPSI and LAMDA. The figures clearly show that the layered viscoelastic result matched very well to the SAPSI and LAMDA solutions. Note that the layered viscoelastic algorithm did not consider the dynamics, whereas SAPSI and LAMDA did.

The dynamic solution developed a time delay in response to wave propagation. However, because the scope of this portion of the project included the backcalculation of viscoelastic characteristics of the AC layer, the effect of dynamics was not considered. Therefore, the time delay in dynamic solutions was eliminated by shifting the deflection curves to the left such that the beginning of each sensor response matched.
VE = viscoelastic.

Figure 41. Graphs. Comparison of dynamic solutions (time delay removed) and viscoelastic solution for case 116.
Figure 42. Graphs. Comparison of dynamic solutions (time delay removed) and viscoelastic solution for case 120.

IMPLEMENTATION OF TEMPERATURE PROFILE IN LAVA

Temperature in pavements typically varies with depth, which affects the response of the HMA to the applied load. As shown in figure 43, the temperature may increase with depth (profile 1—linear, 2—piecewise, and profile 3—nonlinear) or decreasing with depth (profile 4—linear, profile 5—piecewise, and profile 6—nonlinear) depending on the time of the day. This variation in temperature with depth can be approximated with a piecewise continuous temperature profile function as shown in figure 43 (profiles 2 and 5). The advantage of using a piecewise function is that it can be used to approximate any arbitrary function.
An algorithm that considers HMA sublayers with different temperatures within the HMA layer was developed and is referred to as LAVAP (T-profile LAVA). The algorithm was compared with LAVA as well as ABAQUS. Comparison with LAVA was made for deflection response at all the sensors for constant temperature throughout all the sublayers. The pavement section and layer properties used in the forward analysis are shown in table 12. Figure 44 shows the response obtained from the temperature profile algorithm at 32, 86, and 122 °F matched very well with LAVA.

Table 12. Pavement properties used in (T-profile LAVA) LAVAP validation with ABAQUS.

<table>
<thead>
<tr>
<th>Property</th>
<th>Constant Temperature</th>
<th>Temperature Profile (Three-Step Function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (inches)</td>
<td>AC sublayers</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Granular layers</td>
<td>20, infinite</td>
</tr>
<tr>
<td>Poisson ratio {layer 1, 2, 3…}</td>
<td>0.35, 0.3, 0.45</td>
<td>0.35, 0.3, 0.45</td>
</tr>
<tr>
<td>E_{unbound} {layer 2, 3…}, psi</td>
<td>11,450, 15,000</td>
<td>11,450, 15,000</td>
</tr>
<tr>
<td>Total number of sensors</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Sensor spacing from the center of load (inches)</td>
<td>0, 7.99, 12.01, 17.99, 24.02, 35.98, 47.99, 60</td>
<td></td>
</tr>
<tr>
<td>$E(t)$ sigmoid coefficient {AC}</td>
<td>0.841, 3.54, 0.86, -0.515</td>
<td>0.841, 3.54, 0.86, -0.515</td>
</tr>
<tr>
<td>$a(T)$ shift factor polynomial coefficients {AC}</td>
<td>4.42E-04, -1.32E-01</td>
<td>4.42E-04, -1.32E-01</td>
</tr>
</tbody>
</table>
To qualitatively examine the response of flexible pavement predicted using the (T-profile LAVA) LAVAP algorithm, the response obtained under temperature profile was compared with the response obtained under constant temperatures. As an example, a comparison of the response under a temperature profile of \{104, 86, 68\} °F, with that corresponding to a constant temperature of 104, 86, and 68 °F for the entire depth, is shown in figure 45, figure 46, and figure 47, respectively. It can be seen from the figures that the effect of AC temperature was most prominent in sensors closer to the load center (sensors 1 through 4). For sensors away from the loading center (sensors 5, 6, 7, and 8), the deflection histories were not influenced by the AC temperature. Figure 48 shows the region of the $E(t)$ master curve (at 66.2 °F reference temperature) used by the (T-profile LAVA) LAVAP algorithm in calculating time histories.
Figure 45. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at temperature profile \{104, 86, 68\} °F and original LAVA at constant 104 °F temperature.

Figure 46. Graph. Comparison of responses calculated using (T-profile LAVA) LAVAP at temperature profile \{104, 86, 68\} °F and original LAVA at a constant temperature of 86 °F.
As expected, for a condition of higher temperature at the top and lower temperature at the bottom, the response with a higher constant temperature was always greater than the response with a temperature profile. The response with a lower constant temperature was always less than the response with a temperature profile. The response with a medium constant temperature may or may not be less than the profile response, depending on the temperature profile and thickness of the sublayering.
Next, the LAVA algorithm was validated against a well-known FEM software, ABAQUS, where the temperature profile in the AC layer was simulated as two sublayers of AC with different temperatures. For this purpose, two different HMA types were considered, Terpolymer and SBS 64-40. The viscoelastic properties of these two mixes are shown in figure 49. As shown in table 13, for both mixes, the AC layer was divided into two sublayers, with temperature in the top and bottom sublayer assumed to be 66 and 86 °F, respectively.

![Graphs](image)

Figure 49. Graphs. Relaxation modulus and shift factor master curves at a reference temperature of 66 °F.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Modulus ((E(t) \text{ or } E))</th>
<th>Thickness (inches) (Temperature °F)</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Mix 1: Terpolymer ((E(t)) see figure 49)</td>
<td>Sublayer 1 = 3.94 inches (66 °F)</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Mix 2: SBS 64-40 ((E(t)) see figure 49)</td>
<td>Sublayer 2 = 3.94 inches (86 °F)</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>15,000 psi (linear elastic)</td>
<td>7.88 inches</td>
<td>0.35</td>
</tr>
<tr>
<td>Subgrade</td>
<td>10,000 psi (linear elastic)</td>
<td>Infinity</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Figure 50 and figure 51 show a comparison of surface deflection time histories measured at radial distances of 0, 7.99, 12.01, 17.99, 24.02, 35.98, 47.99, and 60 inches for mixes 1 and 2. From the figures, it can be observed that the results obtained from LAVAP and ABAQUS matched well.
As expected, it can be seen from table 14 that for both mixes, surface deflection in the pavement section at the two-step AC temperature profile of \{66, 86\} °F was between the deflections obtained for constant AC temperatures of 66 and 86 °F.

Table 14. Peak deflections at temperature profile \{66, 86\}°F and at a constant temperature of 86 °F using LAVA.

<table>
<thead>
<tr>
<th>Mix</th>
<th>Temperature (°F)</th>
<th>Sensor Deflection (mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Terpolymer</td>
<td>Constant: 66</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>Profile: 66, 86</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>Constant 86</td>
<td>38.4</td>
</tr>
<tr>
<td>SBS 64-40</td>
<td>Constant 66</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>Profile: 66, 86</td>
<td>40.9</td>
</tr>
<tr>
<td></td>
<td>Constant 86</td>
<td>47.6</td>
</tr>
</tbody>
</table>
This section presents a computationally efficient layered viscoelastic nonlinear model called LAVAN. LAVAN can consider linear viscoelasticity of AC layers as well as the stress-dependent modulus of granular layers. The formulation was inspired by quasilinear-viscoelastic (QLV) constitutive modeling, which is often used in analyzing nonlinear viscoelastic materials. In the literature, the various forms of the model are also called Fung’s model, Schapery’s nonlinearity model, and modified Boltzmann’s superposition. (See references 70–75.)

LAVAN combines Schapery’s quasi-elastic theory with generalized QLV theory to predict the response of multilayered viscoelastic nonlinear flexible pavement structures. Before introducing the generalized QLV model, a brief overview of granular nonlinear pavement models is presented. This is followed by development of a generalized QLV model for a multilayered system and numerical validation in which the response of flexible pavements under the FWD test was analyzed. The model was validated against the general-purpose FEM software, ABAQUS.

Layered Nonlinear Elastic Solutions

Under constant amplitude cyclic loading, granular unbound materials exhibit plastic deformation during the initial cycles. As the number of load cycles increases, plastic deformation ceases to occur, and the response becomes elastic in further load cycles. Often, elastic response in a triaxial cyclic loading is defined by resilient modulus \(M_R \) at that load level, which is expressed as shown in figure 52.

\[
M_R = \frac{\sigma_d}{\varepsilon_r}
\]

Figure 52. Equation. Resilient modulus.

Where:

\(\sigma_d = (\sigma_1 - \sigma_3) \), is the deviatoric stress in a triaxial test.
\(\varepsilon_r \) = recoverable strain.

If the granular layer reaches this steady state under repeated vehicular loading, then further response can be considered recoverable, and figure 52 can be used to characterize the material. The \(M_R \) value shown in figure 52 is affected by the stress state (or load level). Typically, unbound granular materials exhibit stress hardening, i.e., \(M_R \) increases with increasing stress.\(^{76,77}\) As shown in figure 53, Hicks and Monismith related bulk stress and the resilient modulus obtained in figure 53 to characterize the stress dependency of the material.\(^{78}\)

\[
M_R = k_1 (\Theta)^{k_2}
\]

Figure 53. Equation. Resilient modulus as a function of stress invariant.
Where:

\[\theta = \text{the sum of principal stresses (i.e., } \theta = \sigma_1 + \sigma_2 + \sigma_3) \]

\[k_1 \text{ and } k_2 = \text{regression constants.} \]

The model suggested by Uzan and by Witczak and Uzan (figure 54 and figure 55, respectively) incorporated the distortional shear effect into the model using deviatoric and octahedral stresses, respectively.\(^{(79,80)}\)

\[
M_R = k_1 \left(\frac{\theta}{P_a} \right)^{k_1} \left(\frac{\sigma_d}{P_a} \right)^{k_2}
\]

Figure 54. Equation. Uzan’s nonlinearity model.

Where:

\[p_a = \text{atmospheric pressure.} \]

\[\theta = \text{the sum of principal stresses (i.e., } \theta = \sigma_1 + \sigma_2 + \sigma_3) \]

\[\sigma_d = \text{deviatoric stress.} \]

\[k_1, k_2, \text{ and } k_3 = \text{regression constants.} \]

\[
M_g = k_1 \left(\frac{\theta}{P_a} \right)^{k_1} \left(\frac{\tau_{oct}}{P_a} \right)^{k_3}
\]

Figure 55. Equation. Witczak and Uzan’s nonlinearity model.

Where:

\[\tau_{oct} = \text{octahedral shear stress.} \]

\[p_a = \text{atmospheric pressure.} \]

\[\theta = \text{the sum of principal stresses (i.e., } \theta = \sigma_1 + \sigma_2 + \sigma_3) \]

\[\sigma_d \text{ is deviatoric stress.} \]

\[k_1, k_2, \text{ and } k_3 = \text{regression constants.} \]

The model has been further modified by various researchers. Yau and Von Quintus analyzed LTPP MR test data using the generalized form of the Uzan model expressed as the equation in figure 56.\(^{(76,79)}\)

\[
M_R = k_1 P_a \left(\frac{\theta - 3k_6}{P_a} \right)^{k_2} \left(\frac{\tau_{oct}}{P_a} + k_7 \right)^{k_3}
\]

Figure 56. Equation. Generalized Uzan’s model.
Where \(k_1, k_2, k_3, k_6, k_7 \) are regression constants. They found that parameter \(k_6 \) regressed to zero for more than half of the tests, and hence the coefficient was set to zero for the subsequent analysis. The modified equation is shown in figure 57.

\[
M_R = k_1 P_a \left(\frac{\theta}{P_a} \right)^{k_2} \left(\frac{\tau_{oct}}{P_a} + 1 \right)^{k_3}
\]

Figure 57. Equation. MEPDG model for resilient modulus.

Although the resilient modulus, \(M_R \), is not the Young’s modulus \((E) \), when formulating granular material constitutive equations, it is often used to replace \(E \) in the equation in figure 58.\(^ {81} \)

\[
\sigma_{ij} = \frac{\nu E}{(1 + \nu)(1 - 2\nu)} \varepsilon_{kk} \delta_{ij} + \frac{E}{1 + \nu} \varepsilon_{ij}
\]

Figure 58. Equation. Elasticity constitutive equation.

Where:

- \(E \) = Young’s modulus
- \(\nu \) = Poisson’s ratio.
- \(\sigma_{ij} \) is the stress tensor.
- \(\varepsilon_{ij} \) is the strain tensor.
- \(\varepsilon_{kk} = (\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) \).
- \(\delta_{ij} \) is the Kroenecker delta.

Nonlinear \(M_R \) in flexible pavements has been implemented in many FEM-based models, assuming AC layer to be elastic. These include GTPAVE, ILLIPAVE, and MICHPAVE.\(^ {82–84} \) Typically, FEM-based nonlinear pavement analysis is performed by choosing a user-defined material (UMAT) in FEM-based software packages such as ABAQUS and ADINA.\(^ {10,85,86} \) However, although FEM-based solutions are promising, they are computationally expensive.

An approximate nonlinear analysis of pavement can also be performed using Burmister’s multilayered elastic based solution.\(^ {62,63} \) However, because the multilayer elastic theory assumes each individual layer is both vertically and horizontally homogeneous, it can be used to depict nonlinearity only through approximation. For incorporating variation in modulus with depth, Huang suggested dividing the nonlinear layer into multiple sublayers.\(^ {27} \) Furthermore, he suggested choosing a representative location in the nonlinear layers to evaluate modulus based on the stress state of the point. He showed that when the midpoint of the nonlinear layer under the load was selected to calculate modulus values, the predicated response near the load was close to the actual response. However, the difference between actual and predicted response increased at points away from the loading. Zhou studied stress dependency of base layer modulus obtained from base layer mid-depth stress state.\(^ {87} \) He analyzed FWD testing at multiple load levels on two different pavement structures. The study showed that reasonable nonlinearity parameters \(k_1 \) and \(k_2 \) (figure 53) can be obtained, regressing backcalculated modulus with stress state at mid-depth of the base layer.
In the present study, the elastic nonlinearity was solved iteratively assuming an initial set of elastic moduli. The stresses computed at mid-depth of each nonlinear layer using the initial values of modulus were used to compute the new set of moduli. The iteration was continued until E computed from the stresses predicted by the layered solution and the E used in the layered solution converged. Note that the appropriate stress adjustments were made because unbound granular material cannot take tension. This means that in such a case, either residual stress would be generated such that the stress state obeyed a yield criterion or the tensile stresses would be replaced with zero.

The algorithm developed to obtain response in a nonlinear system was compared with a robust nonlinear FEM software—MICHPAVE. The algorithm was compared for the cases when the unbound layer was considered as a single layer for nonlinearity calculations (Algorithm1) and when the layer was divided into two sections (Algorithm2). The analysis results are presented in appendix A. From the results, it was observed that subdividing the unbound base layer into two layers for computing nonlinearity did not produce much improvement in the results, hence it was decided to use the base layer as a single layer in further analysis.

Proposed Layered Viscoelastic Nonlinear (LAVAN) Pavement Model

Mechanistic solutions for nonlinear viscoelastic materials exhibit variation depending on the type of nonlinearity present. Typical nonlinear viscoelasticity equations involve convolution integrals that are based on unit responses (e.g., relaxation modulus and creep compliance), which are a function of stress or strain. Figure 59 and figure 60 show typical forms of such expressions.

$$\sigma(t) = \int_0^t E(t - \tau, \varepsilon) \frac{d\varepsilon(\tau)}{d\tau} d\tau$$

Figure 59. Equation. Nonlinear viscoelastic formulation for stress when relaxation modulus is a function of strain.

$$\varepsilon(t) = \int_0^t D(t - \tau, \sigma) \frac{d\sigma(\tau)}{d\tau} d\tau$$

Figure 60. Equation. Nonlinear viscoelastic formulation for strain.

Where:

- ε = strain.
- σ = stress.
- $E(t, \varepsilon)$ = strain-dependent relaxation modulus.
- $D(t, \sigma)$ = stress-dependent creep compliance.

Typically, in many nonlinear materials, the shape of the relaxation modulus of the material is preserved, even though the material presents stress or strain dependency. Such nonlinear viscoelastic (NLV) problems are solved by assuming that time dependence and stress (or strain) dependence can be decomposed into two functions as shown in figure 61 and figure 62.
\[D(t, \sigma) = g(\sigma)D_0(t) \]

Figure 61. Equation. Nonlinear creep compliance formulation.

\[E(t, \varepsilon) = f(\varepsilon)E_0(t) \]

Figure 62. Equation. Nonlinear relaxation modulus formulation.

Where:

- \(g(\sigma) \) = a function of stress.
- \(D_0(t) \) = the (only) time-dependent creep compliance.
- \(f(\varepsilon) \) = a function of strain.
- \(E_0(t) \) = the (only) time-dependent relaxation modulus.

For such materials, the expression in figure 63 has been typically used in NLV formulations to develop the convolution integral.

\[
\sigma(t) = \int_0^{t_R} E_i(t_R - \tau) \frac{df(\varepsilon(\tau))}{d\varepsilon} \frac{d\varepsilon(\tau)}{d\tau} d\tau
\]

Figure 63. Equation. Nonlinear viscoelastic formulation for stress when relaxation modulus is separated from strain dependence function.

Where \(E_i \) is a relaxation function that remains unchanged at any strain level and \(f(\varepsilon(\tau)) \) is a function of strain, such that \(\frac{df(\varepsilon(\tau))}{d\varepsilon} \) represents the elastic tangent stiffness.

These models are designated as Fung’s nonlinear viscoelastic material models, which were first proposed by Leaderman in 1943.\(^{(70)}\) A generalized form of this nonlinearity model was presented by Schapery using thermodynamic principles.\(^{(71)}\) Yong et al. used the model to describe nonlinear viscoelastic viscoplastic behavior of asphalt sand, whereas Masad et al. used the model to describe nonlinear viscoelastic creep behavior of binders.\(^{(72,73)}\) The model suggests that the nonlinear relaxation function can be expressed as a product of the function of time \((E_i(t_R - \tau)) \) and the function of strain \(\frac{df(\varepsilon(\tau))}{d\varepsilon} \). In figure 63, nonlinearity was introduced by the elastic component, \(\frac{df(\varepsilon(\tau))}{d\varepsilon} \), and the viscoelasticity comes from \(E_i \).

Concepts of nonlinear viscoelastic material behavior can be used to develop formulations for a layered system where the unbound layer is nonlinear and the AC layer is linear viscoelastic. If the previous argument is directly adopted, then the corresponding QLV analysis of viscoelastic nonlinear multilayered analysis can be represented as shown in figure 64.

\[
\sigma(t) = \int_0^{t_R} E_i(x, y, z, t_R - \tau) \frac{df(x, y, z, \varepsilon(\tau))}{d\varepsilon} \frac{d\varepsilon(\tau)}{d\tau} d\tau
\]

Figure 64. Equation. Nonlinear viscoelastic formulation for stress when relaxation modulus is separated from strain dependence function and when formulation is applied to a multilayered pavement structure.
Where $E_i(x,y,z,t_R)$ is the relaxation function, and $f(x,y,z,\varepsilon(\tau))$ is a function of strain $\varepsilon(\tau)$ at location (x,y,z). Alternatively, to obtain vertical surface deflection in pavements, figure 64 can be expressed in terms of vertical deflection response to Heaviside step loading as shown in figure 65.

$$u^{ve}(t) = \int_{\tau=0}^{t_R} g(\sigma) u^e_{H-R}(t_R-\tau, \sigma = 1)d\sigma(\tau)$$

Figure 65. Equation. Nonlinear viscoelastic formulation for deflection.

Where:

$u^{ve}(t)$ = the surface (nonlinear viscoelastic) displacement.

$u^e_{H-R}(t,\sigma = 1)$ = the unit nonlinear elastic response due to a unit stress.

$g(\sigma)$ = a function of stress, which can be expressed as shown in figure 66.

$$g(\sigma) = \frac{u^e_{H-R}(t_R,\sigma)}{u^e_{H-R}(t_R,\sigma = 1)}$$

Figure 66. Equation. Nonlinear viscoelastic formulation.

Where $u^e_{H-R}(t_R, \sigma)$ is the nonlinear elastic unit displacement due to a given stress (σ). For Fung’s theory to hold (i.e., figure 63 through figure 66), $g(\sigma)$ must be purely a function of stress. To investigate this, the $g(\sigma)$ values were computed using figure 66 and plotted against surface stress and relaxation modulus (i.e., time). The LAVA algorithm was modified to implement an iterative nonlinear solution for the granular base, which was assumed to follow the following two nonlinearity expressions: $M_R = k_1(\theta/p_a)^{k_2}$ and $M_R = k_1(\theta/p_a)^{k_2}(\tau_{oct}/p_a + 1)^{k_3}$. Analysis using the k-$\theta$-$\tau$ model is presented here whereas the k-θ model is presented in appendix A. The pavement section properties and material properties are shown in table 15 and figure 67.

Table 15. Pavement geometric and material properties for nonlinear viscoelastic pavement analysis.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (inches)</td>
<td>5.9 (AC), 9.84 (base), infinity (subgrade)</td>
</tr>
<tr>
<td>Poisson ratio (ν)</td>
<td>0.35 (AC), 0.4 (base), 0.4 (subgrade)</td>
</tr>
<tr>
<td>Density (pci)</td>
<td>0.0752 (AC), 0.0752 (base), 0.0752 (subgrade)</td>
</tr>
<tr>
<td>Nonlinear E_{base} (psi)</td>
<td>$k_0 = 0.6$; $k_1 = 3.626$; $k_2 = 0.5$; $k_3 = -0.5$</td>
</tr>
<tr>
<td>$E_{subgrade}$ (psi)</td>
<td>10,000</td>
</tr>
<tr>
<td>AC: $E(t)$ sigmoid coefficient (c_i)</td>
<td>1.598, 2.937, 0.512, -0.562</td>
</tr>
<tr>
<td>Haversine stress: 35 ms</td>
<td>Peak stress = 137.79 psi</td>
</tr>
<tr>
<td>Sensor spacing from the center of load (inches)</td>
<td>0, 7.99, 12.01, 17.99, 24.02, 35.98, 47.99, 60</td>
</tr>
</tbody>
</table>
The $u^e_{i,j}(t, \sigma)$ in figure 66 was calculated at a range of stress values from 0.1 to 140 psi and using $E(t)$ values for AC from 10^{-8} to 10^{8} s. Then, $u^e_{i,j}(t, \sigma = 1)$ was calculated for unit stress, and $g(\sigma)$ was calculated using figure 66. Figure 68 shows the variation of $g(\sigma)$, where the $g(\sigma)$ values decrease with increasing stress (σ).

This is expected behavior for a nonlinear material because as the stress increases, the unbound layer moduli also increase. However, figure 68 also illustrates that the $g(\sigma)$ varies with change in relaxation modulus $E(t)$.
This means that $g(\sigma)$ is not solely based on the stress, and, as a result, Fung’s model cannot be used in a layered pavement structure. This is meaningful because the change in the stress distribution within the pavement layers due to viscoelastic effect (as $E(t)$ varies) imposes changes in the behavior of stress-dependent granular layer. Note that as shown in appendix A, similar results were obtained when nonlinearity of k-θ type model was assumed. Hence, even though the viscoelastic layer in a nonlinear multilayered system is linear, it cannot be formulated as a Fung’s QLV model. The QLV model can still be formulated as a convolution integral, provided the stress-dependent relaxation function of the multilayered structure under all the load levels is known. Such a generalized QLV model for a multilayered structure can be expressed as nonlinear viscoelasticity equations involving the convolution integrals of unit response function of the structure, which is a function of stress or strain as shown in figure 69.

$$R^{\text{ve}}(x,y,z,t) = \int_{0}^{t} R^{\text{ve}}_{H}(x,y,z,I(\tau),t_{R} - \tau) \frac{dI(\tau)}{d\tau} d\tau$$

Figure 69. Equation. Generalized nonlinear viscoelastic formulation.

Where:

- $R^{\text{ve}}(x,y,z,t)$ = the nonlinear viscoelastic response of the layered pavement structure.
- $R^{\text{ve}}_{H}(x,y,z,I(\tau),t_{R} - \tau)$ = the unit response function that is both a function of time.
- input $I(\tau)$ = stress applied at the surface of the pavement.

Note that in this formulation, unlike Fung’s QLV model, time dependence and stress (or strain) dependence were not separated.

Forward Algorithm: Numerical Implementation of the Proposed Model (LAVAN)

Figure 69 can be rewritten in terms of vertical surface deflection under axisymmetric surface loading (see figure 67) as shown in figure 70.

$$u^{\text{ve}}_{\text{vertical}}(z,r,t) = \int_{t_{0}}^{t} u^{\text{ve}}_{H-\text{vertical}}(z,r,\sigma(\tau),t_{R} - \tau) \frac{d\sigma(\tau)}{d\tau} d\tau$$

Figure 70. Equation. Generalized nonlinear viscoelastic formulation for deflection.

Where:

- $u^{\text{ve}}_{\text{vertical}}(z,r,t)$ is the vertical deflection at time t and location (z,r).
- $u^{\text{ve}}_{H-\text{vertical}}(z,r,\sigma(\tau),t_{R} - \tau)$ = $u^{\text{ve}}_{\text{vertical}}(z,r,\sigma(\tau),t_{R} - \tau)$/$\sigma$ where $u^{\text{ve}}_{\text{vertical}}(z,r,\sigma, t_{R} - \tau)$ is the nonlinear response of the pavement at a loading stress level of σ.

The model in figure 70 can be expressed in discretized formulation as shown in figure 71.
Where $\tau_1 = 0$, $\tau_N = t$. The $u_H^r(\sigma, \tau_{Ri}, -\tau_j)$ values are computed via interpolation using the two-dimensional matrix pre-computed for $u_H^r(t, \sigma)$ (which was computed at a range of stress values and $E(t)$ values). The developed model has been referred to as LAVAN (short for LAVA-Nonlinear) in this report. The following step-by-step procedure can be used to numerically compute the response:

1. Define a discrete set of surface stress values: $\sigma_k = 0.1$ to 140 psi.
2. Calculate nonlinear elastic response $u^e(t_{Ri}, \sigma_k)$ at a range of t_{Ri} values, by using $E_{AC} = E(t_{Ri})$ for each t_{Ri} value. Recursively compute E_{base} until the stress in the middle of the base layer, at a radial distance r, results in the same E_{base} as the one used in the layered elastic analysis (within acceptable error). For this step, the nonlinear formulation shown in figure 72 is assumed for the base.

$$E_{base} = M_R = k_1 \left(\frac{\theta}{p_a} \right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1 \right)^{k_3}$$

Figure 72. Equation. Resilient modulus.

Where:

- $\theta = \sigma_1 + \sigma_2 + \sigma_3 + yz(1 + 2K_0)$ (where K_0 is the coefficient of earth pressure at rest).
- τ_{oct} = octahedral shear stress.
- k_1, k_2, and k_3 = regression constants.
- p_a = atmospheric pressure.

3. Calculate the nonlinear unit elastic response $u_{H-\text{vertical}}^e(r, z, t_i, \sigma_k) = \frac{u_{\text{vertical}}^e(r, z, t_i, \sigma_k)}{\sigma_k}$.

4. Perform convolution shown in figure 71 to calculate the nonlinear viscoelastic response.

Verification of the LAVAN model

To validate the LAVAN algorithm, ABAQUS was used. A flexible pavement was modeled as a three-layer structure, with a viscoelastic AC top layer over a stress-dependent granular base layer on an elastic half-space (subgrade). Figure 67 shows the geometric properties of the pavement structure used in the validation, where $h_{AC} = 5.9$ inches and $h_{base}=9.84$ inches. The viscoelastic properties of two HMA mixes, called crumb rubber terminal blend (CRTB) and control (two materials from FHWA’s Accelerated Load Facility 2002 experiment) were used for the AC layer in the analysis as case 1 and 2, relaxation modulus master curve for the two mixes are shown in figure 73. These curves were computed from their $|E^*|$ master curves by following the interconversion procedure suggested by. The pavement properties in the analysis for each test case were the same, as shown in figure 15.
In ABAQUS, the viscoelastic properties of the HMAs were input in the form of normalized bulk modulus \((K)\) and normalized shear modulus \((G)\).\(^{(90)}\) For the unbound nonlinear layer, a UMAT was written, incorporating the nonlinear constitutive modeling as explained in the previous section. ABAQUS requires that any UMAT have at least two main components: (1) update of the stiffness Jacobian Matrix and (2) stress increment. Figure 74 and figure 75 show the mathematical expressions for these two operations implemented in the UMAT.

\[
J_{ijkl} = \frac{\partial \sigma_{ij}}{\partial \varepsilon_{kl}}
\]

Figure 74. Equation. ABAQUS Jacobian formulation.

\[
\sigma_{ij}^{n+1} = \sigma_{ij}^{n} + J_{ijkl} \partial \varepsilon_{kl}^{n+1}
\]

Figure 75. Equation. ABAQUS stress update formulation.

Where \(J\) is the Jacobian matrix; \(\sigma_{ij}^{n+1}\) is the updated stress; and \(i, j, k,\) and \(l\) represent \(r, z, t,\) and \(\theta\) in the cylindrical coordinate system. For nonlinear analysis using LAVAN, the unbound modulus was calculated using the stress state at the midpoint of the unbound base layer (vertically). Because LAVAN cannot incorporate nonlinearity along the horizontal direction, for comparison, modulus values were calculated using stress at \(r = 3.5a\) (\(r\) shown in figure 67). In ABAQUS, the FE domain size of 133R in the vertical direction and 53R in the horizontal direction was found to produce stable surface deflection (with less than 1-percent error at the center). For the selected domain size, the FEM mesh refinement of 0.4 inch in the AC layer and 1 inch in the base layer were used. ABAQUS took approximately 17 min to analyze a haversine loading of 138 psi and 35 ms, whereas LAVAN could generate the results in 3.6 min.

Comparison of surface deflection between LAVAN and ABAQUS for the control mix (figure 76) and CRTB mix (figure 77) shows good predictability of LAVAN. As expected, the stiffer mix (control) generated a lower response compared with the softer mix (CRTB) under the same geometric and loading conditions. The top graph in figure 76 shows the results when stress
at $r = 0$ is used in LAVAN and was provided for comparison purposes. The bottom graph in figure 76 shows the results when stress at $r = 3.5a$ was used in LAVAN. Note that S1, S2, S3, S4, S5, S6, S7, and S8 in the figures correspond to surface deflection Sensor-1 ($r = 0$ inches), Sensor-2 ($r = 8$ inches) etc. Sensors 1 through 8 were 0, 8, 12, 18, 24, 36, 48, and 60 inches away from the centerline of the load.

Figure 76. Graphs. Surface deflection comparison of ABAQUS and LAVAN for the control mix.

(*LS1=LAVAN sensor 1; **AS1=ABAQUS sensor 1).
The difference between ABAQUS and LAVAN was quantified using the two variables shown in figure 78 and figure 79.

\[
PE_{\text{peak}} = \left| \frac{\delta_{\text{peak}}^{\text{ABAQUS}} - \delta_{\text{peak}}^{\text{LAVAN}}}{\delta_{\text{peak}}^{\text{ABAQUS}}} \right| \times 100
\]

Figure 78. Equation. Error in peak deflection.
Figure 79. Equation. Average error in normalized deflection history.

\[
PE_{\text{avg}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\delta_{\text{ABAQUS}}(t_i)/\delta_{\text{ABAQUS}}^\text{peak} - \delta_{\text{LAVAN}}(t_i)/\delta_{\text{LAVAN}}^\text{peak}}{\delta_{\text{ABAQUS}}(t_i)/\delta_{\text{ABAQUS}}^\text{peak}} \times 100
\]

Where:

- \(PE_{\text{peak}}\) = Percent error in the peaks.
- \(\delta_{\text{ABAQUS}}^\text{peak}\) = Peak deflection predicted by ABAQUS.
- \(\delta_{\text{LAVAN}}^\text{peak}\) = Peak deflection predicted by LAVAN.
- \(PE_{\text{avg}}\) = Average percent error in normalized deflection history.
- \(\delta_{\text{ABAQUS}}(t_i)\) = Deflection predicted by ABAQUS at time \(t_i\).
- \(\delta_{\text{LAVAN}}(t_i)\) = Deflection predicted by LAVAN at time \(t_i\).
- \(N\) = Number of time intervals in the deflection time history.

Because the model integrates both viscoelastic and nonlinear material properties, both peak deflection and creeping of deflection should be predicted with accuracy. \(PE_{\text{avg}}\) was used to examine the model performance in creeping.

As shown in figure 80 and figure 81, the \(PE_{\text{peak}}\) and \(PE_{\text{avg}}\) values for the control mix showed a slight improvement in the results when \(r = 3.5a\) was used. However, from figure 82 and figure 83, it can be seen that \(PE_{\text{peak}}\) and \(PE_{\text{avg}}\) values for CRTB mix showed more sensitivity to the location of the stress state.

In general, for the deflection basin at farther sensors, a better match between the ABAQUS and LAVAN results was found when stress state at \(r = 3.5a\) was used while incorporating nonlinearity. However, note that \(r = 0\) also produced relatively good results, especially in the first four to five sensors. Also, note that, for the structure in table 15, the procedure leads to \(r = 2.8a\) when the trapezoidal stress distribution with (0.5 horizontal slope and 1 vertical slope) is assumed.\(^{27}\)

Figure 80. Graph. Percent error (\(PE_{\text{peak}}\)) calculated using the peaks of the deflections for LAVAN-ABAQUS comparison (control mix).
Figure 81. Graph. Average percent error (PE_{avg}) calculated using the entire time history for the LAVAN-ABAQUS comparison (control mix).

Figure 82. Graph. Percent error (PE_{peak}) calculated using the peaks of the deflections for the LAVAN-ABAQUS comparison (CRTB mix).

Figure 83. Graph. Average percent error (PE_{avg}) calculated using the entire time history for the LAVAN-ABAQUS comparison (CRTB mix).
BASICS OF GENETIC BACKCALCULATION ALGORITHM

Backcalculation of pavement properties using FWD data is essentially an optimization problem. The analysis is based on formulating an objective function, which is minimized by varying the pavement properties. Response obtained from the forward analysis is matched with response obtained from the FWD test, and the difference is minimized by adjusting the layer properties of the system until a best match is achieved. Typically, the existing backcalculation methods either use RMS or percentage error of peak deflections as the objective function. However, because the viscoelastic properties are time dependent, the entire deflection history needs to be used. Hence, the primary component of the proposed backcalculation procedure was a layered viscoelastic forward solution. Such a solution should provide accurate and rapid displacement response histories owing to a time-varying (stationary) surface loading. For a linear viscoelastic pavement model, the research team used the computationally efficient layered viscoelastic algorithm LAVA to support the backcalculation algorithm called BACKLAVA, whereas for viscoelastic nonlinear pavement model, the team used the computationally efficient layered viscoelastic algorithm LAVAN to support the backcalculation algorithm called BACKLAVAN.\(^{(65)}\)

Whenever mechanical properties are derived with inverse analysis, it is desirable to minimize the number of undetermined parameters by using an economical scheme. Such an approach is both advantageous from a computational speed perspective and addresses the non-uniqueness issue, i.e., test data may not be detailed, accurate, or precise enough to allow calibration of a complicated model. Moreover, it is beneficial to have some inherent “protection” within the formulation, forcing the analysis to a meaningful convergence—fully compliant with the physics of the problem. Therefore, as discussed before, the relaxation modulus \((E(t))\) master curve (figure 32) was initially assumed to follow a sigmoid shape defined by the equation in figure 84:

\[
\log(E(t)) = c_1 + \frac{c_2}{1 + \exp(-c_3 - c_4 \log(t_R))}
\]

Figure 84. Equation. Sigmoid form of relaxation modulus curve.

Where \(c_i\) are the sigmoid coefficients and \(t_R\) is the reduced time, which is defined as \(t_R = t/a_T(T)\) (or \(\log(t_R) = \log(t) - \log(a_T(T))\)), where, as discussed before (Figure 33), \(a_T(T)\) is the shift factor coefficient, which is a function of temperature \((T)\) and \(t\) is time. The shift factor coefficients has been defined as a second-order polynomial of the form \(\log(a_T(T)) = a_1(T^2 - T_{ref}^2) + a_2(T - T_{ref})\), where \(a_1\) and \(a_2\) are the shift factor coefficients. As shown by the relaxation modulus and shift factor equations, a total of six coefficients were needed to develop the \(E(t)\) master curve, including the temperature dependency (i.e., the shift factor coefficients).

In theory, it should be possible to obtain these six coefficients in two ways: (1) using data containing time-changing response at different temperature levels and (2) using uneven temperature profile information existing across the thickness of the asphaltic layer during a single drop containing time changing response data.

Reliability and accuracy of the backcalculated results depend on the optimization technique used. In the present work, several optimization techniques were tried to formulate a procedure to backcalculate these six viscoelastic properties along with unbound material properties. These
optimization techniques can be broadly classified as classical methods and evolutionary methods. In this study, simplex-based classical optimization method was performed using MATLAB® function fminsearch, whereas, genetic algorithm (GA)-based evolutionary optimization method was performed using the MATLAB® function ga. The objective function, which is based on deflection differences in the current work, is a multidimensional surface that can include many local minima. In elastic backcalculation methods, the modulus of the AC layer is defined using a single value. However, in the present problem, the AC properties were represented by a sigmoid containing four parameters for $E(t)$ and by a polynomial containing two parameters for $a_1(T)$. Hence, it was naturally expected that the probability of number of local minima would increase. In traditional methods, because of the presence of multiple local minima, selection of different initial solutions may lead to different subsequent solutions. Typically, classical optimization methods (such as the fminsearch) have the following issues:

- Solution may depend on initial seed values.
- Convergence can be achieved at a local minimum.

These disadvantages do not mean that classical methods cannot be used in the backcalculation procedure. In fact, the classical methods can be hybridized along with evolutionary optimization techniques in developing more effective backcalculation procedures.

It is important to develop a backcalculation process such that FWD data obtained at a relatively small range of pavement temperatures can be sufficient to derive the viscoelastic properties of AC. Among various optimization techniques, GA was chosen because of its capability to converge to a unique global minimum solution, irrespective of the presence of local solutions. GA was implemented using MATLAB® function ga. In general terms, GA performs the following operations: (1) initialization, (2) selection, (3) generation of offspring, and (4) termination. In initialization, GA generates a pool of solutions using a subset of the feasible search space, the so-called “population.” Each solution is a vector of feasible variable values. In the selection process, each solution is evaluated using an objective function, and the best fitted solutions are selected. The selected solutions are then used to generate the next generation population (offspring). This process mainly involves two operators: crossover and mutation. In crossover, a new solution is formed by exchanging information between two parent solutions, which is done by swapping a portion of parent vectors. In mutation, a new solution is formed by randomly changing a portion of the parent solution vector. The newly generated population is evaluated using the objective function. This process is repeated until a termination criterion is reached. Through guided random search from one generation to another, GA minimizes the desired objective function.

Formulation of the optimization model using GA is shown in figure 85.

$$E_T = \sum_{k=1}^{m} \sum_{i,0=1}^{n} \left| \frac{d_i^k - d_o^k}{d_i^k} \right|$$

Figure 85. Equation. Optimization model.
Where:

\(m \) = Number of sensors.
\(d_i \) = Input deflection information obtained from field at sensor \(k \).
\(d_o^k \) = Output deflection information obtained from forward analysis at sensor \(k \).
\(n \) = Total number of deflection data points recorded by a sensor.
\(c_i \) = Sigmoid coefficients.
\(E_b \) and \(E_s \) = Base and subgrade moduli.
\(a_i \) = Shift factor polynomial coefficients.
\(l \) = Lower limit.
\(u \) = Upper limit.

This model is also subject to the following constraints:

- \(c_1^l \leq c_1 \leq c_1^u \).
- \(c_2^l \leq c_2 \leq c_2^u \).
- \(c_3^l \leq c_3 \leq c_3^u \).
- \(c_4^l \leq c_4 \leq c_4^u \).

and

- \(a_1^l \leq a_1 \leq a_1^u \).
- \(a_2^l \leq a_2 \leq a_2^u \).
- \(E_b^l \leq E_b \leq E_b^u \).
- \(E_s^l \leq E_s \leq E_s^u \).

To obtain the lower and upper limits of \(c_i \) and \(a_i \), values of sigmoid and shift factor coefficients of numerous HMA mixtures were calculated. Table 16 shows these limits, which were used in the GA constraints shown in figure 85. Limits to the elastic modulus were arbitrarily selected (based on typical values presented in the literature). Note that the sigmoid obtained by using the lower or upper limits of the coefficients gave a larger range compared with the actual range of \(E(t) \). This could potentially slow down the backcalculation process. Therefore, as described later in the report, additional constraints were defined to narrow the search window.

<table>
<thead>
<tr>
<th>Limit</th>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(E_1)</th>
<th>(E_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0.045</td>
<td>1.80</td>
<td>-0.523</td>
<td>-0.845</td>
<td>-5.380E-04</td>
<td>-1.598E-01</td>
<td>10,000</td>
<td>22,000</td>
</tr>
<tr>
<td>Upper</td>
<td>2.155</td>
<td>4.40</td>
<td>1.025</td>
<td>-0.380</td>
<td>1.136E-03</td>
<td>-0.770E-01</td>
<td>13,000</td>
<td>28,000</td>
</tr>
</tbody>
</table>
BACKCALCULATION OF RELAXATION MODULUS MASTER CURVE USING A SERIES OF FWD TESTS RUN AT DIFFERENT TEMPERATURES

The duration of a single pulse of an FWD test is very short, which limits the portion of the \(E(t) \) curve used in the forward calculation using LAVA. As a result, it was not possible to backcalculate the entire \(E(t) \) curve accurately using deflection data of such short duration. The longer the duration of the pulse, the larger portion of the \(E(t) \) curve used in LAVA in the forward calculation process. Therefore, one may conclude that FWD tests need to produce a long-duration deflection-time history. However, owing to the thermorheologically simple behavior of AC, the time-temperature superposition principle can be used to obtain longer duration data by simply running the FWD tests at different temperatures and using the reduced time concept described at beginning of this chapter.

Before discussing into the details of the required number of FWD test temperatures and magnitudes, an analysis on the effects of different FWD deflection sensor data on the backcalculated \(E(t) \) master curve is presented in the following section.

Sensitivity of \(E(t) \) Backcalculation to the Use of Data From Different FWD Sensors

This section presents an analysis of the contribution of individual and a group of sensors on the backcalculation of the \(E(t) \) master curve. Note that the analysis was based on a real coded GA, which uses double vector variables. All the existing applications of GA in pavement inverse analysis were based on a binary coded GA, and hence the GA parameters suggested in these references were not applicable to the approach presented in this section.\(^{(91-93)}\) As a result, a new set of optimum parameters was determined. The backcalculation process was run using a population and generation of 70 and 15, respectively (selected after trying various combinations), using FWD time histories obtained at a temperature set of \{32, 50, 68, 86, 104, 122, 140, 158, and 176\} °F. The pavement properties used (see table 17) were kept the same throughout the study.

<table>
<thead>
<tr>
<th>Property</th>
<th>Case 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (AC followed by granular layers) (inches)</td>
<td>10, 20, infinity</td>
</tr>
<tr>
<td>Poisson ratio {layer 1,2,3…}</td>
<td>0.35, 0.3, 0.45</td>
</tr>
<tr>
<td>(E_{\text{unbound}}) {layer 2,3…} (psi)</td>
<td>11,450, 15,000</td>
</tr>
<tr>
<td>(E(t)) sigmoid coefficient {layer 1}</td>
<td>0.841, 3.54, 0.86, -0.515</td>
</tr>
<tr>
<td>(a(T)) shift factor polynomial coefficients {layer 1}</td>
<td>4.42E-04, -1.32E-01</td>
</tr>
<tr>
<td>Sensor spacing from the center of load (inches)</td>
<td>0, 8, 12,18,24, 36,48, 60</td>
</tr>
</tbody>
</table>

Convergence was evaluated based on the backcalculated moduli of the base and subgrade layers as well as the \(E(t) \) curve of the AC layer. Average error in the moduli of base and subgrade are defined as shown in figure 86.

\[
\xi_{\text{unbound}} = \left| \frac{E_{\text{act}} - E_{\text{bc}}}{E_{\text{act}}} \right| \times 100
\]

Figure 86. Equation. Average error in backcalculated moduli of base and subgrade layers.
Where:

\[\xi_{unbound} = \text{Absolute value of the error in the backcalculated unbound layer modulus.} \]

\[E_{act} \text{ and } E_{bc} \text{ are the actual and backcalculated moduli (of the unbound layer), respectively.} \]

The variation of error in the backcalculated \(E(t) \) at different reduced times is defined as shown in figure 87.

\[
\xi_{AC}(t_i) = \frac{E_{act}(t_i) - E_{bc}(t_i)}{E_{act}(t_i)} \times 100
\]

Figure 87. Equation. Error in backcalculated relaxation moduli at different reduced times.

Where:

\[\xi_{AC}(t_i) = E(t) \text{ error at reduced time } t_i, \text{ where } i \text{ ranges from 1 to } n \text{ such that } t_1 = 10^{-8} \text{ and } t_n = 10^8 \text{ s.} \]

\[n = \text{Total number of discrete points on the } E(t) \text{ curve.} \]

\[E_{act}(t_i) = \text{Actual } E(t) \text{ value at point } i. \]

\[E_{bc}(t_i) = \text{Backcalculated } E(t) \text{ value at } i. \]

Finally, average error in \(E(t) \) is defined as shown in figure 88.

\[
\xi_{AC}^{avg} = \frac{1}{n} \left(\sum_{i=1}^{n} |\xi_{AC}(t_i)| \right)
\]

Figure 88. Equation. Average error in backcalculated relaxation moduli.

Where \(\xi_{AC}^{avg} \) is the average error in the \(E(t) \) of the AC layer.

Figure 89 shows the variation of \(\xi_{unbound} \) when data from different FWD sensors are used. As shown, the error decreased as data from farther sensors were incorporated in the backcalculation. This may be because at farther sensors, the deflections were primarily, if not solely, due to deformation in the lower layers.
Figure 89. Graph. Error in unbound layer modulus in optimal number of sensor analysis.

Figure 90 shows the actual and backcalculated $E(t)$ curve, which is only based on data from sensor 1 (at the center of load plate). As shown, there was a very good match between the backcalculated and actual curves. Figure 91 shows the variation of percentage error in $E(t)$ (calculated using figure 87) with time. The magnitude of percent error ranged from about -9 to 23 percent and increased with reduced time. This was expected because the $E(t)$ in longer durations ($>10^{-6}$ s) were not used in the forward computations. Note that the result is shown over a time range of 10^{-8} to 10^{8} s. However, the forward calculations were actually made using temperatures ranging from 32 to 176 °F, which corresponded to a reduced time range of approximately 10^{-6} to 10^{6} s.
Figure 90. Graph. Backcalculated and actual $E(t)$ master curve at the reference temperature of 66 °F using FWD data from only sensor 1.

Figure 91. Graph. Variation of error when using FWD data from only sensor 1.
To investigate whether using just the farther sensors improved the backcalculated $E_{unbound}$ values, backcalculations were performed using data from different combinations of farther sensors. Figure 92 shows the error in backcalculation of the modulus of the base (layer 2) and the subgrade (Layer 3), when data from only further sensors were used. As shown, for layer 3, error ranged between 0.27 to 1.43 percent, with no specific trend. The error in the modulus of the base (layer 2) was higher, ranging from 1 to 8.96 percent. However, a clear trend was not observed. By comparing with figure 89, one can conclude that using all the sensors produces the least error in $E_{unbound}$.

![Figure 92. Graph. Error in unbound layer modulus using FWD data from only farther sensors.](image)

Effect of Temperature Range of Different FWD Tests on Backcalculation

It is typically not feasible to run the FWD test over a wide range of temperatures (e.g., from 32 to 176 °F). Depending on the region and the month of the year, the variation of temperature in a day can be anywhere between 50 and 86 °F during the fall, summer, and spring when most data collection is done. This means that the performance of the backcalculation algorithm needs to be checked for various narrow temperature ranges. The purpose of the study explained in this section was to determine the effect of different temperature ranges on the backcalculated $E(t)$ values. Further, it was recognized that the results obtained from GA might not be exact but only an approximation of the overall solution. Hence a local search method was carried out through fminsearch using the results obtained from GA as seed. Figure 93 shows the error in the backcalculated elastic modulus values of base and subgrade when different pairs of temperatures were used. As shown, in most cases, the error was less than 0.1 percent. Note that the errors shown in figure 93 were less than the ones shown in figure 89 (when all sensors were used). This was because in figure 89, only GA was used, whereas in figure 93, fminsearch was used after the GA, which improved the results.
Figure 94 shows the average error in $E(t)$ (i.e., ξ_{AC}^{avg} given in figure 88), where a pattern was observed. The error was the least when intermediate temperatures (i.e., {50-68}, {50-68-86}, {68-86-104}, {86-104}, {86-104-122} °F) were used. At low temperatures, the error seemed to increase. This was meaningful because at low temperatures, a small portion (upper left in figure 90) was used in BACKLAVA. Therefore, the chance of mismatch at the later portions of the curve (lower right in figure 90) was high. At high temperatures, error also seemed to increase. Theoretically, the higher the temperature, the larger the portion of the $E(t)$ curve that was used because of the nature of the convolution integral, which starts from zero (figure 29). However, if only the high temperatures were used, the discrete nature of load and deflection time history led to a big jump from zero to the next time t_i, during evaluation of the convolution integral. This jump occurred because when the physical time at high temperatures was converted to reduced time, actual magnitudes became large and, in a sense, a large portion at the upper left side of the $E(t)$ curve was skipped during the convolution integral. At intermediate temperatures, however, a more balanced use of the $E(t)$ curve in BACKLAVA improved the results.
When results from GA were used as seed values in fminsearch, it was observed that in general, error in \(E(t) \) was reduced. Figure 95, figure 96, and figure 97 show backcalculated \(E(t) \) master curve using GA and corresponding backcalculated \(E(t) \) master curves obtained using GA and fminsearch. As shown, combined use of GA and fminsearch resulted in improved backcalculation.
Figure 95. Graphs. Results for backcalculation at \{50, 86\} °F temperature set: left side—only GA used, right side—GA+fminsearch used.
Figure 96. Graphs. Results for backcalculation at \{86, 104\} °F temperature set.
Table 18 shows the time it takes to run the GA for population-generation size of 70 to 15, followed by fminsearch. The results are shown for a computer that has Intel Core 2, 2.40 GHz, and 1.98 GB RAM.

Table 18. Backcalculation runtime for GA-fminsearch seed runs.

<table>
<thead>
<tr>
<th>Number of Temperature Data</th>
<th>Backcalculation time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two (e.g., {50, 86} °F)</td>
<td>30</td>
</tr>
<tr>
<td>Three (e.g., {50, 68, 86} °F)</td>
<td>40</td>
</tr>
<tr>
<td>Seed run (fminsearch)</td>
<td>15–20</td>
</tr>
</tbody>
</table>

Normalization of Error Function (Objective Function) to Evaluate Range of Temperatures

In the analysis presented in the previous sections, percent error between the computed and measured displacement was used as the minimizing error. However, the deflection curve obtained from the field often includes noise, especially after the end of load pulse. If percent
error is used as the minimizing objective, it may lead to overemphasis of lower magnitudes of deflections at the later portion of the time history, which typically includes noise and integration errors. Hence, another fit function was proposed in which the percent error was calculated with respect to the peak of deflection at each sensor. This approach penalized the tail data by normalizing it with respect to the peak, as shown in figure 98.

\[
Er = \sum_{k=1}^{m} 100 \sum_{i=1}^{n} \frac{|d_i^k - d_o^k|}{\{d^k\}_{max}}
\]

Figure 98. Equation. Normalized error in deflection history.

Where:

\(\{d^k\}_{max} = \text{Peak response at sensor } k.\)

\(m = \text{Number of sensors.}\)

\(d_i^k = \text{Measured deflection at sensor } k.\)

\(d_o^k = \text{Output (calculated) deflection from forward analysis at sensor } k.\)

\(n = \text{Total number of deflection data points recorded by a sensor.}\)

The limits considered for \(E(t)\) so far were the limits on the individual parameters of the sigmoid curve (table 16). The \(E(t)\) curves obtained by considering the upper and lower limits of the parameters represent curves well beyond the actual data base domain. To curtail this problem, constraints were introduced putting limits shown in figure 99 on the sum of the sigmoid coefficients \(c_1\) and \(c_2\).

\[c_1 + c_2 \leq s_1 \text{ and } c_1 + c_2 \geq s_2\]

Figure 99. Equation. Constraints in optimization model.

Where \(s_1\) and \(s_2\) are arbitrary constants.

The arbitrary constants \(s_1\) and \(s_2\) were obtained by calculating maximum and minimum values of the sum of sigmoid coefficients \(c_1\) and \(c_2\) from numerous HMA mixes. Alternatively, the problem was reframed by incorporating the constraints in limit form by redefining the variables as shown in figure 100.

\[\begin{align*}
\text{var 1} &= c_1 \\
\text{var 2} &= x = c_1 + c_2 \text{ and } x^1 \leq x \leq x^u \\
\text{var 3} &= c_3 \\
\text{var 4} &= c_4
\end{align*}\]

Figure 100. Equation. Sigmoid variables in optimization model.

Where \(c_1\) through \(c_4\) are sigmoidal function coefficients, and \(x^u\) and \(x^1\) are the upper and lower limits of \(c_1 + c_2\), respectively. The problem was then resolved after replacing the inequality constraint with limits on the variables. The new function gave good results at temperature sets of \{50, 86\} °F, \{86, 104\} °F, \{50, 68, 86\} °F, \{68, 86, 104\} °F, and \{86, 104, 122\} °F. The backcalculated \(E(t)\)
curves were then converted to $|E^*|$ using the interconversion relationship given in Kutay et al.65

Mathematically, the dynamic modulus can be defined as shown in figure 101:

$$E^*(f) = E'(f) + iE''(f)$$

\textbf{Figure 101. Equation. Dynamic modulus in complex form.}

Where f is frequency, $E'(f)$ is storage modulus, and $E''(f)$ loss modulus, which can be obtained for a generalized Maxwell model using the following equations shown in figure 102 and figure 103:

$$E'(f) = |E^*(f)| \cos(\phi) = E_0 + \sum_{i=1}^{N} E_i \frac{(2\pi f \rho_i)^2}{1+(2\pi f \rho_i)^2}$$

\textbf{Figure 102. Equation. Real component of dynamic modulus.}

$$E''(f) = |E^*(f)| \sin(\phi) = \sum_{i=1}^{N} E_i \frac{2\pi f \rho_i}{1+(2\pi f \rho_i)^2}$$

\textbf{Figure 103. Equation. Imaginary component of dynamic modulus.}

Where:

$\phi = \text{the phase angle.}$

$|E^*| = \text{the absolute value of the complex } E^* \text{ function (figure 101).}$

$E_i = \text{modulus of each Maxwell spring.}$

$\rho_i = \eta_i / E_i = \text{relaxation time}$

$\eta_i = \text{the viscosity of each dashpot element in the generalized Maxwell model as shown in figure 104.}$

$$|E^*| = \sqrt{E'^2 + E''^2} \quad \phi = \tan^{-1}(E'' / E')$$

\textbf{Figure 104. Equation. Dynamic modulus and phase angle.}

Backcalculated $E(t)$ and $|E^*|$ master curves were compared with the actual curves for temperature sets $\{50, 86\} \text{ °F}$ and $\{50, 68, 86\} \text{ °F}$ in figure 105 and figure 106, respectively.
It can be seen from figure 107 that the results obtained for $E(t)$ errors over temperature sets showed a distinct pattern. The $E(t)$ and $E_{unbound}$ errors with respect to temperature sets showed a trend similar to that observed in the case of percentage error (figure 93 and figure 94, respectively). The error was observed to be high at sets of low ($\{32, 50\}$ °F) and high ($\{122, 140\}$ °F, $\{104, 122, 140\}$ °F, $\{122, 140, 158\}$ °F) temperatures. This is because the backcalculated $E(t)$ at lower temperatures represents the left portion of the sigmoidal $E(t)$ curve and higher temperatures represents the right. As explained earlier, both regions are fairly flat and
hence represent constant values of $E(t)$, which may not optimize to the actual $E(t)$ curve. Better results were obtained for the temperature range of \{50, 68\} °F to \{86, 104, 122\} °F (figure 108). The backcalculated $E(t)$ master curves and corresponding errors obtained at \{50, 86\} °F and \{68, 86, 104\} °F for the proposed backcalculation model are shown in figure 109.

Figure 107. Graph. Variation of ξ_{AC}^{avg} at different FWD temperature sets.

Figure 108. Graph. Variation of $\xi_{unbound}$ at different FWD temperature sets.
Backcalculation of Viscoelastic Properties Using Various Asphalt Mixtures

In the previous sections, analyses were performed using only a single mix. To verify the conclusions made in the previous sections regarding the optimum range of temperatures of FWD testing, backcalculations were performed on nine typical mixtures. Actual viscoelastic properties—relaxation modulus and shift factors of the selected mixtures—are shown in figure 110.
Comparison of the average error in the backcalculated relaxation modulus function calculated over three time ranges—10^{-5} to 1 s, 10^{-5} to 10^2 s, and 10^{-5} to 10^3 s—as shown in figure 111. It can be seen from the figure that, for all the mixes, relaxation modulus curve can be predicted close to less than 15 percent over a range of relaxation time less than 10^{+3} s. Furthermore, it can be seen that, as suggested, the backcalculated relaxation modulus prediction provided a good match over an approximate temperature range of 50 to 86 °F.
Figure 111. Graphs. Variation of error calculated over three ranges of reduced time—top = 10^{-5} to 1 s, middle = 10^{-5} to 10^2 s, and bottom = 10^{-5} to 10^3 s.

Theoretical Analysis on Multiple-Pulse FWD in Backcalculation

In theory, it should be possible to obtain a relaxation modulus master curve if data containing the time-changing response at different temperature levels were known. The available analysis window in the current FWD devices is short, extending up to 25 to 35 ms of stress pulse, which
could be used to infer part of the relaxation function. Although series of FWD tests at different temperatures could be useful in developing the entire master curve, in theory, the prediction could be improved if information at different rates of loading or over a larger time interval were known.

As shown in figure 112, a load of four successive pulses with a duration of 35 ms followed by four pulses with 10s duration each was simulated to generate the deflection basin. This example was used to investigate whether a different loading history could result in better estimation of $E(t)$. Figure 113 shows the backcalculated $E(t)$, where a good fit is visible. Note that the accuracy of the backcalculated $E(t)$ depended on the duration of the stress pulse, where longer duration allowed calculation of $E(t)$ at longer durations. It is also important to apply a high-frequency (short duration) pulse load to increase the accuracy of $E(t)$ at very short times. Note that backcalculation of $E(t)$ for this example took less than 5 min in the MATLAB® optimization tool fminsearch. These possibilities are explored in detail in appendix B.

![Figure 112](image-url)

Figure 112. Graphs. Applied stress and resulting deflection basin for multiple pulse loading analysis.
Figure 113. Graph. Backcalculated $E(t)$ and deflection histories using the multiple stress pulses.

BACKCALCULATION OF RELAXATION MODULUS MASTER CURVE USING A SINGLE FWD TEST AND KNOWN PAVEMENT TEMPERATURE PROFILE

The uneven temperature profile existing across the thickness of the AC layer during a single FWD drop can theoretically be used to backcalculate the $E(t)$ master curve and the shift factor coefficients ($a_T(T)$). The AC layer can be divided into several sublayers with same viscoelastic properties but with different temperature levels. Two different approaches of backcalculation are discussed in this section. In the first approach, all the unknown variables (sigmoid coefficients, shift factor coefficients, and unbound modulus) in the forward algorithm were varied during backcalculation. In the second approach, a two-staged backcalculation procedure was adopted. The two-stage method involved static backcalculation in the first stage (unbound modulus assuming elastic AC layer) followed by viscoelastic backcalculation in the second (sigmoid and shift factor coefficients). Both approaches were explored in the present study.

Linear Viscoelastic Backcalculation Using Single Stage Method

As discussed earlier, a total of six coefficients are needed to represent the relaxation properties of the AC layer, including the temperature dependency. The backcalculation procedure used was same as used in the previous section (i.e., BACKLAVA), except the forward analysis was replaced by LAVAP, which can consider varying temperature along the depth of the AC layer. Subsequently, the new backcalculation algorithm was referred as BACKLAVAP. For executing the GA, the same lower and upper limits of c_i and a_i (sigmoid and shift factor coefficients) and other specifications were retained.

As a first step, the backcalculation algorithm was validated with a synthetic FWD deflection history, under two different temperature profiles. The data were generated using LAVAP and then used in BACKLAVAP for backcalculation of $E(t)$. The AC layer was divided into three equal sublayers with three different temperatures. Pavement section, properties, and temperature used in the forward analysis are shown in table 19.
Table 19. Details of the pavement properties used in single FWD test backcalculation under a known temperature profile.

<table>
<thead>
<tr>
<th>Property</th>
<th>Asphalt Concrete Layer</th>
<th>Granular Base</th>
<th>Subgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sublayer 1</td>
<td>Sublayer 2</td>
<td>Sublayer 3</td>
</tr>
<tr>
<td>Thickness (inches)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td>68</td>
<td>59</td>
<td>50</td>
</tr>
<tr>
<td>Case 2</td>
<td>86</td>
<td>77</td>
<td>68</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.35</td>
<td>0.4</td>
<td>0.45</td>
</tr>
<tr>
<td>Relaxation modulus</td>
<td>$E(t)$ coefficients (c_1, c_2, c_3, c_4)</td>
<td>Backcalculated</td>
<td>Backcalculated</td>
</tr>
<tr>
<td>Time-temperature shifting coefficients</td>
<td>(a_1, a_2) backcalculated</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Sensor spacing from the center of load (inches): 0, 8, 12, 18, 24, 36, 48, 60

N/A = Not applicable.

For the case of backcalculation using a temperature profile, the GA parameters—population size and generation numbers—were again selected after several trials of combinations. It was observed that at population size of 300, improvement in the best solution was marginal after 12 to 15 generations, and the population converged to the best solution at about 45 generations. Similarly, for a population size of 400, improvement in the best solution was marginal after 10 to 15 generations. Figure 114 shows the backcalculation results at the temperature sets given in table 19, where a good match was visible. Error in the backcalculated $E(t)$ was quantified relative to the actual $E(t)$ using $\xi_{AC}(t)$, given in figure 87. The $\xi_{AC}(t)$ calculation was performed over a reduced time interval from 10^{-8} to 10^{+8} s. Then, the average error (ξ_{AVG}) was computed using figure 88. The average error level for the first temperature profile was found to be 5.2 percent, and for the second, it was 4.4 percent.

To further investigate the effect of the magnitude of the pavement temperature profile on backcalculation of $E(t)$ master curve, synthetic FWD deflection histories were generated. The synthetic data were then used in backcalculation. The structure was divided into three layers with different temperatures, and $E(t)$ was backcalculated using these data. The pavement section properties used in the study were same as shown in Table 19.

Backcalculation was performed assuming the temperature of the top, middle, and bottom sublayers of the asphalt layer as {68, 59, 50} °F, {86, 77, 68} °F, {104, 95, 86} °F, and {122, 113, 104} °F. It was again observed that the problem converged well with 300 GA populations at 45 GA generations. The results shown in figure 115 did exhibit a trend, suggesting that there was a good potential for backcalculation of $E(t)$ using a single FWD response for the lower temperature ranges, assuming that the temperature profile of the pavement was known.
Figure 114. Graphs. Comparison of actual and backcalculated values in backcalculation using temperature profile.
Backcalculation of the Viscoelastic Properties of the LTPP Sections Using a Single FWD Test With Known Temperature Profile

The BACKLAVAP algorithm was next used with field data to backcalculate the viscoelastic properties of nine LTPP sections. With the exception of sections 10101, 300113, and 340801, selection of the sites was done based on the following rules:

- Section comprised three layers with only one AC layer.
- Total number of constructions of the section was one.
- Section was an SPS section type (experiment number 1 and 8)
- Section was flexible pavement.

Table 20 and table 21 contain general and structural information about each selected LTPP site. As shown in table 21, section 10101 had a total of four layers, including two AC layers. However, because the $D(t)$ of the two AC layers reported in the LTPP database were very close, the section was included in the list, treating the two layers as a single AC layer in the analysis. Section 300113 comprised two AC layers of thickness 0.2 and 5.8 inches. Because the top AC layer of the section was very thin compared with the second AC layer, the AC layers were treated as a single layer. Furthermore, the sectional composition of sections 300113 and 340801 were not changed during various constructions; therefore, they were included in the analysis. However, it is not clear from the LTPP database whether the $D(t)$ was measured before or after the constructions were done.
In the LTPP Program, each section is tested according to a specific FWD testing plan, which consists of one or more test passes. Both SPS 1 and SPS 8 are tested, along two test passes (test pass 1 and test pass 3) using test plan 4 in LTPP. Test pass 1 data include FWD testing performed along the midlane (ML) whereas test pass 2 data includes FWD testing performed along the OW path. Because testing with the ML test pass represents the axisymmetric assumption better, it was used here in the analysis. Furthermore, for each section, testing was done at several longitudinal locations (in the direction of traffic) in every test pass. Typically, for a 500-ft test section, FWD testing is performed at every 50 ft longitudinally along the test pass.

In the LTPP testing protocol, temperature gradient measurements are taken every 30 min, plus or minus 10 min. The necessary temperature profile data were obtained by interpolating the temperature measured during the FWD testing. The AC layer was divided into three equal sublayers, and a constant temperature for each sublayer was estimated. Table 22 shows the interpolated temperatures at the middle of the three sublayers. From the table, it can be seen that the maximum temperature difference (between sublayer 1 and sublayer 3) was 11.2 °F in section 350801 and the minimum 5.3 °F in section 6A805.
Table 22. AC temperature profile during LTPP FWD test.

<table>
<thead>
<tr>
<th>State Code</th>
<th>Section</th>
<th>Test Date</th>
<th>Temperature Profile (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sublayer 1</td>
</tr>
<tr>
<td>1</td>
<td>0101</td>
<td>04/28/05</td>
<td>100.0</td>
</tr>
<tr>
<td>6</td>
<td>A805</td>
<td>11/16/11</td>
<td>73.6</td>
</tr>
<tr>
<td>6</td>
<td>A806</td>
<td>11/16/11</td>
<td>79.2</td>
</tr>
<tr>
<td>30</td>
<td>0113</td>
<td>07/12/10</td>
<td>84.7</td>
</tr>
<tr>
<td>34</td>
<td>0801</td>
<td>08/26/98</td>
<td>102.4</td>
</tr>
<tr>
<td>34</td>
<td>0802</td>
<td>08/26/98</td>
<td>79.3</td>
</tr>
<tr>
<td>35</td>
<td>0801</td>
<td>04/09/05</td>
<td>74.1</td>
</tr>
<tr>
<td>35</td>
<td>0802</td>
<td>05/26/00</td>
<td>89.8</td>
</tr>
<tr>
<td>46</td>
<td>0804</td>
<td>05/02/01</td>
<td>75.9</td>
</tr>
</tbody>
</table>

Except for section 350801, the FWD deflection data obtained showed no or minimal waviness at the end of the load pulse, which indicated that there was no shallow stiff layer. The FWD deflection data obtained from section 350801 showed some waviness at the end of the load pulse. This indicated the possibility of a medium-depth stiff layer or high water table. The presence of a stiff layer was further evaluated using a graphical method suggested by Ullidtz. The method involves plotting peak deflections obtained from FWD testing versus the reciprocal of the corresponding sensor location (measured from the center of loading). Depths of stiff layer in each LTPP section estimated using Ullidtz’s method are shown in table 23. Note that negative depth to the stiff layer was interpreted as absence of the stiff layer in the method. The results indicate that stiff layers were generally deeper than 18 ft (except section 350801). It was suggested by Lei that if the stiff layer was below 18 ft, the effect of dynamics was not observed on the surface deflections. Section 350801 was also included in the analyses because the depth of the stiff layer was close to the limit of 18 ft.

Table 23. Depths of stiff layer in each LTPP section estimated using Ullidtz’s method.

<table>
<thead>
<tr>
<th>State Code</th>
<th>Section</th>
<th>Drop 1</th>
<th>Drop 2</th>
<th>Drop 3</th>
<th>Drop 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101</td>
<td>86.9</td>
<td>32.7</td>
<td>109.8</td>
<td>26.6</td>
</tr>
<tr>
<td>6</td>
<td>A805</td>
<td>70.4</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
</tr>
<tr>
<td>6</td>
<td>A806</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
</tr>
<tr>
<td>30</td>
<td>0113</td>
<td>96.4</td>
<td>45.3</td>
<td>49.9</td>
<td>35.6</td>
</tr>
<tr>
<td>34</td>
<td>0801</td>
<td>38.7</td>
<td>38.9</td>
<td>37.9</td>
<td>38.4</td>
</tr>
<tr>
<td>34</td>
<td>0802</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
<td>284.5</td>
<td>63.8</td>
</tr>
<tr>
<td>35</td>
<td>0801</td>
<td>15.5</td>
<td>15.6</td>
<td>15.5</td>
<td>15.2</td>
</tr>
<tr>
<td>35</td>
<td>0802</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
<td>No stiff layer</td>
</tr>
<tr>
<td>46</td>
<td>0804</td>
<td>232.2</td>
<td>183.1</td>
<td>61.2</td>
<td>31.6</td>
</tr>
</tbody>
</table>

Section properties used for elastic and viscoelastic backcalculations were the same (see table 20) except that the modulus of the AC layer in the elastic backcalculation was assumed constant (modulus unknown). For elastic backcalculation, an in-house genetic algorithm was developed. The Poisson’s ratio for AC, granular base, and subgrade layers were assumed to be 0.3, 0.4, and 0.45, respectively. As noted above, the results obtained from elastic backcalculation were used to
define bounds for base and subgrade moduli in BACKLAVAP. Table 24 shows the elastic backcalculation results obtained using data from each FWD drop. With the exception of section 350802, the static backcalculated base modulus values varied between 8,425 psi and 64,466 psi, and the subgrade modulus values varied between 16,142 psi and 42,615 psi.

Table 24. Elastic backcalculation results for LTPP sections.

<table>
<thead>
<tr>
<th>State Code</th>
<th>Section</th>
<th>Drop 1 (psi)</th>
<th>Drop 2 (psi)</th>
<th>Drop 3 (psi)</th>
<th>Drop 4 (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101</td>
<td>34,129</td>
<td>46,835</td>
<td>29,941</td>
<td>45,478</td>
</tr>
<tr>
<td>6</td>
<td>A805</td>
<td>44,302</td>
<td>19,612</td>
<td>44,985</td>
<td>19,533</td>
</tr>
<tr>
<td>6</td>
<td>A806</td>
<td>32,252</td>
<td>23,219</td>
<td>29,063</td>
<td>23,281</td>
</tr>
<tr>
<td>30</td>
<td>0113</td>
<td>10,908</td>
<td>26,856</td>
<td>10,030</td>
<td>26,754</td>
</tr>
<tr>
<td>34</td>
<td>0801</td>
<td>19,853</td>
<td>20,918</td>
<td>19,446</td>
<td>21,150</td>
</tr>
<tr>
<td>34</td>
<td>0802</td>
<td>59,182</td>
<td>43,534</td>
<td>51,674</td>
<td>42,828</td>
</tr>
<tr>
<td>35</td>
<td>0801</td>
<td>25,508</td>
<td>23,061</td>
<td>20,762</td>
<td>22,567</td>
</tr>
<tr>
<td>35</td>
<td>0802</td>
<td>83,664</td>
<td>35,574</td>
<td>74,723</td>
<td>34,993</td>
</tr>
<tr>
<td>46</td>
<td>0804</td>
<td>19,699</td>
<td>16,142</td>
<td>23,137</td>
<td>16,207</td>
</tr>
</tbody>
</table>

Next, the viscoelastic backcalculation was performed. The backcalculated unbound layer moduli for the sections obtained from viscoelastic backcalculation are presented in table 25. For the viscoelastic backcalculation, the GA algorithm in BACKLAVAP used 300 populations in each of the 15 generations, except for sections 10101 and 350801, where a 400 population and 15 generations were used. However, Note that, for backcalculation, the search approximately converged after 10 generation for 300 populations. As shown in table 25, with the exception of section 350802, the static backcalculated base modulus values varied between 10,292 and 64,466 psi, and the subgrade modulus values varied between 17,114 and 44,906 psi. Comparing table 24 and table 25, it can be seen that the elastic and viscoelastic backcalculation predict similar modulus values for the unbound layers.

Table 25. Viscoelastic backcalculation results for LTPP sections.

<table>
<thead>
<tr>
<th>State Code</th>
<th>Section</th>
<th>Drop 1 (psi)</th>
<th>Drop 2 (psi)</th>
<th>Drop 3 (psi)</th>
<th>Drop 4 (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101</td>
<td>28,799</td>
<td>44,906</td>
<td>26,431</td>
<td>44,035</td>
</tr>
<tr>
<td>6</td>
<td>A805</td>
<td>44,377</td>
<td>17,523</td>
<td>44,929</td>
<td>17,114</td>
</tr>
<tr>
<td>6</td>
<td>A806</td>
<td>26,977</td>
<td>21,273</td>
<td>24,441</td>
<td>20,724</td>
</tr>
<tr>
<td>30</td>
<td>0113</td>
<td>10,491</td>
<td>24,972</td>
<td>10,292</td>
<td>26,127</td>
</tr>
<tr>
<td>34</td>
<td>0801</td>
<td>22,337</td>
<td>20,569</td>
<td>20,282</td>
<td>19,901</td>
</tr>
<tr>
<td>34</td>
<td>0802</td>
<td>64,466</td>
<td>41,648</td>
<td>61,782</td>
<td>38,700</td>
</tr>
<tr>
<td>35</td>
<td>0801</td>
<td>22,337</td>
<td>20,569</td>
<td>20,282</td>
<td>19,901</td>
</tr>
<tr>
<td>35</td>
<td>0802</td>
<td>84,339</td>
<td>37,787</td>
<td>84,338</td>
<td>33,631</td>
</tr>
<tr>
<td>46</td>
<td>0804</td>
<td>26,191</td>
<td>14,746</td>
<td>17,922</td>
<td>14,827</td>
</tr>
</tbody>
</table>

Figure 116 shows example backcalculated (and measured) deflection time histories for sections 10101 and 350801, where section 10101 exhibited a better match than section 350801. This was attributed to the stiff layer being close to the 18-ft limit in section 350801.
To validate the backcalculated results, creep compliance data available in the LTPP database were converted into relaxation modulus $E(t)$. Creep data were available in tabulated form at three temperatures—14, 41, and 77 °F—and seven different times—1, 2, 5, 10, 20, 50, and 100 s. Assuming the classical power law function for the creep compliance (figure 117), the available data were fitted separately to each temperature.

$$D(t) = D_1 t^n$$

Figure 116. Graphs. Backcalculated and measured deflection time histories for LTPP sections 10101 and 350801.

Figure 117. Equation. Creep compliance power law.

The associated relaxation modulus was then obtained using the mathematically exact formula given in figure 118.$^{(85)}$
\[E(t)D(T) = \frac{\sin n\pi}{n\pi} \]

Figure 118. Equation. Relaxation modulus and creep compliance relationship.

Where \(D \) and \(n \) are the power function coefficients of \(D(t) \). The discrete relaxation modulus functions were then shifted to obtain a relaxation modulus master curve. Two different relaxation master curves were calculated. The first relaxation modulus master curve approximation was obtained when the time-temperature shift factors determined from the measured creep data were used to develop the relaxation master curve (labeled as “Measured 1”). The second relaxation modulus master curve approximation was obtained when the time-temperature shift factors determined from backcalculation were used to develop the relaxation master curve (labeled as “Measured 2”). This was done because laboratory creep compliance tests are usually not reliable in determining time-temperature superposition properties because a perfect stress-step function is very difficult to achieve in the laboratory and also because the results are contaminated with viscoplasticity, especially at the high temperatures and long creep times. Finally, for comparison, dynamic modulus and phase angle master curves were calculated from the relaxation modulus via interconversion.\(^{(65)}\) For further verification, the estimated dynamic modulus obtained from ANN-based model ANNACAP was also compared. In the present work, all the estimated dynamic modulus master curve and time-temperature shift factors obtained from ANNACAP were based on the \(M_R \) model in ANNACAP.\(^{(97)}\) From the results, it was found that the dynamic modulus curves estimated using the ANNACAP model, especially at higher frequencies, agreed well with the dynamic modulus curves obtained through interconverted creep data. Backcalculated \(E(t) \) and \(a_T(T) \) for the sections are shown in figure 119 to figure 127, and backcalculated dynamic modulus and phase angle are shown in figure 128 to figure 136. It can be seen from the figures that in general, the independent test drops within each section resulted in very similar predicted curves. Note that each FWD drop had a different load level and load history. Although the results were encouraging, backcalculated curves for sections 06A806, 350801, and 350802 showed noticeable disagreement with values derived from creep. However, although the dynamic modulus master curve predicted by ANNACAP matched well at the higher frequencies, it typically predicted higher values at reduced frequencies of less than \(10^{-2} \) Hz.

Figure 119. Graphs. Comparison of measured and backcalculated \(E(t) \) and \(a_T(T) \) for LTPP section 10101.
Figure 120. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 6A805.

Figure 121. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 06A806.

Figure 122. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 300113.
Figure 123. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 340801.

Figure 124. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 340802.

Figure 125. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 350801.
Figure 126. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 350802.

Figure 127. Graphs. Comparison of measured and backcalculated $E(t)$ and $aT(T)$ for LTPP section 460804.

Figure 128. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 10101.
Figure 129. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 6A805.

Figure 130. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 6A806.

Figure 131. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 300113.
Figure 132. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 340801.

Figure 133. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 340802.

Figure 134. Graphs. Comparison of measured and backcalculated $|E^*|$ and phase angle for LTPP section 350801.
As shown in figure 119, for section 10101, the relaxation modulus master curves matched very well when the time-temperature shift factor obtained from backcalculation was used (to shift the discrete relaxation modulus functions obtained through LTPP creep data) to develop a measured master curve (labeled as “Measured 2” in figure 119 (left)). On the other hand, when the time-temperature shift factors were determined from the measured creep data to develop the relaxation master curve (labeled as “Measured 2” in figure 119 (left)), there was a change from the backcalculated curves. The backcalculated time-temperature shift factors were compared with creep and ANNACAP-computed results in figure 119 (right). It can be seen from the figure that the backcalculated time-temperature shift factor functions for all the drops showed a good match over the temperature range of 50 to 131 °F. As shown in figure 128 (left), the backcalculated and measured dynamic modulus curve obtained from Measured 2 also matched well over the entire frequency range. The backcalculated phase angles were compared with measured results in figure 128 (right). The phase angles showed some deviation at frequencies less than 10^{-2} Hz. This was further verified by the dynamic modulus master curve estimated using ANNACAP, which showed a good match over a reduced frequency greater than 10^{-2} Hz.
For section 6A805, the backcalculated relaxation modulus master curves were compared with those measured in figure 120 (left). As shown in the figure, a better match with the backcalculated curves was found when the time-temperature shift factor obtained from the measured creep data was used to develop the measured master curve (labeled as “Measured 1” in figure 120 (left)). On the other hand, when the time-temperature shift determined from the backcalculation data was used to develop the relaxation master curve (labeled as “Measured 2” in figure 120 (left)), there was a change from the backcalculated curves. This disagreement in the time-temperature shift can also be seen in the time-temperature shift factors in figure 120 (right) and dynamic modulus and phase angle curves in figure 129.

Relaxation modulus and time-temperature shift factor curves for section 6A806 were compared in figure 121 (left) and figure 121 (right), respectively. For this section, the measured relaxation modulus master curves predicted higher values compared with the backcalculated results, which increased with reduced time. Both the predicted $a_T(T)$ curve obtained from ANNACAP and backcalculation deviated from the measured results. From figure 130 (left) and figure 130 (right), it can be seen that the deviation in relaxation modulus values with time was reflected in dynamic modulus and phase angle curves at lower frequencies.

Relaxation modulus and time-temperature shift factor curves for section 06A806 were compared in figure 122 (left) and figure 122 (right), respectively. Although the predicted $E(t)$ curve at drop 1 for section 300113 showed some deviation after 86 °F, both the backcalculated $E(t)$ and $a_T(T)$ curves showed good agreement with laboratory results as well as ANNACAP data. Although the dynamic modulus predicted for drop 1 (see figure 131) showed lower values at frequencies greater than 10^2 Hz, an agreement in backcalculated relaxation modulus curves was also reflected in the dynamic modulus and phase angle curves.

Relaxation modulus and time-temperature shift factor curves for sections 340801 and 340802 were compared in figure 123 and figure 124, respectively. Although the predicted $E(t)$ curves for sections 340801 and 340802 showed some deviation at reduced time greater than 10 s, in general, the two curves showed good agreement with the measurement. Comparison of the backcalculated $a_T(T)$ curves for both sections 340801 and 340802 (see figure 123 (right) and figure 124 (right)) show a good agreement with ANNACAP and measured curves over the temperature range of 50 to 104 °F. Further, it can be seen from figure 132 and figure 133 that although the dynamic modulus and phase angle curves predicted by individual drops were the same, deviation at reduced time greater 10^1 s in relaxation modulus was reflected at frequencies greater than 10^{-1} Hz.

Figure 125 shows the backcalculated $E(t)$ and $a_T(T)$ functions for section 350801. Similar results were obtained using drops 1, 3, and 4, whereas $E(t)$ from drop 2 deviated from the other drops. The reason for this deviation may be the relatively low base modulus (20,241 psi) backcalculated using this drop, as seen in table 25. The average of base moduli in drops 1, 3, and 4 was 28,468 psi, which is about 40-percent higher than the above base modulus value of drop 2. As shown in figure 126 (left) and figure 126 (right), comparison of backcalculated $E(t)$ and $a_T(T)$ curves with measured and ANNACAP results for section 350802 showed complete disagreement. As shown in figure 135 (left) and figure 135 (right), similar discrepancies were reflected in the dynamic and phase angle curves.
For section 46804, the backcalculated relaxation modulus master curves were compared with measured results in figure 127 (left). It can be seen from the figure that the relaxation modulus master curves matched very well when the time-temperature shift factor obtained from backcalculation was used to develop the measured master curve (labeled as “Measured 2” in figure 127 (left)). On the other hand, when the time-temperature shift determined from the measured creep data was used to develop the relaxation master curve (labeled as “Measured 1” in figure 127 (left)), the backcalculated modulus values at reduced time less than 10^{-1} s were found to be low. Further, although the predicted \(a_T(T) \) curve for drop 1 showed some deviation after 86 °F, the curves showed good agreement with laboratory as well as ANNACAP data. A comparison of backcalculated and measured dynamic modulus and phase angle for section 460804 is shown in figure 136 (left) and figure 136 (right), respectively. Dynamic modulus values predicted using backcalculation were higher at frequencies greater than 1 Hz, and a better prediction was observed with a frequency greater than 1 Hz.

Note that although measured creep data were used for comparison in the present study, it is not clear from the LTPP database whether \(D(t) \) was measured before or after the FWD tests were conducted.

Backcalculation of Linear Viscoelastic Pavement Properties Using Two-Stage Method

In the previous backcalculation process, viscoelastic and unbound properties were calculated during the same step; however, in this section, a two-stage linear viscoelastic backcalculation scheme is presented. The first stage was to perform linear elastic backcalculation of unbound material properties, which was followed by linear viscoelastic backcalculation (using BACKLAVA/BACKLAVAP) of AC layer viscoelastic properties \(E(t) \) sigmoid coefficients \(c_1, c_2, c_3 \), and \(c_4 \) and shift factor \(a_T(T) \) coefficients \(a_1 \) and \(a_2 \). Details of stage 1 and stage 2 steps are presented in the following sections.

Stage 1: Elastic Backcalculation for Unbound Layer Properties

It is important to verify that the elastic backcalculation (stage 1) gives unbound granular modulus values close to the actual values. If this is verified, the backcalculated \(E_{\text{unbound}} \) values can be fixed in viscoelastic backcalculation (stage 2) and only the six unknowns of the AC layer can be backcalculated. Known and unknown variables in the first and second stages of backcalculation are listed in table 26. In stage 1, elastic backcalculation was performed assuming the AC layer was linear elastic. In the stage 2, viscoelastic backcalculation was performed keeping the unbound granular layer modulus values obtained in the first stage fixed.

To perform the verification, first, various synthetic deflection time histories were obtained by running LAVA on the structure shown in table 27 at various temperature profiles (also shown in table 27). These synthetic deflections were used in stage 1, which computed \(E_{\text{unbound}} \) values. Then these backcalculated \(E_{\text{unbound}} \) values were compared with the original \(E_{\text{unbound}} \) values used in the original layered viscoelastic forward computation.
Table 26. Variables in two-stage linear viscoelastic backcalculation analysis.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Known Parameters</th>
<th>Unknown (Backcalculated) Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thickness and Poisson’s ratio of each layer</td>
<td>E_{ac}, elastic modulus of AC layer</td>
</tr>
<tr>
<td></td>
<td>FWD parameters (contact radius, pressure, locations of the sensors, etc.)</td>
<td>$E_{unbound}^{(i)}$, unbound layer moduli, $i = 1 \ldots N_L$, N_L = number of unbound layers</td>
</tr>
<tr>
<td>2</td>
<td>Thickness and Poisson’s ratio of each layer and FWD parameters</td>
<td>$E(t)$ sigmoid coefficients: $c_1, c_2, c_3,$ and c_4</td>
</tr>
<tr>
<td></td>
<td>$E_{unbound}^{(i)}$, unbound layer moduli backcalculated in stage 1</td>
<td>Shift factor $a_T(T)$ coefficients a_1 and a_2</td>
</tr>
</tbody>
</table>

Table 27. Pavement properties in two-stage linear viscoelastic backcalculation analysis.

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (AC followed by granular layers) (inches)</td>
<td>6, 20, infinite</td>
</tr>
<tr>
<td>Poisson ratio {layer 1, 2, 3…}</td>
<td>0.35, 0.3, 0.45</td>
</tr>
<tr>
<td>$E_{unbound}$ {layer 2, 3…} (psi)</td>
<td>25,560, 11,450</td>
</tr>
<tr>
<td>$E(t)$ sigmoid coefficient {layer 1}</td>
<td>0.841, 3.54, 0.86, -0.515</td>
</tr>
<tr>
<td>$a_T(T)$ shift factor polynomial coefficients {layer 1}</td>
<td>4.42E-04, -1.32E-01</td>
</tr>
<tr>
<td>Total number of sensors</td>
<td>8</td>
</tr>
<tr>
<td>Sensor spacing from the center of load (inches)</td>
<td>0, 8, 12, 18, 24, 36, 48, 60</td>
</tr>
</tbody>
</table>

Figure 137 and figure 138 show the average base and subgrade modulus values obtained by elastic backcalculation of two- and three-step temperature profile, respectively. Error bars in the figures represent the standard deviation of 10 GA runs performed for each temperature set.
The analysis results shown in figure 137 and figure 138 were based on elastic backcalculations that assume a single AC layer. However, in the LAVA forward computations, because of different temperatures with depth, multiple layers of AC (two layers for Figure 137 and three layers for Figure 138 analysis) were used. To investigate whether selection of the number of AC layers affected the results for the elastic backcalculation, the computations were repeated assuming the AC layer consisted of two or three independent elastic layers. Average backcalculated base and subgrade modulus values for two-step and three-step temperature profiles are shown in figure 139 and figure 140, respectively. Comparing figure 137 with figure 139 and figure 138 with figure 140, it can be seen that assuming single or multiple AC layers did not significantly affect backcalculation of base and subgrade elastic modulus. From these analyses (figure 137 through

subg = subgrade.

Figure 137. Graph. Elastic backcalculation of two-step temperature profile FWD data, assuming AC as a single layer in two-stage backcalculation.

Figure 138. Graph. Elastic backcalculation of three-step temperature profile FWD data, assuming AC as a single layer in two-stage backcalculation.
figure 140), it can be concluded that it is possible to first perform elastic backcalculation (stage 1) for the unbound layer properties and fix these in stage 2.

Stage 2: Viscoelastic Backcalculation for \(E(t) \) of AC Layer

After fixing the unbound layer modulus values, the AC layer properties (\(E(t) \) sigmoid coefficients: \(c_1, c_2, c_3, \) and \(c_4 \) and shift factor \(a_3(T) \) coefficients \(a_1 \) and \(a_2 \)) were backcalculated using the viscoelastic backcalculation algorithm (BACKLAVA). Note that for viscoelastic backcalculation, as done earlier, a set of FWD test data at different temperature can be used for backcalculation. This is because even though the temperatures are different, the characteristic
properties of the AC layer \((E(t) \text{ or } |E^*| \text{ master curves})\) remain the same. In this stage, viscoelastic backcalculation was performed on a set of temperature profiles keeping the actual unbound modulus values constant.

Average errors (over reduced times from \(10^{-8}\) to \(10^8\) s) in the \(E(t)\) master curve, obtained from a set of two two-step and two three-step temperature profiles, are shown in figure 141 and figure 142, respectively. It can be observed from figure 141 that, for all the cases of the presented two-step temperature profile sets, average error in backcalculated \(E(t)\) was below 10 to 12 percent except for the FWD test at \{86-68\} and \{104-86\} °F. It can be observed from figure 142 that, for all the cases presented for the three-step temperature profile sets, average error in backcalculated \(E(t)\) was below 5.5 percent except for the FWD test at \{86-77-68\} and \{77-68-59\} °F. Subfigures in each of the figures were included to illustrate how the given percent error relates to the actual \(E(t)\) curves that were being compared. These results indicate that the two-stage algorithm worked well in backcalculating the \(E(t)\) of the AC layer. From figure 141 and figure 142, it can be observed that \(E(t)\) errors obtained in the two-stage backcalculation are less when compared with single-stage backcalculation (figure 120). However, note that results presented in figure 141 and figure 142 are from backcalculation using a set of two FWD test data each obtained at different temperature profiles, whereas results in figure 120 are from backcalculation using single FWD datum. However, the result does indicate that backcalculation using a set of FWD test data each obtained under a different temperature profile may improve the accuracy.

![Figure 141. Graphs. Error in backcalculated E(t) curve from two-step temperature profile FWD test data in two-stage backcalculation.](image-url)
DEVELOPMENT OF A BACKCALCULATION ALGORITHM TO DERIVE VISCOELASTIC PROPERTIES OF AC AND NONLINEAR PROPERTIES OF UNBOUND LAYERS

In the previous sections, the backcalculation scheme and results were developed for a viscoelastic multilayer pavement model consisting of a linear viscoelastic AC layer and linear elastic unbound layers. This section describes a backcalculation scheme (called BACKLAVAN) that was developed for the layered viscoelastic-nonlinear pavement model consisting of a linear viscoelastic AC layer and nonlinear elastic unbound layers. Because of computational limitations of the current version of the LAVAN algorithm, it can take a very long time to compute all the parameters (i.e., c_1, c_2, c_3, and c_4 of the AC and k_1, k_2, and k_3 of the unbound layer) during the backcalculation stage. Therefore, a two-stage backcalculation scheme was proposed to backcalculate viscoelastic as well as nonlinear unbound layer properties of the pavement layers. The two-stage nonlinear backcalculation model was very similar to the two-stage linear backcalculation model discussed in the earlier section. In the nonlinear model, the first stage involved nonlinear elastic backcalculation of the properties (i.e., k_1, k_2, and k_3) of the unbound granular layer. In the second stage, the backcalculated unbound properties (i.e., k_1, k_2, and k_3) were fixed, and the layered viscoelastic-nonlinear model (LAVAN) was used to backcalculate the linear viscoelastic properties of AC layer. Details of known and unknown properties used during these two stages are shown in table 28. Note that the current forward algorithm (LAVAN) can easily be extended to include the nonlinearity of subgrade layers. However, when such forward solution was used in a backcalculation algorithm, computational efficiency decreased significantly. Typically, the effect of surface stress in the subgrade was limited (stress “bulb” effect) and assumption of linear elastic subgrade, with increasing E (due to geostatic stress) with depth may be sufficient for most design purposes.
Table 28. Pavement properties and test inputs in two-stage nonlinear viscoelastic backcalculation.

<table>
<thead>
<tr>
<th>Property</th>
<th>Stage 1: Nonlinear Elastic</th>
<th>Stage 2: Nonlinear Viscoelastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (inches)</td>
<td>Known (AC), known (BASE), infinite (SUBGRADE)</td>
<td>Known (AC), Known (BASE), infinite (SUBGRADE)</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>Known (AC), known (BASE), known (SUBGRADE)</td>
<td>Known (AC), Known (BASE), Known (SUBGRADE)</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>Unknown (k_1, k_2, k_3)</td>
<td>Obtained from stage 1</td>
</tr>
<tr>
<td>E_{subgrade} (psi)</td>
<td>Unknown</td>
<td>Obtained from stage 1</td>
</tr>
<tr>
<td>$E(t)_A$ (psi)</td>
<td>Unknown ($E(t) = \text{constant}$)</td>
<td>Unknown (sigmoid coefficient)</td>
</tr>
</tbody>
</table>

Test Inputs

- Surface loading (psi): Known peak stress
- Known load history
- Surface deflection (inches): Known peak deflection
- Known deflection history

The algorithm was used to backcalculate two HMA mixes, namely, Control and CRTB (for mix properties, refer to table 29), on a 35-ms haversine load (synthetic FWD pulse load). The section properties were as shown in table 29. Stresses at distance $r = 0$ (center of loading) and layer mid-depth were used in calculating unbound base modulus value for both forward calculation and backcalculation of synthetic data.

Table 29. Pavement geometric and material properties in two-stage nonlinear viscoelastic backcalculation.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (inches)</td>
<td>5.9 (AC), 9.84 (base), infinite (subgrade)</td>
</tr>
<tr>
<td>Poisson ratio (ν)</td>
<td>0.35 (AC), 0.4 (base), 0.4 (subgrade)</td>
</tr>
<tr>
<td>Density (pci)</td>
<td>0.0752 (AC), 0.0752 (base), 0.0752 (subgrade)</td>
</tr>
<tr>
<td>Nonlinear E_{base} (psi)</td>
<td>$K_0 = 0.6; k_1 = 3.626; k_2 = 0.5; k_3 = -0.5$</td>
</tr>
<tr>
<td>E_{subgrade} (psi)</td>
<td>10,000</td>
</tr>
<tr>
<td>AC: $E(t)$ sigmoid coefficient (c_i)</td>
<td>Control: 1.598, 2.937, -0.272, -0.562, CRTL: 0.895, 3.411, 0.634, -0.428</td>
</tr>
<tr>
<td>Shift factor coefficients (a_i)</td>
<td>Control: 5.74E-04, -1.55E-01, CRTL: 4.42E-04, -1.32E-01</td>
</tr>
<tr>
<td>Haversine stress 35 ms (psi)</td>
<td>Peak stress = 137.79 psi</td>
</tr>
<tr>
<td>Sensor spacing from the center of load (inches): 0, 8, 12, 18, 24, 36, 48, 60</td>
<td></td>
</tr>
</tbody>
</table>

Stage 1: Nonlinear Elastic Backcalculation

Nonlinear elastic model is based on the assumption that the structure is time independent, with the AC layer assumed to be elastic and the unbound base layer assumed to be a stress-dependent nonlinear material. Each FWD test was generally composed of four independent test drops, where each drop corresponded to a different stress level. Typical ranges of stress levels in each drop are shown in table 30.
Table 30. Typical FWD test load levels.

<table>
<thead>
<tr>
<th>Load Level</th>
<th>Allowable Range for 11.81-inch Diameter Plate (psi)</th>
<th>Used Surface Load (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop 1</td>
<td>49–60</td>
<td>55</td>
</tr>
<tr>
<td>Drop 2</td>
<td>74–96</td>
<td>80</td>
</tr>
<tr>
<td>Drop 3</td>
<td>99–120</td>
<td>110</td>
</tr>
<tr>
<td>Drop 4</td>
<td>132–161</td>
<td>137.8</td>
</tr>
</tbody>
</table>

In stage 1, peak stress and deflection values during all the test drops (drop 1 through 4) were used as input. Peak stress values in each drop (drops 1 through 4) for synthetic haversine FWD loading used in the present analysis were 55, 80, 110, and 138 psi, respectively (refer to table 30). The AC layer modulus and unbound layer properties (k_1, k_2, and k_3) backcalculated from synthetic deflection at different temperatures are shown in figure 143 and figure 144, respectively.

Figure 143. Graph. Nonlinear elastic backcalculated AC modulus for control and CRTB mixes using FWD data at different test temperatures.
As expected, for both control and CRTB mixes, the backcalculated elastic AC modulus values dropped with increase in temperature. Note that the forward solutions for the FWD surface deflections were computed using the LAVAN (layered viscoelastic-nonlinear) algorithm. The horizontal dashed lines in figure 144 show the actual inputs used in the LAVAN forward computation. As shown, the coefficients were close to the actual values but they were generally underpredicted by the backcalculation algorithm.

Stage 2: Nonlinear Viscoelastic Backcalculation

In stage 2, the backcalculated unbound layer properties from stage 1 were used as known fixed values, and the viscoelastic layer properties of the AC layer were obtained using viscoelastic-nonlinear backcalculation. The performance of the backcalculation algorithm was checked for the set of FWD data at temperatures ({50, 68}, {68, 86}, {86, 104}, {104, 122} °F) to determine the effect of different temperature ranges on the backcalculated $E(t)$ values. The backcalculated unbound layer properties obtained in stage 1 at each independent temperature were averaged when a set of temperatures was used in viscoelastic backcalculation. Average error in the backcalculated $E(t)$ master curve (refer to figure 145 and figure 146), (backcalculated in the second step) were calculated using figure 87. The error was calculated over four time ranges: (1) 10^{-5} to 10^{-1} s, (2) 10^{-5} to 10^{-2} s, (3) 10^{-3} to 10^{-5} s, (4) and 10^{-5} to 10^{-3} s. From figure 145 and figure 146, it can be seen that for lower temperatures, the backcalculated $E(t)$ master curve showed some deviation at higher reduced time, whereas, for higher temperatures, the backcalculated $E(t)$ master curve showed some deviation at lower reduced time. The
backcalculated results for the mixes showed good predictability of the $E(t)$ master curve using the two-stage nonlinear backcalculation scheme.

Figure 145. Graphs. Control mix backcalculation results from two-stage nonlinear viscoelastic backcalculation.

Figure 146. Graphs. CRTB mix backcalculation results from two-stage nonlinear viscoelastic backcalculation.

BACKCALCULATION OF LTPP SECTION USING TWO-STAGE NONLINEAR VISCOELASTIC BACKCALCULATION METHOD

The developed two-stage backcalculation algorithm was next used with field data to backcalculate the viscoelastic properties of the LTPP section 0101 from State 1 (Alabama). Section 10101 was tested consecutively in 2004–2005, with the two tests separated by more than 68 °F (refer to table 31 and table 32). Further, because the section was not modified between the two tests, it was selected for the analysis.
Table 31. FWD test data from LTPP section 10101 for 2004–2005.

<table>
<thead>
<tr>
<th>Test Date</th>
<th>Drop Level</th>
<th>Peak Stress (psi)</th>
<th>Deflection (mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/23/2004</td>
<td>1</td>
<td>54.1</td>
<td>5.00 4.25 3.70 2.99 2.44 1.57 1.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>83.5</td>
<td>8.11 6.93 6.10 4.92 4.06 2.56 1.81</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>113.3</td>
<td>11.65 10.00 8.82 7.13 5.87 3.78 2.60</td>
</tr>
<tr>
<td>4/28/2005</td>
<td>1</td>
<td>52.2</td>
<td>8.90 6.46 5.04 3.54 2.48 1.46 0.94</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>80.2</td>
<td>13.98 10.47 8.50 5.83 4.17 2.40 1.73</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>111.2</td>
<td>20.20 15.55 12.91 8.90 6.38 3.74 2.76</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>139.1</td>
<td>26.06 20.28 16.93 11.81 8.39 4.84 3.50</td>
</tr>
</tbody>
</table>

Stage 1: Nonlinear Elastic Backcalculation

In stage 1, peak stress and deflection values during all the test drops in table 31 were used as inputs in nonlinear elastic backcalculation. The backcalculation results in table 32 show that the unbound base properties (k_1, k_2, and k_3) were found to be very close; it also shows that although the AC was affected by the temperature of the test, the effect on the unbound layer was not significant. As expected, the backcalculated elastic AC modulus values dropped with increase in temperature.

Table 32. Nonlinear elastic backcalculation results for LTPP section 10101.

<table>
<thead>
<tr>
<th>Results</th>
<th>FWD Test Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average AC temperature (°F)</td>
<td>2004 95.4 2005</td>
</tr>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>AC modulus (psi)</td>
<td>941,526 227,346</td>
</tr>
<tr>
<td>k_1</td>
<td>17,984 15,972</td>
</tr>
<tr>
<td>k_2</td>
<td>0.16 0.17</td>
</tr>
<tr>
<td>k_3</td>
<td>-0.59 -0.58</td>
</tr>
<tr>
<td>E_{subg}</td>
<td>29,832 26,097</td>
</tr>
</tbody>
</table>

Stage 2: Nonlinear Viscoelastic Backcalculation

Unbound layer material properties may vary depending on environmental factors (seasons). However, because the unbound layer properties obtained for the two tests in stage 1 were found to be very close, they were used in the second stage of the backcalculation without any correction. Stage 2 uses the nonlinear viscoelastic forward algorithm during backcalculation of the $E(t)$ of the AC layer. Note that viscoelastic backcalculation requires the entire time history for backcalculation. For the LTPP section test in year 2004, the entire deflection history was available only for drop 1, hence the backcalculation was performed using only drop 1. Figure 147 and figure 148 show results obtained by two independent backcalculation attempts using data from 2 years of field testing. As shown, a very good match was seen in $E(t)$, and a reasonable match was seen in the shift factor function. The measured viscoelastic properties in the figures were obtained using $D(t)$ data available in the LTPP database (refer to figure 117 and figure 118). As explained earlier (refer to figure 101 through figure 104), the dynamic modulus and phase angle master curve for the backcalculated $E(t)$ were calculated at 66 °F.
SUMMARY AND CONCLUSIONS

This chapter presented two methodologies for determining the $E(t)/|E^*|$ master curve and unbound material properties of in-service pavements. As part of this effort, two multilayered viscoelastic algorithms were developed. The first algorithm, called LAVA/LAVAP (LAVA can consider constant AC layer temperature, and LAVAP can consider a temperature profile for the AC layer), assumed the AC layer was a linear viscoelastic material and the unbound layers was linear elastic. The second algorithm (called LAVAN) also assumed the AC layer was a linear viscoelastic material; however, it can consider the nonlinear (stress-dependent) elastic moduli of the unbound layers. These two models were used to develop two genetic algorithm-based backcalculation algorithms (called BACKLAVA/BACKLAVAP for the linear model and BACKLAVAN for the nonlinear model) for determining $E(t)/|E^*|$ master curve of AC layers and unbound material properties of in-service pavements.
The following conclusions can be drawn regarding the FWD data collection:

- Careful collection of FWD deflection data is crucial. The accuracy of the deflection time history needs to be improved. As a minimum, a highly accurate deflection time history at least until the end of the load pulse duration is needed for $E(t)$ or $|E^*|$ master curve backcalculation. The longer the duration of the deflection time history, the better.

- The temperature of the AC layer needs to be collected during the FWD testing. Preferably, temperatures should be collected at every 2 inches of depth of the AC layer.

- Either a single FWD run on AC with a large temperature gradient or FWDs run at different temperatures can be sufficient to compute the $E(t)/|E^*|$ master curve of AC pavements.

- For backcalculation using multiple FWD test datasets, tests should be conducted at a minimum of two different temperatures, preferably 18 °F or more apart. FWD data collected at a set of temperatures between 68 and 104 °F will maximize the accuracy of the backcalculated $E(t)/|E^*|$ master curve up to less than a 10-percent error.

- For backcalculation using a single FWD test dataset at a known AC temperature profile, the FWD test should be conducted under a temperature variation of preferably ± 9 °F or more.

- An FWD configuration composed of multiple pulses (as presented in the appendix B) will improve the accuracy of the $E(t)$ master curve prediction. However, to obtain the time-temperature shift factor coefficients, either temperature variation with depth needs to be measured (and included in the analysis) or the FWD test (with multiple pulses) needs to be run at different pavement temperatures (e.g., different times of the day).

- Study of the effect of FWD sensor data on backcalculation indicates that the influence of unbound layer properties increases with incorporation of data from farther sensors and with increase in test temperature. Further, it can be concluded that all sensors in the standard FWD configuration are needed for accurate backcalculation of the viscoelastic AC layer and unbound layers.

The following conclusions can be drawn for the backcalculation procedure:

- Viscoelastic properties of AC layer can be obtained using a two-stage scheme. The first stage is an elastic backcalculation to determine unbound layer properties, which is followed by viscoelastic backcalculation of $E(t)$ of the AC layer while keeping the unbound layer properties fixed.

- The examples presented in this study show that, in the case of the presence of considerable dynamic effects, the algorithms (BACKLAVA/BACKLAVAP and BACKLAVAN) should be used with caution. The algorithms presented in this chapter predict the behavior of flexible pavement as a viscoelastic damped structure, assuming it to be massless.
For the GA-based backcalculation procedures, the following population and generation sizes are recommended:

- For the BACKLAVA model, use a set of FWD tests run at different (but constant) AC layer temperatures with a population size of 70 and 15 generations.

- For the BACKLAVAP model, use a single FWD test with a known AC temperature profile and a population size of 300 and 15 generations.

- For the BACKLAVAN (nonlinear) model, use FWD tests run at different (but constant) AC layer temperatures and a population size of 100 and 15 generations.
CHAPTER 5. DYNAMIC VISCOELASTIC TIME-DOMAIN ANALYSIS

The prevalence of dynamic conditions shown in the LTPP database, as discussed in chapter 3 and in the FWD tests conducted on Waverly Road (near Lansing, MI) as part of this project, emphasized the necessity of using a time-domain based dynamic solution that could also model the viscoelastic response of the HMA layer(s). A new forward dynamic viscoelastic time-domain solution was implemented based on the solution developed by Lee.\(^{(98)}\) The new code was written in-house by the research team using the MATLAB® environment and coded for parallel processing to achieve better computational efficiency. This new version of the program is referred to as ViscoWave-II. In addition, a dynamic backcalculation program using ViscoWave-II as its forward engine was developed with GA as its search core. This was done to ensure uniqueness of the backcalculated solution from the search algorithm. This new dynamic backcalculation program with viscoelastic AC layers and damped elastic unbound layers is called DYNABACK-VE.

This chapter first describes in detail the mathematical development of the dynamic viscoelastic time-domain algorithm. It then presents the verification results for the developed algorithm by comparing the simulation results from the developed algorithm to some of the other existing solutions. Later, this chapter describes different backcalculation schemes using the new forward solution developed in this research. Finally, this chapter reports on the backcalculation algorithms tested using theoretically generated deflection time histories and field-measured FWD data collected as part of this project. Note that the current forward solution (ViscoWave-II) can be extended to include nonlinearity of unbound layers. However, when such a forward solution was used in the backcalculation algorithm, computational efficiency decreased significantly and became unreasonable. Therefore, although nonlinearity of unbound layers was considered in chapter 4, it was not investigated in the dynamic analysis for two reasons: (1) unreasonable computational time and (2) lack of development time.

NEW TIME-DOMAIN DYNAMIC (FORWARD) SOLUTION (VISCOWAVE-II)

The time-domain dynamic solution (ViscoWave) developed by Lee was selected as the forward solution.\(^{(98)}\) The theoretical development for the proposed methodology followed steps similar to those of the spectral element method, which uses the discrete transforms for solving the wave equations.\(^{(2,40)}\) However, the new solution used continuous integral transforms (namely Laplace and Hankel transforms) that were more appropriate for transient, nonperiodic signals in the time domain.\(^{(3)}\) The new algorithm code was written in both MATLAB® and C++ and coded for serial and parallel processing with and without multithreading to achieve better computational efficiency. This new version of the program is referred to as ViscoWave-II. The new algorithm represents the master curve using Prony series of 14 elements, not including E_{∞}, instead of the power law used in ViscoWave. The algorithm also was changed so that it accepts the input of temperature profile along the viscoelastic layer. Appendix C describes in detail the mathematical development of the new algorithm.
Implementation and Preliminary Validation of Algorithm

The algorithm was first implemented in MATLAB® so that the computation would run serially. Then, to speed up the computations, two different parallelization schemes were coded and tested using: (1) a local cluster of 8 and 12 cores and (2) a cluster of 60 computers in the High Performance Computing Center (HPCC) network of Michigan State University using the Message Passing Interface (MPI). Subsequently, as is described later in this chapter, the code was rewritten in C++ to speed the computations even further.

The algorithm was used to simulate the behavior of elastic and viscoelastic structures subjected to an FWD loading. In addition, other available solutions were used to simulate the response of the same pavement structures for validation of the ViscoWave-II algorithm. The results of these numerical simulations and the preliminary validation efforts are presented. For viscoelastic simulation, the master curve was fitted using a Prony series of 14 elements, not including E_∞.

Simulation of an Elastic Pavement Structure

The properties of the pavement layers used for the elastic analysis are shown in table 33. The FWD loading was idealized to be a half-sine load distributed over a circular area of with a radius of 6 inches, a peak magnitude of 9,000 lb, and a duration of 26 ms. The surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, and 60 inches from the center of the loading plate.

To verify the results from ViscoWave-II, the elastic simulation was also conducted using the axisymmetric spectral element algorithm LAMDA, which was already verified through a comparison with the 3-D FEA solution. A summary of the theory behind LAMDA is presented in chapter 2. The time histories for the resulting surface deflections are shown in figure 149. The figure indicates that ViscoWave-II and LAMDA showed almost identical results, validating the algorithm behind ViscoWave-II.

Table 33. Layer properties for elastic simulation using LAMDA and ViscoWave-II.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (ksi)</th>
<th>Poisson’s Ratio</th>
<th>Thickness (inches)</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>145</td>
<td>0.35</td>
<td>6</td>
<td>145</td>
</tr>
<tr>
<td>Base</td>
<td>30</td>
<td>0.4</td>
<td>10</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>15</td>
<td>0.45</td>
<td>Infinity</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure 149. Graphs. Comparison of surface deflections of a layered elastic structure using ViscoWave-II and LAMDA.

Simulation of Viscoelastic Pavement Structures

The viscoelastic simulation was carried out for thin, medium, and thick pavement structures. The layer parameters considered/assumed are presented in table 34. The FWD loading used in this simulation is presented in figure 150, and it was assumed to be uniformly distributed over a circular area with a radius of 6 inches, a peak magnitude of 9,000 lb, and a duration of 35 ms. The surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from the center of the loading plate. The viscoelasticity of the AC layer was modeled using a Prony series of the simulated master curve presented in figure 151. The results are shown in figure 152.
Table 34. Layer properties for viscoelastic simulation using ViscoWave-II.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness (inches)</th>
<th>Modulus (ksi)</th>
<th>Poisson Ratio</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (thin)</td>
<td>3</td>
<td>Master Curve</td>
<td>0.35</td>
<td>145</td>
</tr>
<tr>
<td>AC (medium)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC (thick)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>15</td>
<td>25.0</td>
<td>0.40</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>Infinity</td>
<td>7.0</td>
<td>0.45</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 150. Graph. Simulated FWD load.

Figure 151. Graph. AC layer master curve for viscoelastic simulation.
Another viscoelastic simulation was carried out using the same pavement structure that was used for the previous elastic simulation (table 33) with a couple of exceptions. The viscoelasticity of the AC was modeled using two different creep compliance functions: one that represents
low-temperature behavior (figure 153 (left)) and the other representing high-temperature behavior in which the viscoelastic effects are more pronounced (figure 153 (right)). In addition, for each of the creep compliance functions shown in figure 153, the subgrade layer was first modeled to be a half-space (infinite thickness) and then with a shallow bedrock (infinite stiffness) located 10 ft below the pavement surface (figure 154). To verify the results of the viscoelastic simulation from ViscoWave-II, a commercially available FEA package, ADINA, was used to simulate the dynamic response of the viscoelastic pavement subjected to the FWD loading. Figure 155 shows the geometry and the FEA mesh that was used for the analysis. The simulations using ADINA were reported by Lee.\(^\text{98}\) Although the elements in ViscoWave-II assumed that the elements extend to infinity in the horizontal direction and also in the vertical direction for the one-noded element, the FEA simulation was inevitably conducted with a finite geometry. More specifically, the FEA model only extended to 20 ft in the horizontal direction and 41.3 ft in the vertical direction for the simulation of the half-space (figure 155 (top)).

![Figure 153. Graphs. Low- (left) and high- (right) temperature AC creep compliance curves used for ViscoWave-II simulation.](image)

![Figure 154. Diagrams. Schematic of the pavement structure with half-space (left) and bedrock (right).](image)
The FEA mesh was generated in such a way that finer meshes were used near the loaded area, and coarser meshes were used near the geometric boundaries. A total of approximately 8,600 axisymmetric elements, each consisting of 9 nodes, were consistently used for all FEA simulations. The results of the simulations are presented in figure 156 through figure 159. This further verified the implementation of the ViscoWave-II program.
Figure 156. Graphs. Surface deflections of a layered viscoelastic structure with a half-space at low temperature simulated using ViscoWave-II and ADINA.

Figure 157. Graphs. Surface deflections of a layered viscoelastic structure with a bedrock at low temperature simulated using ViscoWave-II and ADINA.
Simulation of Viscoelastic Pavement Structures With Stiff Soils

The analyses in chapter 3 showed a prevalence of dynamic behavior (in the form of free vibrations of deflection sensor time histories) observed in a large pool of LTPP FWD test data. A sensitivity analysis was then conducted to show that the stiff layer condition did not necessarily correspond to the presence of shallow bedrock, which often lies at much greater depths. Instead, the stiff layer condition can manifest anytime the soils below the subgrade layer are stiffer than that subgrade layer. In this section, the research team describes the investigation using an increasing subgrade modulus with depth instead of a single stiff layer at a fixed depth. The rationale behind this analysis was that in reality, soil profiles generally exhibited increasing soil modulus with depth. This can be due to increased confinement with depth for sands or...
consolidation level with depth in clay—these situations are very common in any soil profile. This is a commonly observed behavior in the geotechnical engineering profession.

The viscoelastic simulation was carried out using the pavement structure presented in table 35. The FWD loading used in this simulation was assumed to be uniformly distributed over a circular area with a radius of 6 inches, a peak magnitude of 9,000 lb, and a duration of 35 ms. Two cases of stiff soils modeling were simulated. The subgrade layer was first modeled to be with a shallow stiff layer (2,000,000 psi) located at about 9 ft below the pavement surface (base case scenario), and then with soils having E-values increasing with depth (figure 160). The surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from the center of the loading plate. The viscoelasticity of the AC was modeled using a Prony series of the master curve presented in figure 161 (top). The AC layer was divided into two layers with different temperatures as shown in figure 161 (bottom). In addition, the roadbed soil was divided into 11 sublayers of 50 ft total depth (a 2-ft top layer representing the compacted subgrade layer and 10 sublayers of 4.8 ft each with stiffness increasing as a function of depth). The results of the simulations are presented in figure 162. The results indicate that (1) the deflection amplification was higher when a stiff layer modulus was fixed as a high value as opposed to increasing with depth, and (2) the free vibrations (at the tail of the deflection pulses) were lower when the soil modulus was gradually increasing with depth.

Table 35. Layer properties for viscoelastic simulation of structure with stiff soils.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Thickness (inches)</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>Master curve</td>
<td>0.35</td>
<td>4</td>
<td>145</td>
</tr>
<tr>
<td>Base</td>
<td>20,000</td>
<td>0.4</td>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>13,500</td>
<td>0.45</td>
<td>600</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 160. Diagram. Pavement structure with soils having E-values increasing with depth.
Figure 161. Graph and Diagram. AC layer parameters.
Figure 162. Graphs. Surface deflections of pavement structure with shallow stiff layer and soilds having \(E \)-values increasing with depth.

Computational Efficiency of the New Algorithm

All the simulations previously described in this chapter were run both serially (ViscoWave) and using parallel computing (ViscoWave-II). Note that the efficiency of ViscoWave-II using the MPI parallelization scheme was only an estimate. Because the program was written in MATLAB®, the parallelization relied totally on the MATLAB® distributed computing server, which was known to have problems with long jobs. To overcome this problem, the research team re-implemented the algorithm using a low-level programming language (C++). The new code was tested on a four-core central processing unit (CPU) computer, and the runtime with \(\Delta t = 0.2 \text{ ms} \) was reduced from 9 min (540 s) to 0.5 min (30 s) in serial (CPU) computing. This represented an 18-fold reduction in computational time. Table 36 presents the computation time for each simulation. It is clear that significant computational savings were achieved when using parallel computation. ViscoWave-II is 8 times faster when using 8 cores, 12 times faster when using 12 cores, and 60 times faster when using 60 cores (available only through the HPCC housed in the Michigan State University College of Engineering). Also, the reduction in computation time by using the code written in C++ language and rather than MATLAB® is significant (almost half). Computation time could be further reduced by using a 64-bit machine. The computational efficiency went from 5 min (300 s) to 2.5 min (153 s) in a two-core CPU machine without multithreading.
Table 36. ViscoWave-II computational efficiency.

<table>
<thead>
<tr>
<th>Time Step (ms)</th>
<th>Simulation</th>
<th>Serial Computation¹ (s)</th>
<th>MATLAB®</th>
<th>C++ With Multicore</th>
<th>C++ With Multithreading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 cores²</td>
<td>4 cores³</td>
<td>8 cores³</td>
</tr>
<tr>
<td>0.1</td>
<td>Elastic</td>
<td>1,800</td>
<td>900</td>
<td>450</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Viscoelastic three-layer system</td>
<td>2,100</td>
<td>1,050</td>
<td>525</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Viscoelastic with shallow stiff layer</td>
<td>2,593</td>
<td>1,297</td>
<td>649</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Viscoelastic with soils stiffening with depth</td>
<td>3,342</td>
<td>1,670</td>
<td>836</td>
<td>418</td>
</tr>
<tr>
<td>0.2</td>
<td>Elastic</td>
<td>840</td>
<td>420</td>
<td>210</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Viscoelastic three-layer system</td>
<td>1,080</td>
<td>540</td>
<td>270</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Viscoelastic with shallow stiff layer</td>
<td>1,210</td>
<td>605</td>
<td>304</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Viscoelastic with soils stiffening with depth</td>
<td>1,560</td>
<td>780</td>
<td>390</td>
<td>195</td>
</tr>
</tbody>
</table>

¹Only MATLAB® was used for serial computation.
²Intel core 2 duo CPU with 2.5 GHz (32-bit CPU).
³Intel core 4 duo CPU with 3.5 GHz (32-bit CPU).
⁴Two threads per core.
Dynamic Analysis of Waverly Test Section

As part of this project, FWD tests were conducted at Waverly Road test sections. The FWD was provided by FHWA. Testing included the following:

1. **Morning set**: Four different sections and four different load levels.
2. **Afternoon set**: Four different sections and four different load levels.
3. **Evening set**: Four different sections and four different load levels.

The top AC layer configurations of the four different sections selected for FWD are presented in table 37.

Table 37. Waverly Road pavement section information.

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Layer 1 (Thickness)</th>
<th>Layer 2 (Thickness)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crumb rubber modified asphalt (4E03—CRTB)</td>
<td>Crumb rubber modified asphalt (4E03—CRTB)</td>
</tr>
<tr>
<td></td>
<td>(2 inches)</td>
<td>(2 inches)</td>
</tr>
<tr>
<td>2</td>
<td>Crumb rubber modified asphalt (4E03—CRTB)</td>
<td>Control 4E03</td>
</tr>
<tr>
<td></td>
<td>(2 inches)</td>
<td>(2 inches)</td>
</tr>
<tr>
<td>3</td>
<td>Control 4E03</td>
<td>Control 4E03</td>
</tr>
<tr>
<td></td>
<td>(2 inches)</td>
<td>(2 inches)</td>
</tr>
<tr>
<td>4</td>
<td>Control LVSP<sup>b</sup></td>
<td>Control LVSP<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>(2 inches)</td>
<td>(2 inches)</td>
</tr>
</tbody>
</table>

^a4E03 = MDOT 4E03 Superpave mix

^bLVSP = Low-Volume Superpave mix.

During the test, different loads were dropped, and deflection histories at each load level were measured. To measure deflection histories, sensors were kept at specified spacing measured from the loading unit. The FWD test loading system and deflection sensors are shown in figure 163.

Figure 163. Photos. FWD used during the field tests.

Temperature in pavements typically varies with depth, which may significantly affect pavement response. Holes at depths 2, 4, 6, 8, and 10 inches were drilled to measure temperature. The drills
were made close to the testing location as shown in figure 164. Temperature measurements were taken each time the test was run. The test load levels, deflection sensor locations, temperature profile, and the peak FWD deflection measurements at stations 1 and 3 are given in appendix D. The research team used only stations 1 and 3 because stations 2 and 4 have an asphalt base with a different mix. Use of the latter would cause a problem for the backcalculation algorithm because it was not designed to backcalculate the modulus of more than one AC layer in the pavement structures with different mixes. The same is true if there were multiple subgrade layers with similar modulus values.

Figure 164. Photo. Illustration of temperature measurement at different depths of the pavement.

Comparison of Theoretical and Measured Deflection Time Histories

In this analysis, the ViscoWave-II program was used to analyze the response under the FWD test for the Waverly Road site (stations 1 and 3). The purpose of the exercise was to verify the observations from measurements with theory. To minimize the trials for a reasonable match, the AC dynamic modulus curves from laboratory tests on cores obtained from the field (and presented in appendix D in the section entitled Laboratory-Measured Results for Waverly Road) were used. The corresponding relaxation modulus curves were fitted with appropriate Prony series. The average AC layer temperature measured in the field was used. The depth to the stiff layer was estimated at 8 ft using the Ullidtz analysis procedure (described in chapter 4 in the section entitled Backcalculation of the Viscoelastic Properties of the LTPP Sections Using a Single FWD Test With Known Temperature Profile). Initially, the stiff layer modulus was set at 2 million psi, which was the value used for the static and viscoelastic backcalculation described earlier. The moduli of the unbound layers were varied until a reasonable match was obtained. Table 38 and table 39 show the final pavement stations used in the analysis for stations 1 and 3, respectively. The same pavement cross sections with identical layer properties were then used for running the program LAVA for comparison purposes.
Table 38. Pavement properties used in dynamic analysis of station 1 with ViscoWave-II.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Mass Density (pcf)</th>
<th>Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>Master curve</td>
<td>0.35</td>
<td>145</td>
<td>4</td>
</tr>
<tr>
<td>Base</td>
<td>20,000</td>
<td>0.4</td>
<td>125</td>
<td>6</td>
</tr>
<tr>
<td>Subgrade</td>
<td>13,500</td>
<td>0.45</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Stiff Layer</td>
<td>2,000,000</td>
<td>0.2</td>
<td>125</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

Table 39. Pavement properties used in dynamic analysis of station 3 with ViscoWave-II.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Mass Density (pcf)</th>
<th>Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA</td>
<td>Master curve</td>
<td>0.35</td>
<td>145</td>
<td>4</td>
</tr>
<tr>
<td>Base</td>
<td>15,000</td>
<td>0.4</td>
<td>125</td>
<td>6</td>
</tr>
<tr>
<td>Subgrade</td>
<td>12,500</td>
<td>0.45</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Stiff Layer</td>
<td>2,000,000</td>
<td>0.2</td>
<td>125</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

Figure 165 and figure 166 show the predicted deflection time histories from ViscoWave-II and LAVA together with measured ones for stations 1 and 3, respectively. Figure 167 shows comparisons of ViscoWave-II and LAVA solutions with measured deflections for station 1 in terms of peak deflections (top graph); ratio of predicted to measured deflections (bottom graph).

The following useful observations were made:

- The theoretical predictions from ViscoWave-II show very good agreement with the measured deflection time histories. In particular, it is worthwhile noting that both theory and measurement show very clearly that the most distant sensors (6 through 8) indicated a slight rebound at the beginning of the signal (inside the dashed circle). The fact that both theory and measurement showed the same behavior was proof that these observations were physically real. While this might be construed as a detail and may not be ultimately critical in the practical implications of the backcalculation exercise, it is an important fact that reinforces the belief that (1) a comprehensive model that takes into account viscoelasticity of the AC layer, damping in the unbound layers, and dynamics in terms of inertial and wave propagation effects, can explain the measured data with all its complexities; and (2) the FWD sensor measurements appear to be quite reliable in showing the physical behavior for most of the time range, with the exception of the drift problems at the tail of the records (previously mentioned in chapter 3).

- The layered viscoelastic solution (LAVA program) cannot simulate the true deflection time histories because it cannot account for inertial and wave propagation effects. As such, it cannot predict the time delays in the response, the initial rebounds of the farther sensors, and the free vibrations after the load is applied. Also, the viscoelastic solution mostly follows the shape of the applied load (typical waviness observed in the Dynatest® load signal). In terms of peak response, the solution will significantly underestimate the deflections when a stiff layer is presented. This is because it cannot account for the dynamic amplification due to the wave energy trapped in the unbound layers when a stiff
layer condition exists. In fact, it will further reduce the deflection because the stiff layer has a very high modulus (similar to a static solution). Therefore, in the context of backcalculation when a stiff layer condition exists, using the layered viscoelastic program as a forward solution will force the backcalculation algorithm to compensate by either overestimating the depth to the stiff layer, or if the user fixes this depth to a more reasonable estimate it will underestimate layer moduli.

Figure 165. Graphs. Comparison of deflection response from ViscoWave-II and LAVA predictions for station 1.
Figure 166. Graphs. Comparison of deflection response from ViscoWave-II and LAVA predictions for station 3.
Sensitivity Analysis on the Effect of Stiff Layer Modulus Value

Because of the prevalence of dynamic behavior (in the form of free vibrations of deflection sensor time histories) observed in the large sample of LTPP FWD test data (as shown in chapter 3 of this report), it was hypothesized that in the great majority of the cases, the stiff layer condition may not correspond to the presence of shallow bedrock. Such bedrock would be highly unlikely given that it typically lies at much greater depths. Instead, the stiff layer condition could manifest anytime the soils below the subgrade layer are stiffer than the subgrade layer itself. This could be caused by increased confinement with depth, overconsolidation, or existence of a shallow groundwater table for example; these situations are very common in any soil profile. This would explain the high percentage of sections from the LTPP database that showed dynamic behavior.

Given that argument, the research team decided to conduct a small sensitivity analysis on the value of the stiff layer modulus. This value was reduced from the initial value of 2 million psi, first in 200,000-psi increments (i.e., 1.8 million, 1.6 million psi, etc.), then in 20,000-psi
increments below 200,000 psi (i.e., 180,000, 160,000 psi, etc.), and finally used a minimum value of 10,000 psi, which was lower than the subgrade modulus (taken as 13,500 psi).

Figure 168 shows example deflection time histories with the stiff layer modulus decreasing from 2 million to 10,000 psi. The figure shows that the sensors close to the load were mostly not affected by the stiff layer modulus value while those farther from the load were. Free vibrations, while decreasing in magnitude and delayed further, will occur even at low values of the stiff layer modulus, as long as this value is higher that the subgrade modulus value.

Figure 169 and figure 170 summarize the sensitivity analysis results for all sensors in terms of (1) the ratio of predicted to measured peak deflection values and (2) the amplification factor relative to the base case of 2 million psi. The figures show that only the farther sensors (6 through 8) were affected by the stiff layer modulus value and that the effect became visible when the stiff layer modulus was 200,000 psi or lower (compared with the base case of 2 million psi). The effect is significant for the farther sensors, with up to a 50-percent error in the ratio of predicted to measured value and up to a factor of 2 for the amplification ratio, for the lower stiff layer modulus values. Even though these observations used one structure, they could be generalized.

Summary of Findings From Dynamic Analyses

The results of the above analyses clearly showed the superiority of a fully dynamic solution with a viscoelastic AC layer modulus in predicting deflection responses that were in line with the physical reality, as evidenced by the close match in the details of the deflection time histories between theory and observation.
Figure 168. Graphs. Example time histories from ViscoWave-II with decreasing stiff layer modulus and measured sensor deflections for station 1.
Figure 169. Graph. Effect of stiff layer modulus on ratio of predicted to measured sensor deflections for station 1.

Figure 170. Graph. Effect of stiff layer modulus on predicted sensor deflection amplification for station 1.
BACKCALCULATION USING GA

As discussed in chapter 4, one of the problems with gradient-based methods is that the multidimensional surface represented by the objective function may have many local minima. As a result, the program may converge to different solutions for different sets of seed moduli, as is discussed later in this chapter. The key disadvantages of gradient-based methods are precisely the strengths of the other two categories. In principle, GAs and direct search methods find a global optimum. The key disadvantage is that they can converge very slowly, especially near an optimum, requiring numerous calls to the dynamic forward solution. A second weakness is that determining a termination criterion is not straightforward.

These strengths and weaknesses are considered in choosing an optimization algorithm. A key tradeoff is between the possibility of converging to a local minimum using gradient-based methods and the high computational cost of the GA. The more frequently the algorithm is to be used, the more beneficial the gradient-based algorithm becomes. Therefore, the research team decided to use a hybrid approach—use GA to obtain a good set of seed values that would then be used by the modified LM gradient-based algorithm to backcalculate the master curve of HMA layers and the layer properties for base and subgrade.

The forward solution used a Prony series with 14 coefficients to model the master curve in the Laplace domain. Considering the Prony coefficients as unknown parameters during the backcalculation increased the search domain; thus, it may take a longer time to converge. Therefore, during the backcalculation, Prony series was first fitted to a sigmoidal function using nonlinear least squares optimization. The equation shown in figure 171 presents the fitting steps. Using this approach, the research team had 6 unknowns instead of 17 for the master curve. Table 40 identifies the type of variables for the backcalculation. The equation shown in figure 172 presents the formulation of the optimization problem.

\begin{align*}
\text{Step 1: } & \log(E(t_n)) = c_1 + c_2 \frac{1}{1 + e^{-c_3 - c_4 \log(t_n)}}, \quad n = 1, \ldots, N \\
\text{Step 2: } & \log(t_n) = \log(t) - \log(aT) \\
\text{Step 3: } & \log(aT) = a_1 \times T^2 + a_2 \times T + a_3 \\
\text{Step 4: } & E(t_n) - E_\infty = \sum_{m=1}^{14} e^{\left(-\frac{t_n}{\tau_m}\right)} E_m, \quad n = 1, \ldots, N \\
\{A\} & \begin{bmatrix} B \end{bmatrix} \{C\} \\
\text{Step 5: minimize } & \|B\{C\} - \{A\}\| \quad \text{such that } \{C\} \geq 0
\end{align*}

Figure 171. Equation. Fitting steps of the Prony series.

Table 40. Known and unknown parameters.

<table>
<thead>
<tr>
<th>Known Parameters</th>
<th>Backcalculated Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of each layer</td>
<td>Master curve coefficients (c_1, c_2, c_3, c_4)</td>
</tr>
<tr>
<td>Poisson’s ratio of each layer</td>
<td>Master curve shift factors (a_1, a_2)</td>
</tr>
<tr>
<td>FWD load and setup</td>
<td>Moduli of base, subbase, subgrade, stiff layer</td>
</tr>
<tr>
<td>Mass density of each layer</td>
<td>Thickness of subgrade if stiff layer exists</td>
</tr>
</tbody>
</table>
Figure 172. Equation. Optimization problem.

Objective function

\[E_r = \sum_{k=1}^{m} 100 \sum_{i=1}^{n} \left[\frac{d_i^k - d_o^k}{d_{\text{max}}^k} \right] \]

Bound constraints

\[
\begin{align*}
 c_1^l &\leq c_1 &\leq c_1^u \\
 c_2^l &\leq c_2 &\leq c_2^u \\
 c_3^l &\leq c_3 &\leq c_3^u \\
 c_4^l &\leq c_4 &\leq c_4^u \\
 a_1^l &\leq a_1 &\leq a_1^u \\
 a_2^l &\leq a_2 &\leq a_2^u \\
 a_3^l &\leq a_3 &\leq a_3^u \\
 E_b^l &\leq E_b &\leq E_b^u \\
 E_{sg}^l &\leq E_{sg} &\leq E_{sg}^u
\end{align*}
\]

Where:

- \(m \) = Number of sensors
- \(d_i \) = Input deflection information obtained from field at sensor \(k \).
- \(d_o^k \) = Output deflection information obtained from forward analysis at sensor \(k \).
- \(n \) = Total number of deflection data points recorded by a sensor.
- \(c_i \) = Sigmoid coefficients.
- \(E_{base} \) and \(E_{sg} \) = Base and subgrade moduli.
- \(a_i \) = Shift factor polynomial coefficients.

The superscript \(l \) represents the lower limit, and \(u \) superscript represents the upper limit. Table 41 presents bounds of the variables used as input to the backcalculation algorithm.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>0.045</td>
<td>2.155</td>
</tr>
<tr>
<td>(c_2)</td>
<td>1.800</td>
<td>4.400</td>
</tr>
<tr>
<td>(c_3)</td>
<td>-0.523</td>
<td>1.025</td>
</tr>
<tr>
<td>(c_4)</td>
<td>-0.845</td>
<td>-0.380</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-0.00053801</td>
<td>0.00113610</td>
</tr>
<tr>
<td>(a_2)</td>
<td>-0.159792</td>
<td>-0.077</td>
</tr>
<tr>
<td>(a_3)</td>
<td>1.656202</td>
<td>2.763</td>
</tr>
<tr>
<td>(E_{base}) (psi)</td>
<td>10,000</td>
<td>30,000</td>
</tr>
<tr>
<td>(E_{subgrade}) (psi)</td>
<td>5,000</td>
<td>20,000</td>
</tr>
</tbody>
</table>
Backcalculation Using Simulated Deflections

This section describes the results of backcalculation using simulated deflections.

Sensitivity Analysis: Sensitivity analysis was conducted to assess the optimal number of populations and generations to be used for backcalculation. The pavement structure used in that sensitivity analysis is presented in Table 42. The population-generation combinations used were 30/15, 70/15, 100/15, 200/15, and 300/15. Figure 173 and Table 43 summarize the results of the backcalculation. Based on the sensitivity analysis, the optimal population/generation combination was 200/15. Therefore, all the following backcalculations were performed using a population size of 200 with 15 generations. Because the optimal numbers of populations and generations were affected by the number of unknown variables and how smooth the objective function was, the recommendation to use a population size of 200 with 15 generations held true for all cases with 10 or fewer unknowns.

Table 42. Layer properties for the simulated pavement structure.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Thickness (inches)</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>Master curve (figure 161 (top)) (86.9 °F, 79.3 °F)</td>
<td>0.35</td>
<td>4</td>
<td>145</td>
</tr>
<tr>
<td>Base</td>
<td>20,000</td>
<td>0.4</td>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>13,500</td>
<td>0.45</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>Stiff layer</td>
<td>2,000,000</td>
<td>0.25</td>
<td>Infinity</td>
<td>125</td>
</tr>
</tbody>
</table>

Figure 173. Graph. Backcalculated master curve for different population-generation combinations optimization problem.
Table 43. Backcalculated layer moduli.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (psi)</th>
<th>Backcalculated Moduli (psi) for Various Population Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Base</td>
<td>20,000</td>
<td>13,857</td>
</tr>
<tr>
<td>Subgrade</td>
<td>13500</td>
<td>6,886</td>
</tr>
<tr>
<td>Stiff layer</td>
<td>2,000,000</td>
<td>1,381,454</td>
</tr>
</tbody>
</table>

Backcalculation of Layer Moduli Only: The viscoelastic simulation was carried out using the same pavement structure presented in table 42. The FWD loading used in all simulations was assumed to be uniformly distributed over a circular area with a radius of 6 inches, a peak magnitude of 9,000 lb, and a duration of 35 ms (same pulse as figure 150). Two cases of stiff soils modeling were simulated. The subgrade layer was first modeled to be with a shallow stiff layer (2 million psi) located at about 8 ft below the pavement surface (figure 174 (left)) and then with subgrade having E-values increasing with depth (figure 174 (right)). The surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from the center of the loading plate. The viscoelasticity of the AC was modeled using a Prony series of the master curve presented in figure 175 (left). The AC layer was divided into two layers with different temperatures as shown in figure 175 (right). In the backcalculation, the two AC layers were considered to have the same master curve coefficients but different shift factors (computed using the same shift factor coefficients and different temperatures). In addition, for the case where E-values are increasing with depth (figure 174 (right)), the subgrade layer was divided into 11 sublayers of 50-ft total depth (a 2-ft top layer representing the compacted subgrade layer and 10 sublayers of 4.8 ft each with stiffness increasing as a function of depth). The semi-infinite layer in the case where the subgrade had E-values increasing with depth was a half-space. Therefore, the modulus of the half-space was the same as the lowest sublayer.

![Figure 174. Diagrams. Schematic of the pavement structure with stiff soils.](image-url)
Table 44 shows the viscoelastic dynamic backcalculation results of the pavement structure presented in Table 42. Figure 176 shows the errors in deflection time histories. Figure 177 shows the backcalculated relaxation modulus master curve and the corresponding error. Note that the symbols in the plot show the useful range of reduced time for the temperatures in the upper and lower halves of the AC layer. The results were quite reasonable, except for the tail end of the $E(t)$ curve (longer reduced time range). Note that the next section of this chapter describes the results when the research team ran a second backcalculation using the best 100 populations from run 1 as seed values in run 2—the backcalculation of the AC relaxation modulus curve greatly improved.

Table 44. Backcalculated layer moduli.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simulation</th>
<th>Backcalculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1.271</td>
<td>1.55083</td>
</tr>
<tr>
<td>c_2</td>
<td>2.883</td>
<td>2.64494</td>
</tr>
<tr>
<td>c_3</td>
<td>0.22</td>
<td>0.04296</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.497</td>
<td>-0.441535</td>
</tr>
<tr>
<td>a_1</td>
<td>0.000442</td>
<td>0.000483158</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.132</td>
<td>-0.139815</td>
</tr>
<tr>
<td>a_3</td>
<td>2.34</td>
<td>2.68989</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>20,000</td>
<td>20,246</td>
</tr>
<tr>
<td>$E_{subgrade}$ (psi)</td>
<td>13,500</td>
<td>13,559</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>2,000,000</td>
<td>1,591,450</td>
</tr>
</tbody>
</table>
Figure 176. Graphs. Error in the backcalculated time histories by sensor—backcalculation of layer moduli only.
Backcalculation of Layer Moduli and Subgrade Thickness: This section presents the results of the team’s effort to backcalculate the depth to the stiff layer in addition to the stiff layer modulus. The previous profile was used with similar input parameters with the exception of the subgrade thickness, which was unknown and needed to be backcalculated. The backcalculation algorithm was run twice. The final population of the last run was input as the initial population for the second run. Table 45 shows the viscoelastic dynamic backcalculation results. Figure 178 shows the percent error of the deflection time histories. Figure 179 shows the backcalculated relaxation modulus master curves and the corresponding percent error. It was clear that running a second backcalculation using the results from the first run as seed populations led to a much improved backcalculated AC modulus master curve. Note that the curves with circular and
triangular symbols in figure 177 show the useful range of reduced time for the temperatures in the upper and lower halves of the AC layer.

Table 45. Backcalculated layer moduli and subgrade thickness.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simulation</th>
<th>Backcalculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1.271</td>
<td>1.304318</td>
</tr>
<tr>
<td>c_2</td>
<td>2.883</td>
<td>2.950314</td>
</tr>
<tr>
<td>c_3</td>
<td>0.22</td>
<td>0.107608</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.497</td>
<td>-0.40963</td>
</tr>
<tr>
<td>a_1</td>
<td>0.000442</td>
<td>0.000489292</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.132</td>
<td>-0.15225078</td>
</tr>
<tr>
<td>a_3</td>
<td>2.34</td>
<td>2.948735039</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>20,000</td>
<td>20,568</td>
</tr>
<tr>
<td>E_{subgrade} (psi)</td>
<td>13,500</td>
<td>13,372</td>
</tr>
<tr>
<td>h_{subgrade} (inches)</td>
<td>96</td>
<td>95.5</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>2,000,000</td>
<td>2,281,374</td>
</tr>
</tbody>
</table>

Figure 178. Graphs. Error in the backcalculated time histories by sensor—backcalculation of layer moduli and subgrade thickness.
Figure 179. Graphs. Backcalculation results of the AC master curve—backcalculation of layer moduli and subgrade thickness.

Backcalculation Using Field Data

This section provides an evaluation of the new dynamic viscoelastic backcalculation program DYNABACK-VE using the field FWD test results from the Waverly Road tests conducted as
part of this study and from two LTPP sections. As discussed previously, the forward solution
used a Prony series with 14 coefficients to model the master curve in the Laplace domain. To
reduce the number of backcalculated variables, it was decided to reduce the number of
coefficients for the shift factor by one using a simple mathematical transformation.\(^{(}99)\) The
equations in figure 180 show the old and new equations for shift factor. Figure 180 shows the
formulation of the optimization problem.

Old shift factor: \(\log(aT) = a_1 \times T^2 + a_2 \times T + a_3 \)
New shift factor: \(\log(aT) = a_1 \times (T - T_{ref})^2 + a_2 \times (T - T_{ref}) \)

Figure 180. Equation. New and old shift factor equations.

For figure 181, it was decided to constraint the sum of the first two coefficients of the master
curve instead of constraining the two coefficients to reduce the search domain as explained in
chapter 4.

\[
\begin{align*}
\text{Objective function} \\
Er &= \sum_{k=1}^{m} \sum_{i=1}^{n} \frac{d_{i}^{k} - d_{o}^{k}}{d_{max}^{k}}
\end{align*}
\]

\[
\begin{align*}
\text{Bound constraints} \\
C_{l} &\leq C = c_{1} + c_{2} \leq C_{u} \\
c_{3} &\leq c_{3} \leq c_{3}^{u} \\
c_{4} &\leq c_{4} \leq c_{4}^{u} \\
a_{1}^{l} &\leq a_{1} \leq a_{1}^{u} \\
a_{2}^{l} &\leq a_{2} \leq a_{2}^{u} \\
E_{b}^{l} &\leq E_{b} \leq E_{b}^{u} \\
E_{sg}^{l} &\leq E_{sg} \leq E_{sg}^{u}
\end{align*}
\]

Figure 181. Equation. New optimization problem.

Where:

\(m \) = the number of sensors.
\(d_{i} \) = the input deflection information obtained from the field at sensor \(k \)
\(d_{o}^{k} \) = the output deflection information obtained from forward analysis at sensor \(k \).
\(n \) = the total number of deflection data points recorded by a sensor.
\(c_{j} \) = the sigmoid coefficients.
\(E_{b} \) and \(E_{sg} \) = base and subgrade modulus.
\(a_{i} \) = the shift factor polynomial coefficients.

The superscript \(l \) represents the lower limit, and \(u \) represents the upper limit. Table 46 presents
the bounds of the variables used as input to the backcalculation algorithm.
Table 46. Bounds of the variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>0.045</td>
<td>2.155</td>
</tr>
<tr>
<td>$c_1 + c_2$</td>
<td>3.239</td>
<td>4.535</td>
</tr>
<tr>
<td>c_3</td>
<td>-0.523</td>
<td>1.025</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.845</td>
<td>-0.380</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.000536829</td>
<td>0.00113638</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.140735</td>
<td>-0.097358</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>10,000</td>
<td>30,000</td>
</tr>
<tr>
<td>$E_{subgrade}$ (psi)</td>
<td>5,000</td>
<td>20,000</td>
</tr>
</tbody>
</table>

Waverly Road: The pavement structure used in the backcalculation is presented in Table 47. The AC layer was assumed to have a two-step piecewise temperature profile. Figure 182 shows the two-step temperature profile assumed along the AC layer at station 1 (based on measurement in the field). The field data collected for drop 2 section 1 at 9 a.m. and 1 p.m. were used as input to the GA algorithm in DYNABACK-VE to search for the layer moduli as well as the subgrade thickness. Figure 183 shows the collected data. Using the morning and afternoon data together increased over-determinacy of the problem. However, trying to fit more data at the same time using GA would require increasing the variability in the initial population of the GA; which would mean increasing the number of populations and generations. This would have led to an increase in the computational time of the backcalculation algorithm. Therefore, the research team decided to use only the morning test data in the first run to obtain a good initial population; then the afternoon test data was input to the GA in DYNABACK-VE during the second run, using the final population of the first run, taking advantage of elitism.

Table 47. Known layer properties for Waverly Road.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Thickness (inches)</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>—</td>
<td>0.35</td>
<td>4</td>
<td>145</td>
</tr>
<tr>
<td>Base</td>
<td>—</td>
<td>0.4</td>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>—</td>
<td>0.45</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Stiff layer</td>
<td>—</td>
<td>0.25</td>
<td>Infinity</td>
<td>125</td>
</tr>
</tbody>
</table>

— Indicates unknown value.

Figure 182. Diagrams. Waverly Road section 1 temperature profile at 9 a.m. and 1 p.m.
Figure 183. Graphs. Waverly Road FWD time histories for section 1 collected at 9 a.m. and 1 p.m.

Table 48 shows the backcalculated layer parameters from the DYNABACK-VE backcalculation. The results were very promising, indicating good stability and realistic values. The following two interesting facts are worth noting:

- The depth to the stiff layer was estimated at about 8 ft using DYNABACK-VE. This agreed with the predictions using the Ullidtz method, which suggested presence of a shallow stiff layer at about 8 to 10 ft.\(^{(94)}\)

- The backcalculated stiff layer modulus was 795,304 psi, which was much closer to what would be expected from stiff soils. Also, the results from the described in the Sensitivity Analysis section earlier in this chapter showed that the amplification on the peak deflection was not sensitive to a stiff layer with modulus higher than 200,000 psi.

Table 48. Backcalculated layer parameters for drop 1 section 1—Waverly Road.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory Test/ Estimation</th>
<th>Backcalculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>1.482</td>
<td>1.58391</td>
</tr>
<tr>
<td>(c_2)</td>
<td>2.642</td>
<td>2.57049</td>
</tr>
<tr>
<td>(c_3)</td>
<td>0.417</td>
<td>0.3894</td>
</tr>
<tr>
<td>(c_4)</td>
<td>-0.569</td>
<td>-0.55199</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-6.85E-05</td>
<td>0.000916</td>
</tr>
<tr>
<td>(a_2)</td>
<td>-1.06E-01</td>
<td>-0.1126</td>
</tr>
<tr>
<td>(E_{\text{base}}) (psi)</td>
<td>20,000</td>
<td>20,482</td>
</tr>
<tr>
<td>(E_{\text{subgrade}}) (psi)</td>
<td>13,500</td>
<td>12,987</td>
</tr>
<tr>
<td>(h_{\text{subgrade}}) (inches)</td>
<td>96 (1/r method)</td>
<td>98.7</td>
</tr>
<tr>
<td>(E_{\text{stiff}}) (psi)</td>
<td>—</td>
<td>795,304</td>
</tr>
</tbody>
</table>

— Indicates value was not measured.
Figure 184 shows the backcalculated relaxation modulus master curve and the measured laboratory master curve from laboratory testing on field cores. Figure 185 shows the corresponding percent error. Figure 186 and figure 187 show the measured and predicted deflection time histories and the corresponding percent errors for the 1 p.m. test, respectively. The backcalculation results were very good. Running a second backcalculation using the results from the first run as seed populations led to a much improved backcalculated AC modulus master curve.

Figure 184. Graph. Backcalculated master curve for Waverly Road.

Figure 185. Graph. Error in the backcalculated master curve for Waverly Road.
Figure 186. Graphs. Predicted versus measured deflection time histories by sensor for 1 p.m. test for Waverly Road.
The significant practical implications from these results are the following:

- Conducting two FWD tests in the field with a pavement temperature difference of 18 to 27 °F between the two tests (in this case one test at 9 a.m. at about 59 to 61°F and a second test at 1 p.m. at about 79 to 86 °F) seemed to be sufficient to backcalculate the damaged AC modulus master curve accurately, without the need to change the FWD load pulse duration; this was possible by conducting two successive dynamic backcalculation runs, where the results from run 1 were used as seed populations for the GA in the second run.

- Inaccuracies at the tail end of the sensor deflection time histories did not appear to compromise the ability of the dynamic viscoelastic backcalculation program DYNABACK-VE to accurately prediction all in situ layer properties, including the damaged AC modulus master curve, the depth to the stiff layer, and the stiff layer modulus.

LTPP Section 350801 Station 1: The Strategic Highway Research Program ID of the selected section is 0801 in New Mexico (State 35). The section was selected because the deflection time histories showed free vibrations at the end of the load pulse, suggesting that there were dynamic effects (the existence of stiff layer) and that the LTPP database included creep data for these sites to allow verification of the backcalculated results. In this analysis, the research team sought to backcalculate the depth to the stiff layer in addition to the stiff layer modulus using DYNABACK-VE. The backcalculation algorithm was run in two steps. The final population of the first step was entered as the initial population to the second step. Table 49 shows the pavement structure of section 350801. The AC layer was assumed to have a two-step piecewise temperature profile, as shown in figure 188. The measured deflection time histories are presented in figure 189. The FWD deflection data obtained from section 350801 showed some waviness at the end of the load pulse.
suggestions the existence of a stiff layer. Table 50 shows the backcalculated layer parameters from the DYNABACK-VE backcalculation after all the steps of the algorithm. The results, as shown in figure 190 through figure 192 were very promising, indicating good stability and realistic values.

Table 49. Known layer properties for LTPP section 350801.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Thickness (inches)</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>—</td>
<td>0.35</td>
<td>4.2</td>
<td>145</td>
</tr>
<tr>
<td>Base</td>
<td>—</td>
<td>0.4</td>
<td>9.7</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>—</td>
<td>0.45</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Stiff layer</td>
<td>—</td>
<td>0.25</td>
<td>Infinity</td>
<td>125</td>
</tr>
</tbody>
</table>

— Indicates unknown value.

Figure 188. Diagram. Temperature profile for LTPP section 350801.

Figure 189. Graph. Measured FWD time histories for LTPP section 350801.
Table 50. Backcalculated layer parameters for drop 1, station 1—LTPP section 350801.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Backcalculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1.09999</td>
</tr>
<tr>
<td>c_2</td>
<td>3.401333</td>
</tr>
<tr>
<td>c_3</td>
<td>1.024748</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.50124</td>
</tr>
<tr>
<td>a_1</td>
<td>0.001096</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.0926</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>20,822.38</td>
</tr>
<tr>
<td>$E_{subgrade}$ (psi)</td>
<td>18,857.25</td>
</tr>
<tr>
<td>$h_{subgrade}$ (inches)</td>
<td>193.32</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>236,363.82</td>
</tr>
</tbody>
</table>

Figure 190. Graph. Backcalculation results of the AC master curve for LTPP section 350801.
Figure 191. Graph. Error in the backcalculated master curve for LTPP section 350801.

Figure 192. Graphs. Error in the backcalculated time histories by sensor for LTPP section 350801.
The following two interesting observations are worth noting:

- The depth to the stiff layer is estimated at about 16 ft; this agrees with the predictions from Ullidtz method, which suggested presence of a shallow stiff layer at about 15 ft.\(^{(94)}\)

- The backcalculated stiff layer modulus from run 2 is 236,363 psi, which is much closer to what would be expected from stiff soils. Figure 190 shows the backcalculated relaxation modulus master curves. Figure 191 shows the corresponding percent error. It is clear that running a second backcalculation using the results from the first run as seed populations led to a much improved backcalculated AC modulus master curve. Figure 192 and figure 193 show the measured and predicted deflection time histories and the corresponding percent error, respectively. The backcalculation results are good, although relatively large errors are seen in the most distant deflection sensors. Running a second backcalculation using the results from the first run as seed populations leads to a much improved backcalculated AC modulus master curve.
Figure 193. Graphs. Backcalculated versus measured deflection time histories by sensor for LTPP section 350801, station 1.

LTPP Section 350801 Station 8: The deflection time histories of section 350801 station 8 also showed free vibrations at the end of the load pulse. The approach described in the previous section was used to backcalculate the master AC master curve, the moduli of the unbound layers,
and the depth to the stiff layer. Table 49 shows the pavement structure of section 350801. For this section, the AC layer was assumed to have a three-step piecewise temperature profile, as shown in figure 194. The measured deflection time histories are presented in figure 195.

Table 51 shows the backcalculated layer parameters from the DYNABACK-VE backcalculation. Recall that the algorithm is minimizing the error on $(c_1 + c_2)$. Therefore, the evaluation of the backcalculation algorithm should be based on $(c_1 + c_2)$. The results were very promising, indicating good stability and realistic values. Figure 196 shows the backcalculated relaxation modulus master curves. Figure 197 shows the corresponding percent error. It was clear that running a second backcalculation using the results from the first run as seed populations led to a much improved backcalculated AC modulus master curve. Figure 198 shows the measured and predicted deflection time histories. The backcalculation results were good, although relatively large errors were seen in the farther deflection sensors. The error results were good compared with the results presented in the previous section for station 1. The backcalculation results for station 8 were significantly better than those for station 1. The error was less than 20 percent for reduced times up to 104 s (laboratory value of 20,000 psi versus backcalculated value of 24,000 psi at 104 s). Figure 198 shows very good agreement between the measured and predicted deflection histories for station 8, although there was a larger time shift for sensors 6 through 8. It is believed that this could be due to a synchronization problem between the load and deflection measurements.

To summarize, the backcalculation results were very promising, indicating good stability and realistic values. The backcalculation results for the LTPP section, while reasonable, were not as good as those for the Waverly Road section because only one temperature profile was available; using the morning and afternoon data in the Waverly test increased the over-determinacy of the optimization problem.

Figure 194. Diagram. Temperature profile for LTPP section 350801.
Figure 195. Graphs. Measured FWD load and deflection time histories for LTPP section 350801.

Table 51. Backcalculated layer parameters for drop 1 station 8 for LTPP section 350801.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory</th>
<th>Backcalculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>0.120</td>
<td>0.804351</td>
</tr>
<tr>
<td>c_2</td>
<td>4.049</td>
<td>3.350811</td>
</tr>
<tr>
<td>c_3</td>
<td>1.112</td>
<td>0.905003</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.423</td>
<td>-0.48508</td>
</tr>
<tr>
<td>a_1</td>
<td>6.66E-05</td>
<td>0.0011361</td>
</tr>
<tr>
<td>a_2</td>
<td>-1.41E-01</td>
<td>-0.13538745</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>—</td>
<td>26,183</td>
</tr>
<tr>
<td>$E_{subgrade}$ (psi)</td>
<td>—</td>
<td>21,579</td>
</tr>
<tr>
<td>$h_{subgrade}$ (inches)</td>
<td>180 (1/r method)</td>
<td>185.93</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>—</td>
<td>714,658</td>
</tr>
</tbody>
</table>

— Indicates data were not available.
Figure 196. Graph. Backcalculation results of the AC master curve for LTPP section 350801.

Figure 197. Graph. Error in the backcalculated master curve for LTPP section 350801.
Effect of Pulse Width on Backcalculation Results

The previous section included a discussion of how conducting two FWD tests in the field with a pavement temperature difference of 50 to 59 °F between the two tests seemed to be sufficient to backcalculate the damaged AC modulus master curve accurately without the need to change the FWD load pulse duration. However, for budgetary and time constraints, it might be impractical...
to conduct two FWD tests. For these reasons, the research team investigated the effect of increasing the pulse width to increase the useful time range and improve the backcalculation results. However, the team also considered the temperature profile along the AC layer to be able to backcalculate the shift factor coefficients. The effect of using multiple pulses is discussed in appendix B.

The dynamic viscoelastic simulation was carried out using the pavement structure presented in table 52. The FWD loading used in this simulation was assumed to be uniformly distributed over a circular area of a radius of 6 inches, a peak magnitude of 9,000 lb, and pulse durations of 35, 40, 45, and 50 ms (figure 199). The subgrade layer was modeled to be with a shallow stiff layer (2 million psi) located at about 9 ft below the pavement surface (figure 200). The surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from the center of the loading plate. The viscoelasticity of the AC was modeled using a Prony series of the master curve presented in figure 201 (left). The AC layer was divided into two layers with different temperatures as shown in figure 201 (right). The results of the simulations are presented in figure 202.

Table 52. Layer properties for dynamic viscoelastic simulation.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Thickness (inches)</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>Master curve (86.9 °F)</td>
<td>0.35</td>
<td>2</td>
<td>145</td>
</tr>
<tr>
<td>Asphalt</td>
<td>Master curve (79.3 °F)</td>
<td>0.35</td>
<td>2</td>
<td>145</td>
</tr>
<tr>
<td>Base</td>
<td>20,000</td>
<td>0.4</td>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>13,500</td>
<td>0.45</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>Stiff layer</td>
<td>2,000,000</td>
<td>0.25</td>
<td>Infinity</td>
<td>125</td>
</tr>
</tbody>
</table>

Figure 199. Graph. Simulated FWD load pulses with various durations.
Figure 200. Diagram. Schematic of the pavement structure with bedrock.

Figure 201. Graph and Diagram. AC layer parameters.
The analysis shows that increasing the width of the FWD pulse would improve the backcalculation of the master curve. However, it would not improve the backcalculation of unbound layer moduli. In the previous section, it was shown that running a second backcalculation using the results from the first run as seed populations not only led to a much improved backcalculated AC modulus master curve but also to much closer base and subgrade moduli. This was because running the second backcalculation after replacing half of the population with random strings increased not only the diversity of the population but the number of generations. As the number of generation increased, the individuals in the population got closer together and approached the minimum point. For all these reasons, the research team recommends increasing the size of the population to 300 when increasing the pulse width instead of testing at different temperatures. Table 53 shows the viscoelastic dynamic backcalculation results of the pavement structure presented in table 52. Figure 203 through figure 206 show the error in the deflection time histories.
Table 53. Backcalculated layer parameters for different pulse durations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simulation</th>
<th>Backcalculated</th>
<th>35 ms</th>
<th>40 ms</th>
<th>45 ms</th>
<th>50 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>1.271</td>
<td>1.606</td>
<td>1.501</td>
<td>1.404</td>
<td>1.359</td>
<td></td>
</tr>
<tr>
<td>(c_2)</td>
<td>2.883</td>
<td>2.405</td>
<td>2.550</td>
<td>2.677</td>
<td>2.796</td>
<td></td>
</tr>
<tr>
<td>(c_3)</td>
<td>0.22</td>
<td>0.323</td>
<td>0.302</td>
<td>0.286</td>
<td>0.152</td>
<td></td>
</tr>
<tr>
<td>(c_4)</td>
<td>-0.497</td>
<td>-0.595</td>
<td>-0.582</td>
<td>-0.574</td>
<td>-0.526</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>0.00109568</td>
<td>1.12E-06</td>
<td>0.000163</td>
<td>0.000574</td>
<td>0.001516</td>
<td></td>
</tr>
<tr>
<td>(a_2)</td>
<td>-0.0925978</td>
<td>-0.08675</td>
<td>-0.12647</td>
<td>-0.09447</td>
<td>-0.09126</td>
<td></td>
</tr>
<tr>
<td>(E_{\text{base}}) (psi)</td>
<td>20,000</td>
<td>20,373</td>
<td>20,744</td>
<td>20,546</td>
<td>20,386</td>
<td></td>
</tr>
<tr>
<td>(E_{\text{subgrade}}) (psi)</td>
<td>13,500</td>
<td>15,235</td>
<td>16,311</td>
<td>17,667</td>
<td>14,289</td>
<td></td>
</tr>
<tr>
<td>(h_{\text{subgrade}}) (inches)</td>
<td>96</td>
<td>103.1</td>
<td>110.1</td>
<td>121.4</td>
<td>100.4</td>
<td></td>
</tr>
<tr>
<td>(E_{\text{stiff}}) (psi)</td>
<td>2,000,000</td>
<td>773,111</td>
<td>607,944</td>
<td>701,243</td>
<td>898,816</td>
<td></td>
</tr>
</tbody>
</table>

Figure 203. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 35 ms.
Figure 204. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 40 ms.

Figure 205. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 45 ms.
Figure 206. Graphs. Error in the backcalculated time histories by sensor for a pulse width of 50 ms.

Figure 207 shows the backcalculated relaxation modulus master curve. Figure 208 shows the corresponding error using different pulse widths. The results were quite reasonable, except for the tail end of the $E(t)$ curve (longer reduced time range).
Figure 207. Graph. Backcalculation results of the AC master curve for different pulse widths.
To conclude, the research team concluded that increasing the pulse width will improve the backcalculation of the master curve, which can be used instead of having to test at multiple temperatures. However, the team also concluded that including a temperature profile is important to be able to backcalculate the shift factors. Two major studies looked at a method to predict the temperature profile using air and pavement surface temperatures. The empirical relationships provided in the LTPP guide and in the Ongel and Harvey study reported errors of 9 and 18 °F, respectively.\(^\text{(5,100)}\) The analysis conducted as part of the current project showed that the temperature gradient in the AC layer is 18 °F at most, which is the same order of magnitude as the error reported by both studies. Therefore, using predicted temperature with depth using such models does not lead to reliable results. It is recommended at this point to use the LTPP manual to manually measure the temperature profile.\(^\text{(5)}\)

Computational Efficiency

Table 54 presents the computation efficiency of the backcalculation algorithm for all the previously discussed analyses. Note that the efficiency of the backcalculation using the MPI parallelization scheme is only an estimate. The algorithm written in MATLAB® was used in all runs.
Table 54. Backcalculation algorithm computational efficiency using GA only.

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Characteristics</th>
<th>Eight Cores</th>
<th>MPI(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>35/15</td>
<td>5</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>70/15</td>
<td>11.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>100/15</td>
<td>17</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>200/15</td>
<td>33</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>300/15</td>
<td>50</td>
<td>6.5</td>
</tr>
<tr>
<td>Simulation</td>
<td>Stiffness and thickness run 1</td>
<td>43</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>Stiffness and thickness run 2</td>
<td>44</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Slope run 1</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Slope run 2</td>
<td>74.5</td>
<td>9.9</td>
</tr>
<tr>
<td>Field data</td>
<td>Waverly run 1</td>
<td>43.5</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Waverly run 2</td>
<td>44</td>
<td>5.8</td>
</tr>
</tbody>
</table>

\(^1\)Estimated using equal distribution between cores.

BACKCALCULATION USING THE HYBRID APPROACH (DYNABACK-VE)

In this part of the project, the research team first used GA to obtain a good seed value and to make sure that the algorithm did not converge to a local minimum. Then, the team used the gradient-based LM algorithm to obtain the final results.

Evaluation of the Dynamic Backcalculation Scheme (DYNABACK-VE)

Sensitivity Analysis

The research team conducted a sensitivity analysis to select the optimal population/number of generations for the GA and maximum iteration for the LM algorithm. The viscoelastic simulation was carried out using the pavement structure presented in table 55. Figure 209 presents the simulated master curve for the asphalt layer along with the temperature profile. The FWD loading used in all simulations was assumed to be uniformly distributed over a circular area of a radius of 6 inches, a peak magnitude of 9,000 lb, and a duration of 35 ms. Figure 210 (left) presents the simulated FWD load pulse. The subgrade layer was modeled to have a shallow stiff layer (250,000 psi) located at about 8 ft below the pavement surface. The surface deflections were calculated at radial distances of 0, 8, 12, 18, 24, 36, 48, 60, and 72 inches from the center of the loading plate. Figure 210 (right) shows the simulated deflections time histories for all sensors.

Table 55. Layer properties for the simulated pavement structure.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Elastic Modulus (psi)</th>
<th>Poisson’s Ratio</th>
<th>Thickness (inches)</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>Master curve (86.9 °F)</td>
<td>0.35</td>
<td>2</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Master curve (79.3 °F)</td>
<td>0.35</td>
<td>2</td>
<td>145</td>
</tr>
<tr>
<td>Base</td>
<td>20,000</td>
<td>0.35</td>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>Subgrade</td>
<td>13,500</td>
<td>0.45</td>
<td>96</td>
<td>120</td>
</tr>
<tr>
<td>Stiff layer</td>
<td>250,000</td>
<td>0.30</td>
<td>Infinity</td>
<td>145</td>
</tr>
</tbody>
</table>
Figure 209. Graph and Diagram. AC layer master curve and temperature profile.

Table 56 presents the information for all 60 runs (19 LM method runs, 25 hybrid method runs, and 16 GA method runs). The last column for each method shows the total number of calls to the forward solution (ViscoWave-II) and hence gives an indication of computational cost, i.e., the higher the number the higher the computational cost.

It was observed during the sensitivity analysis that the convergence of the backcalculation using only the LM algorithm was not guaranteed. The algorithm was very sensitive to the seed values. If the seed values were close to the real values, the algorithm converged very fast (about 25 iterations). However, when the seed values were picked randomly inside the search domain, the algorithm converged fast to a local solution or sometimes it diverged as shown in figure 211.
Table 56. Runs information for the sensitivity analysis.

<table>
<thead>
<tr>
<th>Method</th>
<th>Run Number</th>
<th>Population Size</th>
<th>Number of Generations</th>
<th>Number of Iterations</th>
<th>Number of Calls to ViscoWave-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>—</td>
<td>—</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>—</td>
<td>—</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>—</td>
<td>—</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>—</td>
<td>—</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>—</td>
<td>—</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>—</td>
<td>—</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>—</td>
<td>—</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>GA+LM</td>
<td>20</td>
<td>50</td>
<td>5</td>
<td>100</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>50</td>
<td>5</td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>50</td>
<td>5</td>
<td>200</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>50</td>
<td>5</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>50</td>
<td>5</td>
<td>300</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>75</td>
<td>5</td>
<td>100</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>75</td>
<td>5</td>
<td>150</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>75</td>
<td>5</td>
<td>200</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>75</td>
<td>5</td>
<td>250</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>75</td>
<td>5</td>
<td>300</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>100</td>
<td>5</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>100</td>
<td>5</td>
<td>150</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>100</td>
<td>5</td>
<td>200</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>100</td>
<td>5</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>100</td>
<td>5</td>
<td>300</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>150</td>
<td>5</td>
<td>100</td>
<td>850</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>150</td>
<td>5</td>
<td>150</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>150</td>
<td>5</td>
<td>200</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>150</td>
<td>5</td>
<td>250</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>150</td>
<td>5</td>
<td>300</td>
<td>1,050</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>200</td>
<td>5</td>
<td>100</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>200</td>
<td>5</td>
<td>150</td>
<td>1,150</td>
</tr>
<tr>
<td>Method</td>
<td>Run Number</td>
<td>Population Size</td>
<td>Number of Generations</td>
<td>Number of Iterations</td>
<td>Number ofCalls to ViscoWave-II</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>200</td>
<td>5</td>
<td>200</td>
<td>1,200</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>200</td>
<td>5</td>
<td>250</td>
<td>1,250</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>200</td>
<td>5</td>
<td>300</td>
<td>1,300</td>
</tr>
<tr>
<td>GA</td>
<td>45</td>
<td>35</td>
<td>5</td>
<td>—</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>50</td>
<td>5</td>
<td>—</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>75</td>
<td>5</td>
<td>—</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>100</td>
<td>5</td>
<td>—</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>150</td>
<td>5</td>
<td>—</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>200</td>
<td>5</td>
<td>—</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>250</td>
<td>5</td>
<td>—</td>
<td>1,250</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>300</td>
<td>5</td>
<td>—</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>35</td>
<td>15</td>
<td>—</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>50</td>
<td>15</td>
<td>—</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>75</td>
<td>15</td>
<td>—</td>
<td>1,125</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>100</td>
<td>15</td>
<td>—</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>150</td>
<td>15</td>
<td>—</td>
<td>2,250</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>200</td>
<td>15</td>
<td>—</td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>250</td>
<td>15</td>
<td>—</td>
<td>3,750</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>300</td>
<td>15</td>
<td>—</td>
<td>4,500</td>
</tr>
</tbody>
</table>

— Indicates not applicable.

Figure 211. Graph. Average error in the backcalculated AC layer master curve for all runs in LM method.

The average error (over reduced times from 10^8 to 10^8 s) in the $E(t)$ master curve was defined in figure 211. The runs in which the algorithm diverged were repeated. Figure 212 shows the results in terms of average errors in $E(t)$ from the DYNABACK-VE. Figure 213 through figure 216 show the results for base, subgrade, and stiff layer moduli as well as the depth to the stiff layer.
Figure 212. Graph. Average error in the backcalculated AC layer master curve for all runs.

Figure 213. Graph. Average error in the backcalculated base layer modulus for all runs.
Figure 214. Graph. Average error in the backcalculated subgrade modulus for all runs.

Figure 215. Graph. Average error in the backcalculated stiff layer modulus for all runs.
It can be observed from figure 212 that the average error in backcalculated $E(t)$ was below the maximum acceptable level (American Association of State Highway and Transportation Officials threshold of 7.5 percent) as defined in figure 87 when any of the following options are true:\(^{(1)}\)

- **Option 1**: At least 350 iterations (run 6 and up) using only the LM algorithm.
- **Option 2**: At least 75 populations, 5 generations, and 300 iterations (run 29 and up) when using the hybrid approach.
- **Option 3**: At least 100 populations and 15 generations (run 56 and up) when using the GA algorithm only.

Next, assuming a maximum tolerable error of 20 and 10 percent for the remaining parameters (base and subgrade layer moduli, stiff layer modulus and depth to the stiff layer, as seen in figure 212 through figure 216), the optimal runs and corresponding minimum number of computations to arrive at an acceptable solution for each search method are shown in table 57. It can be seen that the hybrid GA+LM approach is the best approach; it is guaranteed to converge within the search domain and is the most computationally efficient.

Figure 216. Graph. Average error in the backcalculated depth to the stiff layer for all runs.
Table 57. Optimal runs for the various search methods.

<table>
<thead>
<tr>
<th>Search Method</th>
<th>10-Percent Error Tolerance</th>
<th>20-Percent Error Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-Percent Error Tolerance</td>
<td>20-Percent Error Tolerance</td>
</tr>
<tr>
<td></td>
<td>Optimal Run Number</td>
<td>Number of Calls to ViscoWave-II</td>
</tr>
<tr>
<td>LMa</td>
<td>17</td>
<td>900</td>
</tr>
<tr>
<td>GA+LMb</td>
<td>35</td>
<td>850c</td>
</tr>
<tr>
<td>GAb</td>
<td>59</td>
<td>3,750</td>
</tr>
</tbody>
</table>

aConvergence is not guaranteed (depending on seed values).
bConvergence is guaranteed (within the search domain).
cComputationally most efficient. The time to run ViscoWave-II depends on the speed and number of processors (cores) used during the backcalculation.

Figure 217 and figure 218 show the measured and predicted deflection time histories for GA+LM runs 30 and 32, respectively, for comparison purposes. Table 58 shows the backcalculation results. The backcalculation results were good, although relatively large errors were seen in the farther deflection sensors. Figure 219 shows the backcalculated relaxation modulus master curves for both combinations. Figure 220 shows the corresponding percent error. Running a GA algorithm along with the LM algorithm led to a much improved backcalculated AC modulus master curve that was achieved faster and more efficiently.

Figure 217. Graphs. Error in the backcalculated deflections for run 30.
Figure 218. Graphs. Error in the backcalculated deflections for run 35.

Table 58. Backcalculated layer parameters for the simulated structure.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Simulated</th>
<th>Run 35</th>
<th>Run 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master Curve</td>
<td>Master Curve</td>
<td>Error (Percent)</td>
</tr>
<tr>
<td></td>
<td>Coefficient</td>
<td>Coefficient</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>c_1</td>
<td>1.271</td>
<td>1.296</td>
</tr>
<tr>
<td></td>
<td>c_2</td>
<td>2.883</td>
<td>2.883</td>
</tr>
<tr>
<td></td>
<td>c_3</td>
<td>0.22</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>c_4</td>
<td>-0.497</td>
<td>-0.512</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>0.001096</td>
<td>0.000647</td>
</tr>
<tr>
<td></td>
<td>a_2</td>
<td>-0.0926</td>
<td>-0.09686</td>
</tr>
<tr>
<td>Base, subgrade, and stiff</td>
<td>E_{base}</td>
<td>20,000</td>
<td>21,769.7</td>
</tr>
<tr>
<td>layer</td>
<td>E_{subgrade}</td>
<td>13,500</td>
<td>14,464.4</td>
</tr>
<tr>
<td></td>
<td>E_{stiff}</td>
<td>200,000</td>
<td>331,313</td>
</tr>
<tr>
<td></td>
<td>h_{subgrade}</td>
<td>96</td>
<td>103.5</td>
</tr>
</tbody>
</table>
Figure 219. Graph. Backcalculated master curves for runs 30 and 35.
Backcalculation Using Field Data

This section presents the evaluation of the new dynamic viscoelastic backcalculation program DYNABACK-VE using the field FWD test results from six LTPP sections. The details of the identified sections are presented in table 59. Table 60 shows the pavement structure of all the identified sections. These sections were identified based on the following criteria:

- Creep or E^* master curve data were available in the LTPP database.
- The AC layer was at least 2 inches thick.
- The pavement structure of the section did not include an AC treated base.
- One subgrade layer was present.
- One construction occurred.

Figure 220. Graph. Percent error in the backcalculated master curves for all combinations.
Table 59. Identified LTPP sections for the verification of DYNABACK-VE.

<table>
<thead>
<tr>
<th>State Code</th>
<th>Section</th>
<th>Date of Construction</th>
<th>Total Number of Constructions</th>
<th>Section Type</th>
<th>Experiment Number</th>
<th>Test Date</th>
<th>Test Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101</td>
<td>04/28/05</td>
<td>1</td>
<td>SPS</td>
<td>1</td>
<td>04/28/05</td>
<td>15:59</td>
</tr>
<tr>
<td>6</td>
<td>A805</td>
<td>11/16/11</td>
<td>1</td>
<td>SPS</td>
<td>8</td>
<td>11/16/11</td>
<td>12:23</td>
</tr>
<tr>
<td>6</td>
<td>A806</td>
<td>11/16/11</td>
<td>1</td>
<td>SPS</td>
<td>8</td>
<td>11/16/11</td>
<td>13:50</td>
</tr>
<tr>
<td>30</td>
<td>0113</td>
<td>07/12/10</td>
<td>5</td>
<td>SPS</td>
<td>1</td>
<td>07/12/10</td>
<td>09:39</td>
</tr>
</tbody>
</table>

Table 60. Layer properties for LTPP sections.

<table>
<thead>
<tr>
<th>Section</th>
<th>Property</th>
<th>Asphalt Concrete Layer</th>
<th>Granular Base</th>
<th>Subgrade</th>
<th>Stiff Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Layer 1</td>
<td>Layer 2</td>
<td>Layer 3</td>
<td></td>
</tr>
<tr>
<td>10101</td>
<td>Thickness (inches)</td>
<td>2.47</td>
<td>2.47</td>
<td>2.47</td>
<td>6</td>
</tr>
<tr>
<td>6A805</td>
<td>Temperature (°F)</td>
<td>100.0</td>
<td>92.5</td>
<td>91.6</td>
<td>N/A</td>
</tr>
<tr>
<td>6A806</td>
<td>Poisson’s ratio</td>
<td>0.35</td>
<td>0.40</td>
<td>0.45</td>
<td>N/A</td>
</tr>
<tr>
<td>300113</td>
<td>Unit weight (pcf)</td>
<td>145</td>
<td>125</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Relaxation modulus</td>
<td>Backcalculated</td>
<td>Backcalculated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a(T)$ coefficients</td>
<td>(a_1, a_2) Backcalculated</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6A805</td>
<td>Thickness (inches)</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>8.2</td>
</tr>
<tr>
<td>6A806</td>
<td>Temperature (°F)</td>
<td>73.6</td>
<td>69.1</td>
<td>68.2</td>
<td>N/A</td>
</tr>
<tr>
<td>300113</td>
<td>Poisson’s ratio</td>
<td>0.35</td>
<td>0.40</td>
<td>0.45</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Unit weight (pcf)</td>
<td>145</td>
<td>125</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Relaxation modulus</td>
<td>Backcalculated</td>
<td>Backcalculated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a(T)$ coefficients</td>
<td>(a_1, a_2) Backcalculated</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6A806</td>
<td>Thickness (inches)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.8</td>
<td>12.1</td>
</tr>
<tr>
<td>6A806</td>
<td>Temperature (°F)</td>
<td>79.1</td>
<td>75.1</td>
<td>71.2</td>
<td>N/A</td>
</tr>
<tr>
<td>300113</td>
<td>Poisson’s ratio</td>
<td>0.35</td>
<td>0.40</td>
<td>0.45</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Unit weight (pcf)</td>
<td>145</td>
<td>125</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Relaxation modulus</td>
<td>Backcalculated</td>
<td>Backcalculated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a(T)$ coefficients</td>
<td>(a_1, a_2) Backcalculated</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>300113</td>
<td>Thickness (inches)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>No stiff layer</td>
</tr>
<tr>
<td>300113</td>
<td>Temperature (°F)</td>
<td>84.7</td>
<td>80.1</td>
<td>79.2</td>
<td>N/A</td>
</tr>
<tr>
<td>300113</td>
<td>Poisson’s ratio</td>
<td>0.35</td>
<td>0.40</td>
<td>0.45</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Unit weight (pcf)</td>
<td>145</td>
<td>125</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Relaxation modulus</td>
<td>Backcalculated</td>
<td>Backcalculated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a(T)$ coefficients</td>
<td>(a_1, a_2) Backcalculated</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A = Not applicable.

In this analysis, the research team sought to backcalculate the depth to the stiff layer in addition to the stiff layer modulus using DYNABACK-VE. The backcalculation algorithm was run in two steps. The final population of the first step was input as initial population to the second step. The AC layer was assumed to have a three-step piecewise temperature profile for all the sections, as shown in table 60.
LTPP Section 10101: The measured deflection time histories from all the drops for section 10101 are presented in figure 221. The deflection time histories did not show waviness at the end of the signal, which indicated that there was no stiff layer or that the depth to the stiff layer was greater than 15 ft. The presence of a stiff layer was further evaluated using the graphical method suggested by Ullidtz. The method involves plotting peak deflections obtained from FWD testing versus the reciprocal of the corresponding sensor location (measured from the center of loading). The analysis showed that a stiff layer existed at 86.9, 32.7, 109.8, and 26.6 ft using the deflection histories from drops 1 through 4, respectively. Even though the 1/r method suggested that there was no stiff layer, the research team decided to include a stiff layer in the pavement structure. The backcalculation results from all the drops are presented in table 61. Figure 222 shows the backcalculated master curves. Figure 223 shows the backcalculated time-temperature shift factors. For section 10101, the backcalculated relaxation modulus master curves from all the drops matched very well with the measured master curve (figure 222). However, it can be seen from figure 223 that the backcalculated shift factor functions for all the drops showed a good match over the temperature range of 50 to 131 °F, whereas the laboratory-measured values deviated from the backcalculated values. This could be because laboratory creep compliance tests are usually not reliable in determining time-temperature superposition properties because a perfect stress-step function is very difficult to achieve in the laboratory and also because the results are contaminated with viscoplasticity, especially at the high temperatures and long creep times.

Table 61. Backcalculation results for LTPP section 10101 using DYNABACK-VE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory Results</th>
<th>Backcalculated Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drop 1</td>
<td>Drop 2</td>
</tr>
<tr>
<td>c_1</td>
<td>0.304</td>
<td>0.420</td>
</tr>
<tr>
<td>c_2</td>
<td>4.160</td>
<td>4.049</td>
</tr>
<tr>
<td>c_3</td>
<td>0.684</td>
<td>0.611</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.428</td>
<td>-0.442</td>
</tr>
<tr>
<td>a_1</td>
<td>3.14E-04</td>
<td>0.0011364</td>
</tr>
<tr>
<td>a_2</td>
<td>-1.47E-01</td>
<td>-0.070735</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>—</td>
<td>28,519</td>
</tr>
<tr>
<td>$E_{subgrade}$ (psi)</td>
<td>—</td>
<td>48,899</td>
</tr>
<tr>
<td>$h_{subgrade}$ (ft)</td>
<td>Drop 1</td>
<td>86.9 (1/r)</td>
</tr>
<tr>
<td></td>
<td>Drop 2</td>
<td>32.7(1/r)</td>
</tr>
<tr>
<td></td>
<td>Drop 3</td>
<td>109.8(1/r)</td>
</tr>
<tr>
<td></td>
<td>Drop 4</td>
<td>26.6(1/r)</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>—</td>
<td>814,826</td>
</tr>
</tbody>
</table>

— Indicates data were not available.
Figure 221. Graphs. Measured FWD load and time histories for LTPP section 10101.
Figure 222. Graph. Backcalculated master curves for LTPP section 10101 from all the drops.

Figure 223. Graph. Backcalculated shift factors for LTPP section 10101 from all the drops.

From table 61, the backcalculated moduli for unbound layers from all the drops suggest that the subgrade layer was stiffer than the base layer. Also, it was observed that the backcalculated moduli for the unbound layers were lower as the load level increased, which suggests softening conditions. The same section was used in LTPP data analysis presented in chapter 3. Figure 224 presents the load-to-deflection ratio at each load level. The plots also suggest softening conditions. The practical implication of these observations suggests that one could backcalculate
the moduli for the unbound layers from all the drops to capture the nonlinearity. This could merit discussion for future research.

Figure 224. Graph. Softening behavior for LTPP section 10101.

LTPP Section 6A805: The measured deflection time histories from all the drops for section 6A805 are presented in figure 225. The deflection time histories did show waviness at the end of the signal, which indicates that there was a stiff layer. The depth to the stiff layer estimated using Ullidtz method is about 70.4 ft using the deflection histories from drop 1. Even though the $1/r$ method suggests that there was no stiff layer, the research team also decided to include a stiff layer in the pavement structure. The backcalculation results using drop 1 time histories are presented in table 62. Figure 226 shows the backcalculated and measured master curves. Figure 227 shows the backcalculated and measured time-temperature shift factors. For section 6A805, the backcalculated and the laboratory-measured relaxation modulus master curves matched very well with the measured master curve until reduced time of 10 s (figure 226). However, it can be seen from figure 227 that the backcalculated shift factor functions did not match.
Figure 225. Graphs. Measured FWD load and time histories for LTPP section 6A805.

Table 62. Backcalculation results for LTPP section 6A805 using DYNABACK-VE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory Results</th>
<th>Drop 1 Backcalculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1.381</td>
<td>1.609</td>
</tr>
<tr>
<td>c_2</td>
<td>2.983</td>
<td>2.758</td>
</tr>
<tr>
<td>c_3</td>
<td>1.625</td>
<td>1.425</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.784</td>
<td>-0.845</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.00169</td>
<td>0.001</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.08729</td>
<td>-0.077</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>—</td>
<td>43,546</td>
</tr>
<tr>
<td>$E_{subgrade}$ (psi)</td>
<td>—</td>
<td>17,435</td>
</tr>
<tr>
<td>$h_{subgrade}$ (ft) drop1</td>
<td>70.4 (1/r)</td>
<td>14</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>—</td>
<td>315,452</td>
</tr>
</tbody>
</table>

— Indicates data values were not measured.

Figure 226. Graph. Backcalculated master curves for LTPP section 6A805.
In table 62, the backcalculated depth to the stiff layer is about 14 ft, which suggests that there was a stiff layer at a shallow depth. This contradicts the results from the $1/r$ method. However, because this estimated depth is close to the depth to the stiff layer beyond which dynamic effects are insignificant, i.e., 15 ft, the possible existence of a stiff layer could be ignored.(96) The load-to-deflection ratio presented in figure 228 shows a maximum slope of about 4 percent seen for sensor 8, which suggests that nonlinearity can be ignored.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure227}
\caption{Graph. Backcalculated shift factors for LTPP section 6A805.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure228}
\caption{Graph. Load-to-deflection ratio for LTPP section 6A805.}
\end{figure}

LTPP Section 06A806: The measured deflection time histories from all the drops for section 06A806 are presented in figure 229. The deflection time histories did show waviness at the end of the signal, which indicated that there was a stiff layer. Using the Ullidtz method, the depth to the stiff layer was estimated as a negative value, which was interpreted as the absence of a stiff layer.(94) Even though the $1/r$ method suggests that there was no stiff layer, the research team also
decided to include a stiff layer in the pavement structure. The backcalculation results using drop 1 time histories are presented in table 63. Figure 230 shows the backcalculated and measured master curves. Figure 231 shows the backcalculated and measured time-temperature shift factors. For section 6A806, the backcalculated and the laboratory-measured relaxation modulus master curves matched very well with the measured master curve until reduced time of 1 s (figure 230). However, it can be seen from figure 231 that the backcalculated shift factor functions did not match.

Table 63. Backcalculation results for LTPP section 6A806 using DYNABACK-VE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory Results</th>
<th>Drop 1 Backcalculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1.157</td>
<td>1.252</td>
</tr>
<tr>
<td>c_2</td>
<td>3.356</td>
<td>3.259</td>
</tr>
<tr>
<td>c_3</td>
<td>1.388</td>
<td>1.025</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.673</td>
<td>-0.723</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.0027</td>
<td>-0.001</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.06976</td>
<td>-0.140735</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>—</td>
<td>26,546</td>
</tr>
<tr>
<td>E_{subgrade} (psi)</td>
<td>—</td>
<td>19,075</td>
</tr>
<tr>
<td>h_{subgrade} (ft) drop 1</td>
<td>No stiff (1/r)</td>
<td>13.33</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>—</td>
<td>316,575</td>
</tr>
</tbody>
</table>

— Indicates data were not available.
In table 63, the backcalculated depth to the stiff layer is about 13 ft, which suggests that there was a stiff layer at a shallow depth. This contradicts the results from the $1/r$ method. However, because this estimated depth is close to the depth to the stiff layer beyond which dynamic effects are insignificant, i.e., 15 ft, the possible existence of a stiff layer could be ignored. The load-to-deflection ratio presented in figure 232 shows a maximum slope of about 5 percent seen for only sensor 8, which suggests that nonlinearity can be ignored.
LTPP Section 300113: The measured deflection time histories from drop 1 for section 300113 are presented in figure 233. The deflection time histories did not show waviness at the end of the signal, which indicates that there was no stiff layer or that the depth to the stiff layer was greater than 15 ft. Using the Ullidtz method, the depth to the stiff layer was estimated at about 96.4 ft.94 Even though the $1/r$ method suggests that there was no stiff layer, the research team included a stiff layer in the pavement structure. The backcalculation results using drop 1 time histories are presented in table 64. Figure 234 shows the backcalculated and measured master curves. Figure 235 shows the backcalculated and measured time-temperature shift factors. For section 6A806, the backcalculated and the laboratory-measured relaxation modulus master curves matched very well until reduced time of 1 s (figure 234). However, it can be seen from figure 235 that the backcalculated shift factor functions did not match.
Table 64. Backcalculation results for LTPP section 6A806 using DYNABACK-VE.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laboratory Results</th>
<th>Drop 1 Backcalculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>0.778</td>
<td>1.098</td>
</tr>
<tr>
<td>c_2</td>
<td>3.789</td>
<td>3.449</td>
</tr>
<tr>
<td>c_3</td>
<td>0.000</td>
<td>-0.081</td>
</tr>
<tr>
<td>c_4</td>
<td>-0.400</td>
<td>-0.423</td>
</tr>
<tr>
<td>a_1</td>
<td>4.97E-04</td>
<td>0.001</td>
</tr>
<tr>
<td>a_2</td>
<td>-1.57E-01</td>
<td>-0.077</td>
</tr>
<tr>
<td>E_{base} (psi)</td>
<td>—</td>
<td>10,745</td>
</tr>
<tr>
<td>E_{subgrade} (psi)</td>
<td>—</td>
<td>22,995</td>
</tr>
<tr>
<td>h_{subgrade} (ft) drop1</td>
<td>96.4 (1/r)</td>
<td>16</td>
</tr>
<tr>
<td>E_{stiff} (psi)</td>
<td>—</td>
<td>215,298</td>
</tr>
</tbody>
</table>

— Indicates data were not available.

Figure 234. Graph. Backcalculated master curves for LTPP section 300113.
In table 63, the backcalculated depth to the stiff layer is about 16 ft, which is close to the depth to the stiff layer beyond which dynamic effects are insignificant, i.e., 15 ft. Therefore, the possible existence of a stiff layer could be ignored. Figure 236 shows the load-to-deflection ratio for all the sensors. The maximum slope is about 5 percent for only sensor 7, which means that nonlinearity could be ignored.

\[
\begin{align*}
\text{Load/Def8} &= -0.0206 \times \text{Load} + 60.763 \\
\text{Load/Def7} &= -0.0580 \times \text{Load} + 54.648 \\
\text{Load/Def6} &= -0.0322 \times \text{Load} + 37.512 \\
\text{Load/Def5} &= -0.0106 \times \text{Load} + 19.250 \\
\text{Load/Def4} &= -0.0033 \times \text{Load} + 12.939 \\
\text{Load/Def3} &= -0.0021 \times \text{Load} + 9.060 \\
\text{Load/Def2} &= -0.0021 \times \text{Load} + 7.154 \\
\text{Load/Def1} &= -0.0034 \times \text{Load} + 5.7003
\end{align*}
\]
CONCLUSION

A new solution and its associated computer program were developed for dynamic viscoelastic time-domain backcalculation of multilayered flexible pavement parameters under FWD tests in the time domain. The method uses a time-domain viscoelastic solution as a forward routine (ViscoWave-II) and a hybrid routine (DYNABACK-VE: GA and modified LM method) for backcalculation analysis. For the GA-based backcalculation procedure, the research team recommends using DYNABACK-VE twice with a population of 200 and 15 generations. When increasing the pulse width, the team recommends using a population of 300 and 15 generations. The advantage of the new solution is that it can analyze the response of pavement systems in the time domain and can therefore accommodate time-dependent layer properties and incorporate wave propagation. Also, because the backcalculation is performed in the time domain, the algorithm is not sensitive to truncation in the deflection time histories. The new algorithm is capable of backcalculating layer moduli, including the master curve of the AC layer at every reduced time and depth to the stiff layer, if it exists, and its modulus value. The results using simulated deflection time histories and field FWD data showed excellent stability and accuracy. Note that the backcalculation algorithm is not designed to backcalculate the modulus of more than one AC layer in pavement structures with different mixes or in cases where there are multiple subgrade layers with similar moduli values.

The sensitivity of dynamic backcalculation solutions to signal noise and synchronization problems is high. The remedy to noise is to preprocess the raw data by filtering out the high-frequency content of the signal (anything above 100 Hz) in deflection and load pulse data. Also, in the analysis presented in chapter 5, the percent error between the computed and measured displacement was used as the minimizing error. If percent error were used as the minimizing objective, it could lead to overemphasis of lower magnitudes of deflections at the later portion of the time history, which typically includes noise and integration errors. Hence another fit function was proposed in which the percent error was calculated with respect to the peak of deflection at each sensor. This de-emphasizes the tail data by normalizing them with respect to the peak.

If synchronization problems occur, the dynamic backcalculation algorithm may not work as well, although one could shift the signals similar to what was done in the quasi-static viscoelastic solution (chapter 4). Because the quasi-static solution presented in chapter 4 is already coded to remove the time delay between sensors, the research team recommends the use of BACKLAVA instead of DYNABACK-VE when such a synchronization problem exists and cannot be removed manually.

The results from dynamic analyses clearly showed the superiority of a fully dynamic solution with a viscoelastic AC layer modulus in predicting deflection responses that are in line with what one would expect from soil, as evidenced by the close match in the details of the deflection time histories between theory and observation. The theoretical predictions from ViscoWave-II showed very good agreement with the measured deflection time histories. The fact that theory and measurement showed the same behavior with time was proof that these observations were physically real. This is important in that it reinforces the following: (1) a comprehensive model that takes into account viscoelasticity of the AC layer, damping in the unbound layers, and dynamics in terms of inertial and wave propagation effects can explain the measured data with all their complexities; and (2) the FWD sensor measurements, if properly calibrated, can show
the physical behavior for most of the time range, with the exception of the drift problems at the
tail of the records.

In contrast, the layered viscoelastic solution cannot simulate the true deflection time histories
because it cannot account for inertial and wave propagation effects. As such, it cannot predict the
time delays in the response, the initial rebounds of the farther sensors, and the free vibrations
after the load is applied. Also, the layered viscoelastic solution significantly underestimates the
deflections when a stiff layer is present. This is because it cannot account for dynamic
amplification caused by the wave energy trapped in the unbound layers when a stiff layer
condition exists.
CHAPTER 6. ENHANCEMENT TO THE FWD EQUIPMENT

This chapter describes the results from a set of experimental procedures designed to evaluate the performance of FWD measurement systems (seismometers, geophones, and accelerometers). Parameters such as accuracy and sensitivity were considered. Observations were used to help test certain features of the numerical tools presented in chapter 5. A high-precision laser system was used in the experimental setups as a reference system and also to evaluate limitations on potential recommendation of its use in FWD systems.

REVIEW OF FWD EQUIPMENT

In this section, the research team focused on the key issues to address for potential improvements to FWD testing and interpretation. The identified issues were the following: (1) FWD data collection and measurement; and (2) analysis methods, i.e., static versus dynamic, linear versus nonlinear; and viscoelastic behavior of the AC material. A review of the basic mechanisms and characteristics of the measurement systems available in FWD equipment was conducted.

The research team found that FWD systems available in North America used either geophones or seismometers as sensors to measure the deflection basins. Geophones fell between accelerometers and seismometers in function and price. Seismometers were typically larger and more expensive and usually detected extremely small movements at lower frequencies than geophones. The team learned that some seismometers could be very fragile, and calibrating a seismometer was critical to obtaining useful data. Therefore, a geophone or an accelerometer would more likely be used to get a simpler signal. Because accelerometers are nearly solid state, they are good at handling more violent motion.

Because the measurements are done in a moving reference frame (the pavement surface), almost all sensors are based on the inertia of a suspended mass, which tends to remain stationary in response to external motion. The mass is used as the reference in the system. Therefore, the relative motion of the suspended mass and the ground is a function of the pavement’s motion. Because the sensor is moving with the ground and there is no fixed, undisturbed reference available means that the displacement cannot be measured directly, and according to the inertia principle, one can observe the motion only if it has an acceleration. The frequency response of the mass-spring system is thus a critical factor that greatly influences the sensitivity and the accuracy of the measurement devices.

The basic principle of a geophone involves use of a moving coil within a magnetic field. This can be implemented by having a fixed coil and a magnet that moves with the mass or a fixed magnet and the coil moves with the mass. The output from the coil is proportional to the velocity of the mass relative to the frame. This kind of electromagnetic geophone is called a velocity transducer. Therefore, the measured output from a geophone is related to ground movement through a two-stage transfer function—first a second-order differential transformation describing the mechanical system movement, followed by the electrical system relation obeying the Faraday’s law and describing the generated current in the coil, which is theoretically proportional to velocity. Figure 237 shows an example of the frequency response characteristics for the two stages. Even though the mechanical system exhibited a relatively flat response at low
frequencies, the performance of the overall combined response for an in-series configuration fell considerably for low frequencies.

![Graphs. Frequency response of geophone components.](image)

Figure 237. Graphs. Frequency response of geophone components.

For a seismometer, the relative motion of the mass with respect to the casing of the sensor is measured directly using LVDTs. The natural frequency of the mass-spring system and the damping must be tuned to control the sensitivity of the module. The sensitivity (of a seismometer) is defined as the ratio of the maximum motion of the mass to the maximum ground motion during steady-state motion; it is a measure of magnification developed directly at the transducer.

Figure 238 shows the amplitude response of a sensor with a natural period of 1 s and damping ranging from 0.25 to 4 h. As can be seen, low damping resulted in a peak in the response function that occurred for ratio values less than 1. If damping was equal to 1, the seismometer mass returned to its rest position in the least possible time without overshooting, the response curve had no peak, and the seismometer is said to be critically damped. From the shape of the curve, it can be seen that the seismometer could be considered a second-order high pass filter for ground displacement. Seismometers perform optimally at damping close to critical. When the damping increases above 1, the sensitivity decreases and the response approaches that of a velocity sensor.

If the ground displacement frequency were near the resonance frequency, a larger relative motion would be induced (depending on damping). If the damping was low, the mass could get a push at precisely the right time such that the mass would move with a larger and larger amplitude, thus the gain would be larger than 1. For this to occur, the push from the ground would have to occur when the mass was at an extreme position (top or bottom) and there must be a phase shift of $-\pi/2$.

Below the resonance frequency, the relative displacement due to ground displacement would decrease. With the ground moving very slowly, the mass would have time to follow the ground motion; in other words, there would be little relative motion and less phase shift. Thus the gain
would be low. Therefore, for small frequencies, the relative displacement of the mass would be directly proportional to the ground acceleration. The sensitivity of the sensor to low frequency ground acceleration would be inversely proportional to the squared natural frequency of the sensor.

Strictly speaking, none of the sensors are linear—in the sense that an arbitrary waveform of ground motion can be exactly reproduced at scale—for any kind of response.

![Diagram and Graph](image)

Figure 238. Diagram and Graph. A mechanical inertial seismometer with a natural frequency of 1 Hz.

Based on the collected information concerning the frequency behavior of the different measuring devices, a time-frequency analysis was conducted. Measured real field signals were analyzed in the time and frequency domains. The objective was to determine the location, with respect to the signal peak, of frequencies that were artificially filtered by the mechanical spring-mass system, which reduces the accuracy of the sensors (figure 239 through figure 244). The spectrograms, or time-frequency representations of a signal shown in these figures, are 2-D visual representations of the spectrum of frequencies in a signal as they vary with time. The colors illustrate the distribution of the energy contained in the signal as a function of time (x-axis) and frequency (y-axis). The spectrogram is equivalent to a tracing of the frequency response of the analyzed signal in a moving time window. The unit is the decibel, which is a logarithmic unit commonly used to express the ratio between a reference value and the value of a physical quantity measured in units of power or intensity.

As discussed in the previous paragraph, the different measuring instruments eliminate certain frequencies because of poor performance in some specific ranges. Therefore, it is important to know in what time window (before or after the peak) the eliminated frequencies occur. Also, the comparison between the time-frequency contents of the load and the response from the sensors help in determining the effect of time synchronization.
Figure 239. Graphs. Time-frequency content of the load for LTPP section 60565.

Figure 240. Graphs. Time-frequency content of the load for LTPP section 320101.
Figure 241. Graphs. Time-frequency content of the load for LTPP section 400113.
Figure 242. Graphs. Spectrum of deflection at each sensor for LTPP section 60565.
Figure 243. Graphs. Spectrum of deflection at each sensor for LTPP section 320101.
Figure 244. Graphs. Spectrum of deflection at each sensor for LTPP section 400113.

In light of the literature review of the FWD equipment and the above interpretations, the following issues and observations were identified:
• Key issue 1: Accuracy
 o A fixed reference system is needed.
 o For seismometers, “fixed mass” is not easy to achieve (highly sensitive to calibration).
 o For geophones, relying on external corrections for the displacement of the sensor bar is very susceptible to numerical errors (double integration, etc.).

• Key issue 2: Sensitivity
 o The ideal is to have the same sensitivity over the entire frequency content of the motion.
 o Both seismometers and geophones have problems at low frequency (especially geophones), which is crucial when measuring pavement deflections.

EXPERIMENTAL TESTING

Preliminary Field Evaluations

Different sensor types were identified and acquired. A seismometer, a geophone, and an accelerometer were tested. Figure 245 shows the acquired systems. An in-house data acquisition module was built to extract the raw unfiltered data from all the measurement sensors.

Figure 245. Photos. Geophone (left), seismometer (center), and high-accuracy piezoelectric accelerometer (right).

A laser head capable of noncontact measurement of deflections was also tested. Preliminary evaluations of the laser under simulated real field conditions were conducted at the testing facility at FHWA’s Turner-Fairbank Highway Research Center (TFHRC) (see figure 246).
The objective was to determine the induced errors (noise) in the recorded signal from the laser in a non-controlled environment. A sample of the obtained signal and its frequency content are shown in figure 247.

Figure 247. Graphs. Sample measured signal (left) and frequency content (right).

The signal-to-noise ratio (SNR) was calculated as 122 for the recording shown in figure 247. This high SNR factor indicated that most of the power in the signal was useful information, and there was very little background noise, which can be identified and filtered. A variation of ±10 percent was observed in the calculated ratios for all measured signals. In addition, the accuracy was evaluated to be on the order of 10^{-5} mil.

The recorded deflection was not compared with the output of the FWD system because of the unavailability of the control laptop computer for the machine during the testing.

To improve the accuracy of the laser measurements, a new more accurate system was acquired. The system and the properties of the new laser head are shown in figure 248. Furthermore, observations during the testing showed that vibrations in the mounting device were a major cause
of induced noises. Specific fixtures were built to attach to different models of FWD machines. Figure 249 shows the design for the fixture.

![Image](image1)

Figure 248. Photos. LK-H008 laser head for deflection measurement.

![Diagram](image2)

Figure 249. Diagram. Schematic of the designed fixture.
Laboratory Evaluation of Geophones—Accuracy and Sensitivity

A set of laboratory tests were conducted to evaluate the performance of the geophone sensor. Two series of tests were conducted: First, the research team placed the geophone directly on the beam and side by side with the laser sensor (see figure 250). Then the geophone was placed in its encasement provided by the manufacturer and situated symmetrically opposite to the laser sensor relative the MTS® load actuator (see figure 251). For this second set of tests, the team also introduced noise on the system by independently vibrating the test setup while placing an accelerometer on the MTS® system so that the noise could be filtered out of the signal.

Figure 252 shows an example of raw velocity signal data from the geophone, and figure 253 shows the filtered velocity data. The figures show that the velocity signal was not symmetrical about zero and that some cyclic behavior occurred post loading time.

Figure 254 shows multiple replications of the laser displacement readings. The data show that the laser was capable of producing a faithful and repeatable deflection signal.

Figure 250. Photo. Geophone placed directly on beam next to laser sensor.
Figure 251. Photos. Test setup for mounted geophone and laser sensor.
Figure 252. Graph. Example of raw data from geophone.

Figure 253. Graph. Filtered geophone data with multiple replications.
Figure 254. Graph. Laser data with multiple replications.

Figure 255 and figure 256 show comparisons between the geophone and laser data for the first test series. When comparing velocity measurements, laser displacement signal was differentiated with respect to time. When comparing deflection measurements, geophone measurements were integrated with respect to time. The measurements showed some significant differences between the two systems, especially after the load returned to zero.

Figure 257 shows similar behavior for the second test series. From the conducted tests, it was clear that numerical errors played a significant role in altering the recorded signals. A set of tests was devised to illustrate the effect of numerical integrations on the collected data to be used in the tools introduced in chapter 5.
Figure 255. Graphs. Comparison of filtered geophone velocity data with the laser derivative output for test series 1.
Figure 256. Graphs. Comparison of integrated geophone data with direct laser displacement output for test series 1.
Effects of Numerical Errors and Drifts

A series of field tests were performed with the objective of illustrating the effects of drifts and errors induced by numerical integrations and filtering/treatment of raw data collected from inertial sensors (geophones). A KUAB FWD system (owned by the Michigan Department of Transportation (MDOT)), which uses seismometers, was outfitted with a geophone (see figure 258). Loading tests, at four different load levels, were performed on a thin asphalt layer covering a granular structure. Raw data were collected directly from the sensors and compared with the output rendered by the device software (see figure 259).
Figure 258. Photos. Test setup.

Figure 259. Graphs. Sample of recorded raw geophone data.

The use of numerical integration of acceleration or velocity information from inertial sensors to obtain position information inherently causes errors to grow with time, commonly known as “integration drift.” The main problem is that integrating a signal contaminated with noise and drift leads to an output that has an RMS value that increases with integration time even in the absence of any motion of the sensor. For a single integration, the errors are a function of the duration of the signal. For that reason, estimation of deflections using inertial sensors is usually performed with the help of externally reference-aided sensors or sensing systems, or prior knowledge about the motion to correct for the drift. With aided sensors or sensing systems, KFs or EKFs are commonly used to fuse different sources of information in an attempt to correct for the drift.
For real-time compensation, zero-phase adaptive filtering algorithms are employed. These algorithms are based on truncated Fourier series such as weighted-frequency Fourier linear combiner (WFLC) or band-limited multiple Fourier linear combiners (BMFLCs), which can detect periodic or quasi-periodic signals. These algorithms can estimate desired periodic signals from a mixture of desired periodic signals and undesired signals without altering the phase and magnitude of the desired periodic signal. However, to achieve satisfactory accuracy of the estimate, the WFLC and the BMFLC have limitations—the magnitude of the undesired signals compared with that of the desired periodic signal cannot be too large. Because the magnitude of the integration drift is too large compared with that of the periodic signal, the algorithms are not well suited for the problem of drift.

For the tests performed, the research team needed to obtain drift-free deflection estimates of the quasi-periodic motion using the geophone sensor without employing other aided sensors or sensing systems. An example of the effects induced by the numerical integration is shown in figure 260. The methods used to obtain the test results are based on linear high-pass filtering of drifted position by selecting a cutoff frequency between the frequencies of low-frequency drift signals and that of the periodic motion, which had relatively high frequency (the effect of the cutoff frequency selection is shown in figure 261). A specific cutoff frequency was selected for each dataset. Optimal values were used to obtain the final result shown in figure 262 and figure 263. One of the issues observed was that linear filtering inherently introduced phase shift and attenuation, resulting in inaccurate deflection-amplitude estimates. A combination of linear filtering and WFLC was used. The integrated signal was filtered using a high-pass linear filter. The filtered signal, which was the phase-shifted and amplitude-modified version of the actual desired signal, was then estimated using WFLC algorithms. The estimate of the actual periodic signal was recovered from the phase-shifted and modified estimate by compensating for the phase-shift and amplitude alteration introduced by the filter.

![Figure 260. Graph. Example of numerical drift resulting from integration of raw geophone data.](image)
Figure 261. Graphs. Illustration of the windowing and filtering procedure and the observed effects on the raw velocity data: frequency content of the velocity signal (left) and effect of the selected cutoff frequency on the signal magnitude as a source of errors (right).

Figure 262. Graphs. Comparison between the filtered and treated seismometer data rendered by the device software and the integrated unfiltered geophone data (left); and integrated and filtered geophone data showing post-peak effects due to propagation of cumulative errors (right).
Seismometer—Field Evaluation

The FWD system (owned by the MDOT), which uses seismometers, was outfitted with a laser for direct deflection measurements. Loading tests, at four different load levels, were performed on a section of a local road. Raw data were collected directly from the laser and compared with the output rendered by the commercial software used.

The laser was mounted on a beam that was attached to the ground on the roadside (see figure 264). The objective was to isolate the beam from the effects of the vibrations in the pavement.

Given the high accuracy of the laser system, even small vibrations are picked up in the signal. For the tests performed, a poor SNR was observed. The measurements from the laser had to be filtered and adjusted. An example is shown in figure 265.

As figure 265 shows, the post peak fluctuations rendered in the laser signal were not included in the KUAB signal, which was cut off at 120 ms. More important, the difference in deflection time
histories seemed to be much larger in the post peak region. This would seem to confirm anecdotal assertions made by FWD specialists over the years.

Figure 264. Photos. FWD test setup: view of the beam used for mounting the laser (top left), close-up view of mounted laser (top right), and view of laser sensor setup (bottom).

Figure 265. Graph. Comparison between the seismometer data rendered by the KUAB software and the filtered and treated laser data measured for a 9,500-lbf load.
CONCLUSION

This chapter describes a set of experimental procedures conducted both in the laboratory and in the field using seismometers, geophones, and accelerometers. The experiments were designed to evaluate the performance of the sensors in terms of accuracy and sensitivity, with the objective of including the effects of these parameters in the tools described in previous chapters.

Based on the observations, the following issues were discussed:

- The need for a fixed reference system.
- The difficulty of achieving a “fixed mass” for seismometers, which are highly sensitive to calibration.
- The reliance of geophones on external corrections for the displacement of the sensor bar, which is very susceptible to numerical errors (double integration, etc.).
- Maintenance of sensitivity over the entire frequency content of the motion, which cannot be done.
- The problems that both seismometers and geophones have at low frequency (especially geophones), which is crucial when measuring pavement deflections.

In addition, a study was presented to illustrate the effects of numerical integrations and drifts, confirming their significant influence on the output results.

For all the tests presented, a high-precision laser system was used in the experimental setups as a reference system and also to evaluate limitations on potential recommendation of its use in FWD systems. Even though the laser system performed flawlessly under laboratory conditions and was successfully used as a reference for characterizing the other devices, it was much more difficult to use in the field. Given the high accuracy of the laser, even small vibrations were picked up in the signal. Therefore, field measurements from the laser also had to be filtered and adjusted. The advantages of using a laser were mainly that it eliminated all the undesirable effects from numerical artifacts because it directly measured the deflection. This is similar to seismometers but with the added advantage that it was a noncontact method so there were no seating errors. The main disadvantage was that lasers still needed a fixed reference in the system to extract the pavement’s true surface motion. This could be achieved by either disconnecting the rigid bar that holds the sensors away from the FWD machine frame, thus isolating the frame from the vibration noise, or by placing an external reference mechanism away from the influence of the deflection basin induced by the load drop. The external reference could be position sensors that track the movement of the beam holding the sensors. This was previously done using accelerometers but would not solve the problem because it would require a double integration for the accelerometer data.

Geophones have the advantage of not requiring an added reference, but it was shown in the studies reported in this chapter that data were relatively less reliable post-peak. Geophones are based on the inertia of a suspended mass, which means they have performance issues at low
frequencies. Furthermore, the requirement for a numerical integration induces several numerical artifacts such as errors in post-peak amplitude and drifts.

The issue with time synchronization between the load and the measurements output was an easy technological fix. The focus of existing FWD systems has been to determine the response peaks, which are not affected by the synchronization problem. This becomes important when the whole time response is of interest. This issue could be resolved by adding a position sensor that records the exact position of the dropping mass. The position sensor should be connected to the same data acquisition system as all the sensors so that it uses the same timer.
CHAPTER 7. CONCLUSIONS

SUMMARY OF FINDINGS

LTPP Data Analysis

A detailed sensitivity analysis on a relatively large sample of FWD test results from the LTPP database was conducted to determine the following: (1) prevalence of dynamics, (2) how prevalence of nonlinear behavior, and (3) measurement issues based on apparently erroneous deflection sensor time histories. The data covered all climatic zones, seasons, and temperature ranges. It was observed that dynamics were present in about 65 percent of the cases, while nonlinearity could be prevalent in a range from as low as 24 percent of the cases to as high as 65 percent of the cases, depending on severity level and sensor location. Nonlinearity was more prevalent for the sensors that were far from the center of the load. Because of the prevalence of dynamic behavior (in the form of free vibrations of deflection sensor time histories) observed in the large sample of LTPP FWD test data, it was hypothesized that in the great majority of the cases, the stiff layer condition might not correspond to the presence of shallow bedrock. Such bedrock would be highly unlikely given that it typically lies at much greater depths. Instead, the stiff layer condition could manifest anytime the soils below the subgrade layer are stiffer than the subgrade layer itself. This could be caused by increased confinement with depth, overconsolidation, or existence of shallow groundwater table for example; these situations are very common in any soil profile. This would explain the high percentage of sections from the LTPP database that showed dynamic behavior.

Viscoelastic Approach

As part of this effort, two multilayered viscoelastic algorithms were developed. The first algorithm (called LAVA/LAVAP) assumes the AC layer as a linear viscoelastic material and unbound layers as linear elastic. The second algorithm (called LAVAN) also assumes the AC layer as a linear viscoelastic material; however, it can consider the nonlinear (stress-dependent) elastic moduli of the unbound layers. These two models were used to develop two GA-based backcalculation algorithms (called BACKLAVA/BACKLAVAP and BACKLAVAN) for determining the $E(t)$ or $|E^*|$ master curve of AC layers and unbound material properties of in-service pavements.

The research team drew the following conclusions:

- Viscoelastic properties of AC layer can be obtained using a two-stage scheme. The first stage is an elastic backcalculation to determine unbound layer properties, which is followed by viscoelastic backcalculation of $E(t)$ of the AC layer while keeping the unbound layer properties fixed.

- The examples presented in this study show that, in the case of the presence of considerable dynamic effects, the algorithms (BACKLAVA and BACKLAVAN) should be used with caution or use the dynamic backcalculation algorithm (DYNABACK-VE). The algorithms presented in chapter 4 predict the behavior of flexible pavement as a viscoelastic damped structure, assuming it to be massless.
For the GA backcalculation procedures, the following population and generation sizes are recommended:

- For the BACKLAVA model, use a set of FWD tests run at different (but constant) AC layer temperatures with a population size of 70 and 15 generations.
- For the BACKLAVAP model, use a single FWD test with a known AC temperature profile and a population size of 300 and 15 generations.
- For the BACKLAVAN (nonlinear) model, use FWD tests run at different (but constant) AC layer temperatures and a population size of 100 and 15 generations.

Dynamic Viscoelastic Approach

A new solution and its associated computer program were developed for dynamic viscoelastic time-domain backcalculation of multilayered flexible pavement parameters under FWD tests in the time domain. The method uses a time-domain viscoelastic solution as a forward routine (ViscoWave-II) and a hybrid routine (DYNABACK-VE: GA and modified LM method) for backcalculation analysis. For the GA-based backcalculation procedure, the research team recommends using DYNABACK-VE with a population size of 300 and a number of generations of 15. The advantage of the new solution is that it can analyze the response of pavement systems in the time domain and can therefore accommodate time-dependent layer properties and incorporate wave propagation. Also, because the backcalculation is performed in the time domain, the algorithm is not sensitive to truncation in the deflection time histories. The new algorithm is capable of backcalculating layer moduli, including the master curve of the AC layer at every reduced time and the depth to the stiff layer and its modulus value, if it exists. The results using simulated deflection time histories and field FWD data show excellent stability and accuracy.

The sensitivity of dynamic backcalculation solutions to signal noise and synchronization problems is high. The remedy to noise is to preprocess the raw data by filtering out the high-frequency content of the signal (anything above 100 Hz) in deflection and load pulse data. Also, in the analysis presented in chapter 5, the percent error between the computed and measured displacement was used as the minimizing error. If percent error were used as the minimizing objective, it could lead to overemphasis of lower magnitudes of deflections at the later portion of the time history, which typically includes noise and integration errors. Hence another fit function was proposed in which the percent error was calculated with respect to the peak of deflection at each sensor. This de-emphasized the tail data by normalizing them with respect to the peak.

If synchronization problems occur, the dynamic backcalculation algorithm may not work as well, although one could shift the signals similar to what was done in the quasi-static viscoelastic solution (chapter 4). Because the quasi-static solution presented in chapter 4 is already coded to remove the time delay between sensors, the research team recommends the use of BACKLAVA instead of DYNABACK-VE when such a synchronization problem exists.

The results from dynamic analyses clearly showed the superiority of a fully dynamic solution with a viscoelastic AC layer modulus in predicting deflection responses that are in line with the physical reality, as evidenced by the close match in the details of the deflection time histories.
between theory and observation. The theoretical predictions from ViscoWave-II showed very good agreement with the measured deflection time histories. The fact that theory and measurement showed the same behavior with time was proof that these observations were physically real. This is important in that it reinforces the following: (1) a comprehensive model that takes into account viscoelasticity of the AC layer, damping in the unbound layers and dynamics in terms of inertial and wave propagation effects can explain the measured data with all their complexities; and (2) the FWD sensor measurements, if properly calibrated, can show the physical behavior for most of the time range, with the exception of the drift problems at the tail of the records.

In contrast, the layered viscoelastic solution cannot simulate the true deflection time histories because it cannot account for inertial and wave propagation effects. As such, it cannot predict the time delays in the response, the initial rebounds of the farther sensors and the free vibrations after the load is applied. Also, the layered viscoelastic solution significantly underestimates the deflections when a stiff layer is presented. This is because it cannot account for dynamic amplification caused by the wave energy trapped in the unbound layers when a stiff layer condition exists.

Practical Implications and Recommendations

The research team makes the following recommendations regarding FWD data collection, based on both viscoelastic and dynamic analyses conducted in this study:

- Careful collection of FWD deflection data is crucial. The accuracy of the deflection time history needs to be improved. As a minimum, a highly accurate deflection time history at least until the end of the load pulse duration is needed for the $E(t)$ or $|E^*|$ master curve backcalculation. The longer the duration of the deflection time history, the better.

- The temperature of the AC layer needs to be collected during the FWD testing. Preferably, temperatures should be collected at every 2 inches of depth of AC layer.

- Either a single FWD run on an AC with a large temperature gradient or FWDs run at different temperatures can be sufficient to compute the $E(t)$ or $|E^*|$ master curve of asphalt pavements. Moreover, in chapter 5, in the subsection Effect of Pulse Width on Backcalculation Results, it was shown that increasing the pulse duration will improve the backcalculation results and therefore, there is no need to run FWDs at different temperatures. However, a temperature profile is still needed to be able to backcalculate the shift factors for the master curve.

- For backcalculation using multiple FWD test datasets, tests should be conducted at a minimum of two different temperatures, preferably 18 °F or more apart. FWD data collected at a set of temperatures between 68 and 104 °F will maximize the accuracy of backcalculated $E(t)$ or $|E^*|$ master curve up to less than a 10-percent error.

- For backcalculation using single FWD test dataset at a known AC temperature profile, the FWD test should be conducted under a temperature gradient of preferably ±9 °F or more.
• An FWD configuration composed of multiple pulses will improve the accuracy of the $E(t)$ master curve prediction. However, to obtain the time-temperature shift factor coefficients, either temperature variation with depth needs to be measured (and included in the analysis) or the FWD test (with multiple pulses) needs to be run at different pavement temperatures (e.g., different times of the day). While testing using multiple pulses or elongated pulses allows calculation of $E(t)$ at longer durations, testing at lower or higher temperatures (with respect to the reference temperature) essentially means shrinking or elongating the loading pulse in reduced time domain and hence may be sufficient.

• The influence of unbound layer properties increases with incorporation of data from farther sensors and with increase in test temperature. All sensors in the standard FWD configuration are needed for accurate backcalculation of the viscoelastic AC layer and unbound layers.

FWD Equipment Analysis

A set of experimental procedures, conducted both in the laboratory and in the field, were performed using seismometers, geophones, and accelerometers. The experiments were designed to evaluate the performance of the sensors in term of accuracy and sensitivity, with the objective of including the effects of these parameters in the tools studied in earlier chapters of this report.

Based on the observations, the following issues were discussed:

• The need for a fixed reference system.

• The difficulty of achieving a “fixed mass” for seismometers, which are highly sensitive to calibration.

• The reliance of geophones on external corrections for the displacement of the sensor bar, which is very susceptible to numerical errors (double integration, etc.).

• Maintenance of the sensitivity over the entire frequency content of the motion, which cannot be done.

• The problems that both seismometers and geophones have at low frequency (especially geophones), which is crucial when measuring pavement deflections.

In addition, a study was presented to illustrate the effects of numerical integrations and drifts, confirming their significant influence on the output results.

For all the tests presented, a high-precision laser system was used in the experimental setups as a reference system and also to evaluate limitations on potential recommendation of its use in FWD systems. Even though the laser system performed flawlessly under laboratory conditions and was successfully used as a reference for characterizing the other devices, it was much more difficult to use it in the field. Given the high accuracy of the laser, even small vibrations were picked up in the signal. Therefore, field measurements from the laser also had to be filtered and adjusted. The advantages of using a laser were mainly that it eliminated all the undesirable effects from
numerical artifacts because it directly measured the deflection. This is similar to seismometers but with the added advantage that it was a noncontact method so there were no seating errors. The main disadvantage was that lasers still need a fixed reference in the system to extract the true pavement’s surface motion. This could be achieved by either disconnecting the rigid bar that holds the sensors from the FWD machine frame, thus isolating the frame from the vibration noise, or by placing an external reference mechanism away from the influence of the deflection basin induced by the load drop. The external reference could be position sensors that track the movement of the beam holding the sensors. This was previously done using accelerometers but would not solve the problem because it would require a double integration for the accelerometer data.

Geophones have the advantage of not requiring an added reference, but it was shown in studies reported in chapter 6 that data were relatively less reliable post-peak. Geophones are based on the inertia of a suspended mass, which means that they have performance issues at low frequencies. Furthermore, the requirement for a numerical integration induces several numerical artifacts such as errors in post-peak amplitude and drifts.

The issue with time synchronization between the load and the measurements output was an easy technological fix. The focus of existing FWD systems has been to determine the response peaks, which are not affected by the synchronization problem. This becomes important when the whole time response is of interest. This issue could be resolved by adding a position sensor that records the exact position of the dropping mass. The position sensor should be connected to the same data acquisition system as all the sensors so that it uses the same timer.

IMPLEMENTATION RECOMMENDATIONS AND FUTURE RESEARCH

The tools developed in this project are standalone applications that could be used on most computers. The following four time-domain backcalculation software products were developed:

- **BACKLAVA**: Backcalculation algorithm for a constant AC layer temperature.
- **BACKLAVAP**: Backcalculation algorithm for a temperature profile in an AC layer.
- **BACKLAVAN**: Backcalculation algorithm for a viscoelastic AC layer and nonlinear base layer.
- **DYNABACK-VE**: Backcalculation algorithm for a viscoelastic AC layer (with temperature profile).

All these tools are engineering software applications that allow the user to backcalculate the master curve of the AC layer (four sigmoidal coefficients and two time-temperature shift factors) and the resilient moduli for the unbound base/subbase and subgrade materials. DYNABACK-VE could also backcalculate the modulus of the stiff layer and the depth to the stiff layer, if one is present.

With good seed values for the moduli (e.g., previous information about the moduli), one could also implement a simple gradient-based method along with LAVA, LAVAP, LAVAN, and ViscoWave-II as forward routines. If the measured deflections are reasonably free from errors, a simple RMS objective function can be selected; otherwise, it is better to first apply any remedies.
as discussed in chapter 2, (subsection Review of Status of FWD Data Collection, Analysis, and Interpretation) before running the program.

Owing to the searching method used, DYNABACK-VE could take more time to run compared with current backcalculation programs. Thus, continued study is needed on reducing the runtime of the program. For example, the current version of DYNABACK-VE takes approximately the following times on various computers:

- Three min on a 2-core processor with 64-bit operating system.
- Forty-five s on a 4-core processor with 64-bit operating system.
- Twenty-two s on an 8-core processor with 64-bit operating system.
- Six s on a 60-core processor with 64-bit operating system.

These translate to backcalculation runs of approximately the following times and costs:

- Forty-three h on a 2-core processor with 64-bit operating system (approximately $200).
- Eleven h on a 4-core processor with 64-bit operating system (approximately $1,000).
- Six h on an 8-core processor with 64-bit operating system (approximately $2,000).
- Two h on a 60-core processor with 64-bit operating system (approximately $2,800).

As shown in this study, the influence of the parameters in the GA (size of population, number of generations, mutation rate, etc.) on the backcalculation procedure is significant, which could be an interesting topic for future study. Recently, a variety of optimization techniques have been developed with several advantages and disadvantages. A comparative study of these techniques could help better understand the moduli optimization and improve the backcalculation method. In addition, while the approach in this effort has assumed the layer thickness is known, DYNABACK-VE could be extended in the future to reliably backcalculate layer thicknesses as well. Also, the current DYNABACK-VE program assumes linear elastic pavement layers. The nonlinearity of unbound layers should be considered in the backcalculation procedure, especially under high surface loads. The algorithm could also be improved to consider the thermal effect in future versions.
APPENDIX A. DEVELOPMENT OF NONLINEAR VISCOELASTIC MODEL USING k-θ NONLINEARITY

DEVELOPMENT OF A LAYERED ELASTIC ALGORITHM WITH NONLINEAR UNBOUND LAYERS

Introduction

Unbound layers typically exhibit nonlinearity, i.e., their responses are affected by the state of stress. This stress includes the induced stress due to the applied load on the surface and the geostatic stress. Software programs such as KENLAYER and MICHPAVE consider the constitutive equation between resilient modulus and stress invariants as that shown in figure 266.

\[E = k_1 \theta^k_2 \]

Figure 266. Equation. Relationship between resilient modulus and stress invariants.

Where:
\[\theta = \sigma_1 + \sigma_2 + \sigma_3 + \gamma z(1 + 2K_0) \]

\[k_1 \text{ and } k_2 = \text{material constants.} \]

\[K_0 = \text{the coefficient of earth pressure at rest.} \]

\[\sigma_1, \sigma_2, \text{ and } \sigma_3 = \text{principle stresses.} \]

MICHPAVE is a FEM-based software program and hence can consider both the radial and vertical nonlinearity in calculations, whereas KENLAYER (being a “layered” algorithm) can consider only the vertical nonlinearity. In KENLAYER, the elastic nonlinearity is solved iteratively assuming an initial set of elastic moduli. The developed algorithm used in this section is similar to KENLAYER in that the evaluated stresses obtained using the current values of moduli are used to evaluate a new set of moduli using the equation in figure 266 iteratively. Note that the appropriate stress adjustments were made because unbound granular material cannot take tension. This means that in such a case, a residual stress would be generated that should make the stress zero or such that it would obey the yield criterion.

The algorithm developed to obtain response in nonlinear system was compared with the more robust nonlinear FEM software program MICHPAVE. Two cases were considered. In the first case, the unbound layer was considered as a single layer for nonlinearity calculations (algorithm 1), and in the second case, the layer was divided into two sections (algorithm 2). The pavement section used in the analysis is described in table 65.

Table 65. Pavement section used in the nonlinear comparison analysis.

<table>
<thead>
<tr>
<th>Physical Layer</th>
<th>Modulus</th>
<th>Thickness (inches)</th>
<th>Poisson’s Ratio</th>
<th>Density (pcf)</th>
<th>K_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (Elastic)</td>
<td>$E(t)$ psi</td>
<td>6</td>
<td>0.45</td>
<td>138</td>
<td>0.6</td>
</tr>
<tr>
<td>Base (Nonlinear)</td>
<td>Nonlinear: $k_1=11,450$, $k_2=0.33$</td>
<td>20</td>
<td>0.35</td>
<td>121</td>
<td>0.6</td>
</tr>
<tr>
<td>Subgrade (Elastic)</td>
<td>25,500 psi</td>
<td>Infinity</td>
<td>0.45</td>
<td>130</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Results and Discussion for Layered Elastic Algorithm With Nonlinear Unbound Layer

Results for surface deflection at the center of the load \(r = 0 \) inches at contact pressures of 10, 30, 60, and 80 psi are shown in figure 267. From the figure, it can be seen that the deflections obtained from the developed algorithms 1 and 2 match well at all the load values. This means that subdividing the 20-inch base layer into two layers and computing the nonlinear deflections on the surface did not produce an improvement in the results.

![Graph](image_url)
Figure 267. Graph. Results for multilayer nonlinear structure surface deflection at the center of the load \(r = 0 \) inches.

NONLINEAR VISCOELASTIC ANALYSIS USING k-θ MODEL

Introduction

For the multilayered viscoelastic nonlinear pavement model to follow Fung’s QLV nonlinearity model, it should satisfy figure 63 through figure 66. However, it was shown that these conditions are not satisfied for k-θ-τ type of nonlinearity. Subsequently, a generalized form of QLV model was used to develop a nonlinear viscoelastic pavement response model for k-θ-τ type nonlinearity.

In this section, the same analysis is presented for the k-θ model, shown as in figure 268.

\[
M_r = k_1 \left(\frac{\theta}{P_a} \right)^{k_2}
\]

Figure 268. Equation. Resilient modulus.
As the first step it was shown that Fung’s model of nonlinear viscoelasticity was not applicable for this type of nonlinearity. Subsequently, the LAVA algorithm was modified to implement the granular base nonlinearity using the iterative solution for the pavement properties shown in table 66.

Table 66. Pavement section used in the nonlinear viscoelastic validation of k-θ model.

<table>
<thead>
<tr>
<th>Physical Layer</th>
<th>Modulus</th>
<th>Thickness (inches)</th>
<th>Poisson’s Ratio</th>
<th>Density (pcf)</th>
<th>$K_{θ}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (viscoelastic)</td>
<td>$E(t)$ sigmoid constants: 1.598, 2.937, 0.512, -0.562</td>
<td>5.9</td>
<td>0.35</td>
<td>130</td>
<td>0.6</td>
</tr>
<tr>
<td>Base (nonlinear)</td>
<td>Nonlinear: $k_1 = 3.626, k_2 = 0.5$</td>
<td>9.84</td>
<td>0.4</td>
<td>130</td>
<td>0.6</td>
</tr>
<tr>
<td>Subgrade (linear)</td>
<td>10,000 psi</td>
<td>Infinity</td>
<td>0.4</td>
<td>130</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 269 shows the variation of $g(\sigma)$ calculated using the procedure already explained in the section in chapter 4 entitled Layered Viscoelastic Nonlinear (LAVAN) Pavement Model. From the figure, it can be seen that similar to the results obtained for k-θ-τ nonlinearity, the $g(\sigma)$ values decreased with increasing stress (σ). This shows that $g(\sigma)$ was not solely based on the stress, and Fung’s model cannot be used in a layered pavement structure.

Subsequently, similar to the k-θ-τ model, the k-θ model was also implemented in the proposed generalized QLV algorithm and was analyzed on a 35-ms haversine load (synthetic FWD pulse load). As shown in table 58, the section properties were kept the same as used for k-θ-τ model. Two HMA mix properties were considered: control and CRTB (for mix properties refer to figure 73). Again stresses at two radial distance $r = 0$ and $3.5a$ within the center of the layer (vertically) were used in calculating unbound base modulus value. In the first trial, the modulus value of unbound granular material in LAVA was calculated using stress state at $r = 0$. In the second trial, the modulus value of unbound granular material in LAVA was calculated using stress state at $r = 3.5a$.

![Figure 269. Graph. Variation of $g(\sigma)$ with stress and $E(t)$ of AC layer.](image)
Results and Discussion for Nonlinear Viscoelastic Model Using k-θ Nonlinearity

Figure 270 (top) and figure 271 (top) show the results when \(r = 0 \) was used in LAVAN, whereas Figure 270 (bottom) and figure 271 (bottom) show the results when \(r = 3.5a \) was used in LAVAN. The difference between the ABAQUS and LAVAN was quantified using the two variables \(PE_{peak} \) and \(PE_{avg} \) defined earlier for k-θ-τ model in figure 78 and figure 79, respectively. Because the model integrated both viscoelastic and nonlinear material properties, both peak deflection as well as creeping of deflection should be predicted with accuracy. \(PE_{avg} \) was used to examine the model performance in creeping.

Figure 270. Graphs. Comparison of ABAQUS and LAVAN for nonlinear viscoelastic structure for the control mix where (top) LAVAN uses stress at \(r = 0 \), and (bottom) LAVAN uses stress at \(r = 3.5a \).
Figure 271. Graphs. Comparison of ABAQUS and LAVA for nonlinear viscoelastic structure for the CRTB mix where (top) LAVAN uses stress at $r = 0$ and (bottom) LAVAN uses stress at $r = 3.5a$.

As seen in figure 272, slight improvement was observed in PE_{peak} values for the control mix when stress at $r = 3.5a$ was used to obtain a resilient modulus. However, PE_{peak} values for CRTB (figure 273) showed a different trend, where first three sensors exhibited lower errors when $r = 0$ was used. The rest of the sensors did show improvement when $r = 3.5a$ was used. For both the mixes, the creep behavior of the response was well predicted by the model, which can be seen from the low PE_{avg} values in figure 274 and figure 275. However, similar to the k-0-τ results, $r = 0$ produced relatively good results, especially in the first four to five sensors.
Figure 272. Graph. Percent error ($P_{E_{peak}}$) calculated using the peaks of the deflections for LAVAN-ABAQUS comparison (control mix).

Figure 273. Graph. Percent error ($P_{E_{peak}}$) calculated using the peaks of the deflections for LAVAN-ABAQUS comparison (CRTB mix).
Figure 274. Graph. Average percent error (PE_{avg}) calculated using the entire time history for LAVAN-ABAQUS comparison (control mix).

Figure 275. Graph. Average percent error (PE_{avg}) calculated using the entire time history for LAVAN-ABAQUS comparison (CRTB mix).
APPENDIX B. THEORETICAL ANALYSES ON MULTIPLE-PULSE FWD’S IN BACKCALCULATION

As discussed in chapter 4, responses of viscoelastic materials show dependence on time (or frequency), rate of loading, and temperature. The relationship of characteristic viscoelastic properties such as relaxation modulus, creep compliance, and dynamic modulus with time (or frequency) are often expressed at a specific reference temperature, in terms of a master curve. In theory, it should be possible to obtain such a curve if data containing time-changing responses at different temperature levels are known. The available analysis window for the current FWD devices is short, extending up to 25 to 35 ms of stress pulse. However, the recorded information can be used to infer part of the relaxation function. As for temperature information, it is possible to test the same location at different times within a day. Although a series of FWD tests at different temperatures could be useful in developing the entire master curve, in theory the prediction can be improved if information at different rates of loading or over a larger time interval were known. In this appendix, these possibilities are explored. Note that backcalculation in this appendix was performed using the MATLAB® optimization function fminsearch.

BACKCALCULATION USING MULTIPLE PULSES AT DIFFERENT FREQUENCIES

To illustrate the possibility of exploiting information from multiple frequencies in backcalculation of the damaged HMA master curve, two examples are presented. In the first, a typical FWD pulse was backcalculated, and in the second example, multiple FWD pulses at different frequencies were backcalculated. For these two examples, forward computations were performed using a known \(E(t) \) to compute the deflection basin. Figure 276 shows the \(E(t) \) master curve that was used in these examples. For simplicity, the AC layer temperature was assumed to be equal to the reference temperature of the master curve \((T_{\text{ref}} = 66.2 \, ^{\circ}\text{F}) \); therefore, \(t_R = t = \text{actual time} \).

![Figure 276. Graph. \(E(t) \) used to compute the deflection basin in examples 1 and 2.](image)
Example 1—Typical FWD Pulse

In this example, to simulate a typical FWD pulse, a haversine loading with a duration of 35 ms, followed by a rest period of 35 ms, was simulated (figure 277 (left)). Figure 277 (right) shows the resulting deflection basin at different radial distances from the centerline of the load.

![Figure 277. Graphs. FWD deflection history for example 1.](image)

In this example, the only unknown parameter was the $E(t)$ master curve of the AC layer. Other parameters, such as unbound layer modulus, Poisson’s ratio, and thicknesses of AC and unbound layers, were known. In addition, a constant Poisson’s ratio of 0.35 was assumed for the AC layer. Initially, a random number generator was used to determine the initial sigmoid constants. Figure 278 (left) shows the initial sigmoid coefficients and the resulting initial $E(t)$ curve, which was quite different from the actual $E(t)$ curve. Such an initial difference was important to ensure that the backcalculation procedure worked accurately without depending on the initial values. Backcalculation results at the starting and the ending stage of optimization are shown as continuous line in the figure. Figure 278 (right) shows the final backcalculation results obtained at the end of the optimization, where a very good agreement was observed. Figure 279 shows the backcalculated $|E^*|$ and ϕ values, along with the actual values. Consistent with $E(t)$, a good match between the backcalculated and actual values was obtained at frequencies higher than 10^{-3} Hz in both $|E^*|$ and ϕ. However, curves diverged at lower frequencies. This was not unexpected because only the early portion of the $E(t)$ curve was used in calculation of deflection history shown in figure 276. Later portions of the $E(t)$ curve (and $|E^*|$ and ϕ values at low frequencies) can be obtained by increasing the pulse duration or using a different form of stress history, which is shown in the next example.

![Figure 278. Graphs. $E(t)$ and deflection history at the initial (left) and final (right) backcalculation stage in example 1.](image)
Example 2—Cyclic Pulses With Two Different Frequencies

In this example, four successive pulses with durations of 35 ms, followed by four pulses with 10 s durations, were simulated to generate the deflection basin (figure 280). This example was used to investigate whether a different loading history could result in better estimation of $E(t)$. Figure 281 shows the backcalculated $E(t)$, where a much better fit can be seen. Note that the accuracy of the backcalculated $E(t)$ depended on the duration of the stress pulse, where longer duration allowed calculation of $E(t)$ at longer durations. It was also important to apply high-frequency (short duration) pulse load to increase the accuracy of $E(t)$ at very short times. Backcalculation of $E(t)$ for this example took less than 5 min. Figure 282 shows the backcalculated $|E^*|$ and phase angle master curves, where a much better match can be seen compared with example 1.
Figure 280. Graphs. Applied stress and resulting deflection basin for example 2.

Figure 281. Graph. Backcalculated $E(t)$ using multiple stress pulses.
BACKCALCULATION USING SERIES OF MULTIPLE-PULSE FWDS AT CONSTANT FREQUENCY AND DIFFERENT TEMPERATURE

The theoretical FWD stress history shown in figure 283 was used to investigate whether a loading history with multiple pulses at constant frequency could improve the backcalculation results. First, deflection time histories were computed at several temperatures using LAVA. Then, BACKLAVA was used to backcalculate the $E(t)$ master curve. Two examples are shown. In the first, three successive pulses with durations of 80 ms, followed by a rest period of 760 ms, were simulated to generate deflections. In the second, only the initial three successive pulses were used, and deflection over the remainder of the period was ignored.

Figure 282. Graphs. Comparison of backcalculated and actual $|E^*|$ and master curves for example 2.
Figure 283. Graph. Stress history used in the constant frequency multiple pulse analysis.

Example 1

The LAVA algorithm was used to compute deflection histories resulting from the loading shown in figure 283 at the temperatures 50, 86, 104, 140, 176, 212, and 248 °F. Measured and backcalculated responses for temperatures 50, 86, 104, and 140 °F are shown in figure 284. The backcalculated $E(t)$ curve after 1 h 7 min is shown in figure 285. The results obtained for the backcalculation using multiple pulses were encouraging because of the increased time and relaxation due to the stress history.
Figure 284. Graphs. Deflection at different sensors at different temperatures in example 1.

Figure 285. Graph. Result for backcalculated $E(t)$ curve in example 1.

Example 2

In example 2, the problem was solved only for the pulse duration; the relaxation trend was omitted. The problem was solved for a temperature set of 32, 50, 68, 86, 104, 122, 140, 158, 176, 194, 212, 230, and 248 °F. The backcalculated $E(t)$ values for example 2 at 1 h 7 min are plotted
in figure 286. Measured and backcalculated deflection histories for temperature 32, 50, 68, and 86 °F are shown in figure 287.

Figure 286. Graph. Result for backcalculated $E(t)$ curve for example 2.

Figure 287. Graphs. Deflections at different sensors at different temperatures for example 2.

Note that the accuracy of the backcalculated $E(t)$ curve depended on the duration and temperature of the stress pulse loading. Inclusion of high temperatures along with an elongated stress pulse in the theoretical analysis allowed calculation of $E(t)$ at longer durations. It can be
seen from figure 285 and figure 286 that the backcalculated $E(t)$ curve obtained from using both truncated and nontruncated deflection curves showed good prediction. However, a much more accurate predicted $E(t)$ curve up to 10^5 s was obtained when nontruncated deflection curves were used in backcalculation.

CONCLUSIONS

The results from the four examples presented in this appendix suggest that including FWD pulses or multiple frequencies in backcalculation may improve the accuracy of the $E(t)$ master curve prediction. The improvement in backcalculated $E(t)$ master curve could be for two possible reasons—an increase in the deflection time history and a different rate of loading. However, more comprehensive theoretical analyses are needed to assert and determine the optimal loading history that should be applied by an FWD. Although the theoretical methods suggested in this appendix clearly have potential to improve the ability of BACKLAVA in predicting $E(t)$ master curve, the methods have the following limitations:

- Increasing the number of FWD pulses (i.e., the frequency content) increases the computational time of the backcalculation, making it computationally expensive.

- Different frequencies in the loading history alone cannot be used to obtain both the time and temperature properties of the HMA layer, which are needed for complete characterization of the HMA layer.
APPENDIX C. THEORETICAL DEVELOPMENT OF A TIME-DOMAIN FORWARD SOLUTION

GOVERNING EQUATIONS FOR VISCOELASTIC WAVE PROPAGATION

Similar to any other wave propagation problems, the proposed solution began with the classical equation of motion for a continuous medium as shown in figure 288.\(^\text{(101)}\)

\[\nabla \cdot \sigma + b = \rho \ddot{u} \]

Figure 288. Equation. Equation of motion for a continuous medium.

Where:
- \(\sigma\) = the stress tensor.
- \(b\) = the vector of body forces per unit volume.
- \(\rho\) = the mass density of the material.
- \(u\) = the displacement vector.

According to the theory of linear elasticity, the stress-strain relationship for a linear, homogenous, and isotropic material is obtained from the generalized Hooke’s law, as shown in figure 289.

\[\sigma = \lambda \text{tr}(\varepsilon)I + 2\mu \varepsilon \]

Figure 289. Equation. Stress-strain relationship for a linear, homogenous, and isotropic material.

Where:
- \(\varepsilon\) = the strain tensor.
- \(\lambda\) and \(\mu\) = the lamé constants.
- \(I\) = the identity tensor.

The strain tensor in figure 289 is related to the displacement vector according to the equation in figure 290.

\[\varepsilon = \frac{1}{2} \{ \nabla u + (\nabla u)^T \} \]

Figure 290. Equation. Strain-displacement relationship for a linear, homogenous, and isotropic material.

For a viscoelastic material such as an AC mixture, the fundamental materials properties—in this case, the lamé constants—as well as the stresses and strains are time dependent and hence, their relationship can be written as the following in reference to the theory of linear viscoelasticity;\(^\text{(68,102,103)}\)
\[\sigma = \lambda \ast \text{tr}(\epsilon) I = 2\mu \ast \epsilon \]

Figure 291. Equation. Stress-strain relationship for a viscoelastic material.

Where the operator \ast between any function \alpha \ast \beta represents the well-known Stieltjes convolution integral defined as shown in figure 292.

\[
\alpha \ast \beta = \int_{0}^{t} \alpha(t - \tau) \frac{\partial \beta(\tau)}{\partial \tau} d\tau
\]

Figure 292. Equation. Stieltjes convolution integral.

Note that the kinematic strain-displacement relationship shown in the equation in figure 290 also applies to linear viscoelastic materials. The only difference from an elastic material is that the displacement and hence the strain are functions of not only the material (or spatial) coordinates but also time. Substituting the equations presented in figure 290 and figure 291 into the equation of motion shown in figure 288, and ignoring the body forces, results in the equation shown in figure 293 in terms of displacements:

\[
(\lambda + \mu) \ast \nabla(\nabla \cdot u) + \mu \ast \nabla^2 u = \rho \ddot{u}
\]

Figure 293. Equation. Equation of motion in terms of displacements.

By means of the Helmholtz decomposition, the displacement vector in figure 293 can be expressed in terms of potentials as shown in figure 294.

\[
u = \nabla \Phi + \nabla \times H
\]

Figure 294. Equation. Displacement vector in terms of potentials.

Where \Phi represent a scalar potential, and \(H\) is a vector potential whose divergence vanishes (i.e., \(\nabla \cdot H = 0\)).

Similar to the spectral element solution provided by Al-Khoury et al., the cylindrical axisymmetric coordinate system shown in figure 295 is employed herein.\(^{(2)}\)
Then, the equations shown in figure 296 and figure 297 are obtained for the potentials by substituting the equation in figure 294 into the equation in figure 293.

\[
(\lambda + 2\mu) \nabla^2 \Phi = (\lambda + 2\mu) \left\{ \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{\partial^2 \Phi}{\partial z^2} \right\} = \rho \frac{\partial^2 \Phi}{\partial t^2}
\]

Figure 296. Equation. Equation of motion in terms of the scalar potential.

\[
\mu \left(\nabla^2 H_\theta - \frac{H_\theta}{r^2} \right) = \mu \left\{ \frac{\partial^2 H_\theta}{\partial r^2} + \frac{1}{r} \frac{\partial H_\theta}{\partial r} + \frac{\partial^2 H_\theta}{\partial z^2} - \frac{H_\theta}{r^2} \right\} = \rho \frac{\partial^2 H_\theta}{\partial t^2}
\]

Figure 297. Equation. Equation of motion in terms of the vector potential.

Where \(H_\theta \) is the tangential and also the only component of \(H \) that does not vanish. By defining \(H_\theta \) as shown in figure 298, it can be shown that the scalar potential \(\psi \) satisfies the wave equation shown in figure 299. The proof can be obtained immediately if the equation in figure 299 is differentiated with respect to \(r \).\(^{(104)}\)
The equations in figure 296 and figure 299 are the wave equations that govern the axisymmetric wave motion in a continuous, linear viscoelastic medium. It is also worthwhile to note that if the Lamé constants, λ and μ, were independent of time (i.e., the material is linear elastic), then the convolution integral in the equations reduce to an arithmetic multiplication and these two equations become the well-known axisymmetric wave equations for a linear elastic material.\(^{(104,105)}\)

Another immediate consequence of adopting the axisymmetric coordinate system is that the displacement component in the tangential direction, u_θ, vanishes.\(^{(105)}\) The remaining deflections can be written in terms of the scalar potentials Φ and Ψ as shown in figure 300 and figure 301.

\[
\begin{align*}
 u_r &= \frac{\partial \Phi}{\partial r} + \frac{\partial^2 \Psi}{\partial r \partial z} \\
 u_z &= \frac{\partial \Phi}{\partial z} - \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r}
\end{align*}
\]

Figure 300. Equation. Relationship between radial displacement and potentials.

Figure 301. Equation. Relationship between vertical displacement and potentials.

The stresses can be written as shown in figure 302 and figure 303.

\[
\begin{align*}
 \sigma_{rz} &= \mu * \frac{\partial}{\partial r} \left\{ 2 \frac{\partial \Phi}{\partial z} - \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} + \frac{\partial^2 \Psi}{\partial z^2} \right\} \\
 \sigma_z &= \lambda * \left\{ \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{\partial^2 \Phi}{\partial z^2} \right\} + 2 \mu * \frac{\partial}{\partial z} \left\{ \frac{\partial \Phi}{\partial z} - \frac{\partial^2 \Psi}{\partial r^2} - \frac{1}{r} \frac{\partial \Psi}{\partial r} \right\}
\end{align*}
\]

Figure 302. Equation. Relationship between shear stress and potentials.

Figure 303. Equation. Relationship between vertical stress and potentials.
SOLUTIONS FOR THE WAVE EQUATIONS IN THE LAPLACE-HANKEL DOMAIN

The solution to the wave equations presented in the previous section can be worked more conveniently by using the integral transforms. Taking the Laplace transform of the equation in figure 296 results in the equation shown in figure 304.

\[s(\lambda + 2\mu) \left\{ \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{\partial^2 \Phi}{\partial z^2} \right\} = \rho s^2 \Phi \]

Figure 304. Equation. Equation of motion in terms of the scalar potential \(\Phi \) in the Laplace domain.

Where \(s \) is the Laplace variable, and \(\tilde{f}(s) = \int_0^\infty e^{-st} f(t) dt \) is the Laplace transform of a function \(f(t) \). Then, taking the Hankel transform (also known as the Fourier-Bessel transform) of order zero defined as \(\tilde{f}(k) = \int_0^\infty \tilde{f}(r) J_0(kr) rdr \) of the equation in figure 304, the equation in figure 305 is obtained.

\[s(\lambda + 2\mu) \left\{ \frac{\partial^2 \Phi}{\partial z^2} - k^2 \Phi \right\} = \rho s^2 \Phi \]

Figure 305. Equation. Equation of motion in terms of the scalar potential \(\Phi \) in the Laplace-Hankel domain.

After a simple rearrangement of the terms, figure 305 can be written as shown in figure 306.

\[\frac{\partial^2 \Phi}{\partial z^2} - \left(k^2 + \frac{s}{\hat{c}_1^2} \right) \Phi = 0 \]

\[\hat{c}_1^2 = \frac{\lambda + 2\mu}{\rho} \]

Figure 306. Equation. Simplified form of the equation in figure 305.

From the equation in figure 306, the solution for the Laplace-Hankel transformed potential function, \(\Phi \), is obtained as shown in figure 307, after dropping the term that develops an unbounded result, i.e., the wave that propagates in the negative \(z \) direction.\(^{(104,105)}\)

\[\Phi = A e^{-z \sqrt{k^2 + \frac{s}{\hat{c}_1^2}}} = A e^{-zf(k,s)} \]

Figure 307. Equation. General form solution of the equation in figure 306.

Where \(A \) is an arbitrary constant.
By following the same mathematical steps shown above, the equation in figure 299 can be rewritten as shown in figure 308.

\[
\frac{\partial^2 \Psi}{\partial z^2} - \left(k^2 + \frac{s}{\bar{c}^2} \right) \Psi = 0
\]

\[
\bar{c}^2 = \frac{\bar{\mu}}{\rho}
\]

Figure 308. Equation. Equation of motion in terms of the scalar potential \(\Psi\) in the Laplace-Hankel domain.

Again, after dropping the term leading to unbounded results, the solution for the transformed potential, \(\bar{\Psi}\), is obtained as shown in figure 209.

\[
\bar{\Psi} = Ce^{-zg(k,s)}
\]

Figure 309. Equation. General form solution of the equation in figure 306.

Where \(C\) is also an arbitrary constant.

To use the solutions obtained above for the transformed potentials, it is also necessary to acquire the equations for the displacements and the stresses in the transformed domain. While taking the Laplace transform of the displacements and the stresses is straightforward, additional attention is needed in taking the Hankel transform because of the spatial symmetry supplied by the cylindrical coordinate system adopted for the solution. Referring back to figure 295, one finds that the displacement at any point on the \(z\)-axis (i.e., when \(r = 0\)) is only allowed to occur in the \(z\)-direction (i.e., \(u_z \neq 0\) when \(r = 0\)) but is confined in the \(r\)-direction (i.e., \(u_r = 0\) when \(r = 0\)), unless the axisymmetric assumption is to be violated. Because of these physical characteristics of the axisymmetric displacements, Hankel transforms of different orders need to be applied to \(u_r\) and \(u_z\).

Figure 310 shows the first few cycles of the Bessel functions of the first kind and of orders zero \((J_0)\) and one \((J_1)\) that make up the kernels of the Hankel transform. The primary difference between the two Bessel functions shown in the figure is that while the Bessel function of order zero \((J_0)\) has a nonzero value at \(r = 0\), the Bessel function of order one \((J_1)\) is equal to zero when \(r = 0\). This implies that the Hankel transform of order zero whose kernel is composed of \(J_0\) is appropriate for transforming the functions that exhibit nonzero values at the origin, whereas the Hankel transform of order one whose kernel is made up of \(J_1\) is more appropriate for transforming the functions that have zero values at \(r = 0\). Therefore, the appropriate Hankel transforms that should be applied to \(u_r\) and \(u_z\) are of orders one and zero, respectively.
Taking the Laplace and the respective Hankel transforms on the displacements \(u_r \) and \(u_z \) shown in figure 300 and figure 301 results in the equations shown in figure 311 and figure 312, respectively.

\[\tilde{u}_r = -k \Phi - k \frac{\partial \tilde{\Psi}}{\partial z} \]

Figure 311. Equation. Relationship between radial displacement and potentials in the Laplace-Hankel domain.

\[\tilde{u}_z = \frac{\partial \tilde{\Phi}}{\partial z} + k^2 \tilde{\Psi} \]

Figure 312. Equation. Relationship between vertical displacement and potentials in the Laplace-Hankel domain.

Note that although the Hankel transform of order one was used to transform \(u_r \) shown in figure 300, the Hankel transform of the potentials shown in figure 311 is still of order zero. This is a consequence of the partial derivative with respect to \(r \) that is present in both terms of the right-hand side of the equation in figure 300 and the property of the Hankel transform shown in figure 313, which associates the first order transform of a function’s derivative to the zero order transform of the original function.\(^{(105,106)}\)

\[\int_0^\infty \frac{\partial \tilde{f}(r)}{\partial r} J_1(kr) r dr = -k \int_0^\infty \tilde{f}(r) J_0(kr) r dr = -k \cdot \tilde{f}(k) \]

Figure 313. Equation. Hankel transform of a function’s derivative.

Subsequently, the Laplace-Hankel transforms need to be carried out on the relevant stresses. Based on the same mathematical arguments presented above for the displacements, the Hankel transforms of orders one and zero should be applied respectively to \(\sigma_{rz} \) and \(\sigma_z \) to allow for a
solution that is compatible with the axisymmetric coordinate system chosen for the solution. After simplifying, the equations shown in figure 314 and figure 315 are obtained.

\[\sigma_{rz} = -sk\hat{\mu} \left\{ 2 \frac{\partial \Phi}{\partial z} + 2 \frac{\partial^2 \Psi}{\partial z^2} - \frac{s}{c_2^2} \right\} \]

\[= -sk\hat{\mu} \left\{ 2 \frac{\partial \Phi}{\partial z} + 2k^2 \Psi + \frac{s}{c_2^2} \Psi \right\} \]

Figure 314. Equation. Relationship between shear stress and potentials in the Laplace-Hankel domain.

\[\bar{\sigma}_z = s\hat{\lambda} \cdot \left\{ -k^2 \Phi + \frac{\partial^2 \Phi}{\partial z^2} \right\} + 2s\hat{\mu} \frac{\partial}{\partial z} \left(\frac{\partial \Phi}{\partial z} + k^2 \Psi \right) \]

\[= \hat{\mu} \frac{s^2}{c_2^2} \Phi + 2sk^2 \hat{\mu} \left(\frac{\partial \Phi}{\partial z} + \frac{\partial \Psi}{\partial z} \right) \]

Figure 315. Equation. Relationship between vertical stress and potentials in the Laplace-Hankel domain.

FORMULATION OF THE STIFFNESS MATRICES FOR THE LAYER ELEMENTS

The solutions presented in the previous section for the scalar potentials in the transformed domain are not readily applicable for a multilayered system such as the one shown in figure 295. To allow for the analysis of a layered system such as an AC pavement, it is necessary to develop the formulations for the layer elements whose underlying concept originates from the FEA method. In this section, two types of layer elements are developed—a two-noded element for a layer with a finite thickness (e.g., the top layer in figure 295) and a one-noded element for simulation of a semi-infinite half-space (e.g., the bottom layer in figure 295).

Two-Noded Element for a Layer With a Finite Thickness

The solutions for the scalar potentials shown in the equations in figure 307 and figure 309 only account for the incident waves that propagate from the upper boundary of a layer in the direction of the positive z-axis, i.e., downward direction in figure 295. However, a layer with a finite thickness also encompasses the waves that reflect from the lower boundary and propagate in the direction of the negative z-axis. To account for these reflected waves, an additional term must be added to each of the potentials, which results in the equations in

\[\Phi = Ae^{-zf} + Be^{-(h-z)f} \]

Figure 316. Equation. Scalar potential \(\Phi \) in the Laplace-Hankel domain.
\[\Psi = Ce^{-zg} + De^{-(h-z)g} \]

Figure 317. Equation. Scalar potential \(\Psi \) in the Laplace-Hankel domain.

Where \(B \) and \(D \) are arbitrary constants, and \(h \) is the layer thickness. Substituting these equations into the equations in figure 311 and figure 312 results in the equations for the displacements within a two-noded element shown in figure 318 and figure 319.

\[\bar{u}_r = -Ake^{-zf} - Bke^{-(h-z)f} - Cge^{-zg} - Dke^{-(h-z)g} \]

Figure 318. Equation. Radial displacement in the Laplace-Hankel domain.

\[\bar{u}_z = -Af e^{-zf} + Bf e^{-(h-z)f} + Ck^2 e^{-zg} + Dk^2 e^{-(h-z)g} \]

Figure 319. Equation. Vertical displacement in the Laplace-Hankel domain.

For the formulation of a layer element, the displacements at the upper and lower boundaries need to be extracted from these equations. The radial and the vertical displacements at the upper boundary, denoted respectively as \(\bar{u}_{r1} \) and \(\bar{u}_{z1} \), can be obtained by substituting \(z = 0 \) in the equations in figure 318 and figure 319. Similarly, the displacements at the lower boundary (\(\bar{u}_{r2} \) and \(\bar{u}_{z2} \)) are acquired by substituting \(z = h \). In matrix form, the resulting equations for the displacements can be written as shown in figure 320.

\[
\begin{bmatrix}
\bar{u}_{r1} \\
\bar{u}_{z1} \\
\bar{u}_{r2} \\
\bar{u}_{z2}
\end{bmatrix} =
\begin{bmatrix}
-k & -k e^{-hf} & k & -kge^{-zg} \\
-f & -fe^{-hf} & k^2 & k^2 e^{-zg} \\
-k e^{-hf} & -k & kge^{-zg} & -kg \\
-fe^{-hf} & f & k^2 e^{-zg} & k^2
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D
\end{bmatrix} = S_1 \cdot \begin{bmatrix}
A \\
B \\
C \\
D
\end{bmatrix}
\]

Figure 320. Equation. Relationship between shape factors and boundary conditions.

It is also necessary to obtain the equations for the stresses. By substituting the equations shown in figure 316 and figure 317 into the equations shown in figure 314 and figure 315, one arrives at the following equations shown in figure 321.

\[\sigma_{rz} = -s\mu k \left\{ -2Af e^{-zf} + 2Bf e^{-(h-z)f} + CKe^{-zg} + DKe^{-(h-z)g} \right\} \]

\[\sigma_z = s\mu (AKe^{-zf} + BKe^{-(h-z)f} + Ck^2 ge^{-zg} + Dk^2 ge^{-(h-z)g}) \]

\[K = 2k^2 + \frac{s}{\epsilon^2} \]

Figure 321. Equation. Shear and vertical stress in the Laplace-Hankel domain.

Again, the stresses at the upper boundary (\(\sigma_{r1} \) and \(\sigma_{z1} \)) are obtained by substituting \(z = 0 \) in the equations shown in figure 321, while those at the lower boundary (\(\sigma_{r2} \) and \(\sigma_{z2} \)) are found by substituting \(z = h \), all of which can be summarized in a matrix form as shown in figure 322.
Combining the equations shown in figure 320 and figure 322 by eliminating the vector of arbitrary constants, the stresses can be expressed in terms of the displacements as the equation shown in figure 323.

\[
\begin{bmatrix}
\sigma_{r1} \\
\sigma_{z1} \\
\sigma_{r2} \\
\sigma_{z2}
\end{bmatrix} = \mu \cdot \begin{bmatrix}
2f & -2fe^{-hf} & -K & -Ke^{-hg} \\
K & Ke^{-hf} & -2k^2g & 2k^2ge^{-hg} \\
2fe^{-hf} & -2f & -Ke^{-hg} & -K \\
Ke^{-hf} & K & -2k^2ge^{-hg} & 2k^2g
\end{bmatrix} \begin{bmatrix}
A \\
B \\
C \\
D
\end{bmatrix} = \mu \cdot S_2 \cdot \begin{bmatrix}
\sigma_{r1} \\
\sigma_{z1} \\
\sigma_{r2} \\
\sigma_{z2}
\end{bmatrix}
\]

Figure 322. Equation. Relationship between stresses and shape factors.

Where \(S_1\) and \(S_2\) are the four by four matrices defined in the equations shown in figure 320 and figure 322, respectively. According to the concepts of FEA, the stiffness matrix of an element defines the relationship between the displacement vector and the boundary traction vector. Owing to the Cauchy stress principle, the boundary tractions are obtained by taking the dot product between the stress tensor and a unit vector directed along the outward normal of the boundary. Calculating these tractions at the upper and lower boundaries of the element and reorganizing them in a vector form results in the relationship between the tractions, stresses, and displacements shown in figure 324.

\[
\begin{bmatrix}
T_{r1} \\
T_{z1} \\
T_{r2} \\
T_{z2}
\end{bmatrix} = \begin{bmatrix}
-\sigma_{r1} \\
-\sigma_{z1} \\
-\sigma_{r2} \\
-\sigma_{z2}
\end{bmatrix} = S_{2-\text{noded}} \cdot \begin{bmatrix}
\bar{u}_{r1} \\
\bar{u}_{z1} \\
\bar{u}_{r2} \\
\bar{u}_{z2}
\end{bmatrix}
\]

Figure 324. Equation. Relationship between the tractions, stresses, and displacements.

From figure 324, it is seen that the four by four matrix \(S_{2-\text{noded}}\) is the stiffness matrix of the two-noded layer element which is calculated as shown in figure 325.

\[
S_{2-\text{noded}} = \mu \cdot \mathbf{N} \cdot S_2 \cdot S_1^{-1} \cdot \mathbf{N} = \begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Figure 325. Equation. Local stiffness matrix of the two-noded layer element.
One-Noded Semi-Infinite Element

The axisymmetric one-noded element was schematically shown as the bottom layer in figure 295. As shown in that figure and as its name implies, the one-noded element has only a single boundary at the top of the layer and extends infinitely in all other directions. As a consequence, the waves in this element are only allowed to propagate away from the upper boundary (which is also the only boundary) without any waves reflecting back. Therefore, the solutions for the scalar potentials shown in the equations of figure 307 and figure 309 can be used without any modifications. Substituting these two equations into the equations shown in figure 311 and figure 312 results in the displacements shown in figure 326 and figure 327.

\[\tilde{u}_r = -A e^{-zf} - C k e^{-2g} \]

Figure 326. Equation. Radial displacement of a one-noded layer element.

\[\tilde{u}_z = -A e^{-zf} + C k^2 e^{-2g} \]

Figure 327. Equation. Vertical displacement of a one-noded layer element.

The displacements at the boundary are obtained by substituting \(z = 0 \) in these equations and can be written as the matrix form shown in figure 328.

\[
\begin{bmatrix}
\tilde{u}_{r1} \\
\tilde{u}_{z1}
\end{bmatrix} =
\begin{bmatrix}
-k & kg \\
-f & k^2
\end{bmatrix}
\begin{bmatrix}
A \\
C
\end{bmatrix} = S_3 \cdot \begin{bmatrix} A \\ C \end{bmatrix}
\]

Figure 328. Equation. Displacements at the boundary of a one-noded layer element.

Again, the equations for the shear and normal stresses are obtained by substituting the potentials (equations shown in figure 307 and figure 309) into the equations figure 314 and figure 315, respectively, to produce the equations in figure 329 and figure 330.

\[\tilde{\sigma}_{rz} = -s\mu \{-2Akfe^{-zf} + Ck(k^2 + g^2)e^{-2g}\} \]

Figure 329. Equation. Shear stress of a one-noded layer element.

\[\tilde{\sigma}_z = s\mu \{A(k^2 + g^2)e^{-zf} - 2Ck^2 ge^{-2g}\} \]

Figure 330. Equation. Vertical stress of a one-noded layer element.

Substituting \(z = 0 \) in the equations shown in figure 329 and figure 330 results in the stresses at the boundary shown in figure 331.

\[
\begin{bmatrix}
\tilde{\sigma}_{r1} \\
\tilde{\sigma}_{z1}
\end{bmatrix} = s\mu \cdot \begin{bmatrix}
2kf \\
(k^2 + g^2)
\end{bmatrix}
\begin{bmatrix}
A \\
C
\end{bmatrix} = s\mu \cdot S_4 \begin{bmatrix} A \\ C \end{bmatrix}
\]

Figure 331. Equation. Stresses at the boundary of a one-noded layer element.
From the equations shown in figure 328 and figure 331, the relationship shown in figure 332 is attained between the stresses and the displacements.

\[
\begin{bmatrix}
 \sigma_{r1} \\
 \sigma_{z1}
\end{bmatrix}
= s\mu \cdot S_4 \cdot S^{-1}_3 \cdot
\begin{bmatrix}
 u_{r1} \\
 u_{z1}
\end{bmatrix}
\]

Figure 332. Equation. Stress-displacements relationship at the boundary of a one-noded layer element.

Where \(S_3 \) and \(S_4 \) were defined in the equations shown in figure 329 and figure 331, respectively.

By applying the Cauchy stress principle, the relationship shown in figure 333 is achieved between the tractions, stresses, and displacements.

\[
\begin{bmatrix}
 T_{r1} \\
 T_{z1}
\end{bmatrix}
= \begin{bmatrix}
 -\sigma_{r1} \\
 -\sigma_{z1}
\end{bmatrix}
= S_{1\text{-noded}} \cdot
\begin{bmatrix}
 u_{r1} \\
 u_{z1}
\end{bmatrix}
\]

Figure 333. Equation. Relationship between the tractions, stresses, and displacements at the boundary of a one-noded layer element.

Where the stiffness matrix for the one-noded element can be written in terms of the previously defined variables as the equation shown in figure 334.

\[
S_{1\text{-noded}} = -s\tilde{\mu} \cdot S_3 \cdot S^{-1}_4
\]

Figure 334. Equation. Local stiffness matrix of the one-noded layer element.

INCORPORATING ELASTIC AND VISCOELASTIC LAYER PROPERTIES

For a homogenous, isotropic, elastic material whose properties are independent of time, the relationship between the elastic modulus, \(E \), and the lamé constant, \(\mu \), is given by the theory of linear elasticity as the equation shown in figure 335.

\[
\mu = \frac{E}{2(1 + \nu)}
\]

Figure 335. Equation. Relationship between the elastic modulus (\(E \)) and the lamé constant (\(\mu \)) for homogenous, isotropic, elastic material.

Because the parameters in that equation are not functions of time, the Laplace transform of the above equation is simply obtained as shown in figure 336.

\[
\tilde{\mu}(s) = \frac{\mu}{s} = \frac{E}{2(1 + \nu)} \cdot \frac{1}{s}
\]

Figure 336. Equation. Laplace transform of the equation in figure 335.
However, as it was noted by the pioneer of the spectral element method for layered media Stephen Rizzi, it is advantageous to add a small amount of damping to the lamé constant, μ because no realistic material is purely elastic.$^{(107)}$ Following Rizzi, this artificial damping can be added to the above lamé constant as shown in figure 337.$^{(107)}$

$$\tilde{\mu}(s) = \mu(s) \cdot (1 + \zeta \cdot s)$$

Figure 337. Equation. Lamé constant for elastic material.

Where ζ is the damping constant. To simulate the wave propagation through an elastic layer, the simple equation in figure 337 can be substituted into the equations for the layer elements presented earlier. To incorporate the viscoelastic material effects into the solution derived in the previous sections, it is necessary to adopt a simple function that is capable of representing the fundamental property of a viscoelastic material analytically. In addition, because all of the time-dependent variables, including stresses, displacements, and material properties (i.e., lamé constants), were transformed into the Laplace domain, it is preferable to choose a function that is easily transformable into the Laplace domain. Among the analytical functions described in chapter 3, the Prony series has been selected because it maintains a simple form while representing the viscoelastic property effectively. Again, this function is expressed as shown in figure 338.

$$E(t) = E_{\infty} + \sum_{m=1}^{14} \left(E_m \times e^{-\frac{t_r}{TK_m}} \right)$$

$$\log(t_r) = \log(t) - \log(a_T)$$

$$\log(a_T) = a_1 \times (T^2 - T_{ref}^2) + a_2 \times (T - T_{ref})$$

Figure 338. Equation. Prony series.

Where:
- E_m and TK_m = the Prony series parameters.
- a_T, a_1, and a_2 are the shift factor and its coefficients.
- T and T_{ref} are the temperature and the reference temperature.

Taking the Laplace transform of the equation in figure 338 results in the equation shown in figure 339.

$$E(s) = E_{\infty} + \sum_{m=1}^{14} \left(E_m \times \frac{TK_m \times a_T}{TK_m \times s_r + 1} \right)$$

$$s_r = s \times a_T$$

$$\log(a_T) = a_1 \times (T^2 - T_{ref}^2) + a_2 \times (T - T_{ref})$$

Figure 339. Equation. Prony series in the Laplace domain.
For viscoelastic material, the Poisson’s ratio is also time dependent. However, the Poisson’s ratio has typically been assumed to be a time-independent constant in past literature.\(^{(27)}\) In addition, Lee and Kim showed that assuming a reasonable constant value for the Poisson’s ratio still results in accurate viscoelastic responses.\(^{(108)}\) The assumption of a constant Poisson’s ratio implies that the time-dependent behavior of a viscoelastic material in shear or bulk is identical to the behavior in uniaxial mode, and simplifies the solution significantly.\(^{(109)}\) With this assumption, the relationship between the viscoelastic lamé constant and the uniaxial relaxation modulus shown in figure 339 is found to be that shown in figure 340.

\[
\hat{u}(s) = \frac{\hat{E}(s)}{2(1 + \nu)}
\]

Figure 340. Equation. Relationship between the elastic modulus (\(E\)) and the lamé constant (\(\mu\)) for viscoelastic material.

CONSTRUCTION OF THE GLOBAL STIFFNESS MATRIX

After the stiffness matrices have been obtained for all the layers that make up the structure, the global stiffness matrix can be constructed in the same way as the traditional FEA methods.\(^{(110)}\) An in-depth explanation of the concept of the FEA as well as the relationship between the element and the global stiffness matrices is beyond the scope of this project. Hence, it is not explained herein, and interested readers are referred to a variety of textbooks available on this subject. In this appendix, only the generic conceptual schematics are outlined, and the discussion is kept to a minimum for conciseness of the report. Figure 341 shows the schematics of the global stiffness matrices for the two types of layered structures that are most widely adopted for modeling a pavement system.

Figure 341 shows how the global stiffness matrix is constructed for a layered system resting on a half-space. As previously mentioned, this pavement model is capable of dissipating the energy geometrically through the one-noded half-space and is generally used for simulating the FWD time histories that do not show free vibration at the end of the loading.

\[
S_{\text{Global}} = \begin{bmatrix}
S_1^{\text{1-noded}} & & & \\
& S_2^{\text{2-noded}} & & \\
& & & S_2^{\text{2-noded}} \\
& & & & \ddots \\
& & & & & S_n^{\text{n-noded}} & & \\
& & & & & & S_2^{\text{2-noded}} & & \\
& & & & & & & S_1^{\text{1-noded}} & & \\
\end{bmatrix}
\]

Figure 341. Equation. Construction of the global stiffness matrix for structures with a half-space.
Upon constructing the global stiffness matrix, the displacements at the system nodes can be found from the equation shown in figure 342.

\[\overline{U} = S_{\text{Global}}^{-1} \cdot \overline{P} \]

\[\overline{U} = \{ \overline{U}_{r1}, \overline{U}_{z1}, \ldots, \overline{U}_{ri}, \overline{U}_{zi}, \ldots, \overline{U}_{rn}, \overline{U}_{zn} \}' \]

\[\overline{P} = \{ \overline{P}_{r1}, \overline{P}_{z1}, \ldots, \overline{P}_{ri}, \overline{P}_{zi}, \ldots, \overline{P}_{rn}, \overline{P}_{zn} \}' \]

Figure 342. Equation. The displacement at the system nodes.

\(\overline{U} \) is a vector of system displacements to be calculated in global coordinates with \(\overline{U}_{ri} \) and \(\overline{U}_{zi} \) being the radial and vertical displacements at the \(i \)th node from the top, respectively. Similarly, \(\overline{P} \) is a nodal force vector in global coordinates, with the radial and vertical forces at the \(i \)th node denoted as \(\overline{P}_{ri} \) and \(\overline{P}_{zi} \), respectively. The nodal forces in this vector should be obtained from the boundary conditions as presented in the next section.

BOUNDARY CONDITIONS FOR A CIRCULAR UNIT IMPULSE LOADING AT THE GROUND SURFACE

For the problem in hand where the loading is induced by an impact of a falling weight at the ground surface, all components of \(\overline{P} \) in figure 342 vanish except for \(\overline{P}_{z1} \). In other words, the only external load applied to the system is in the vertical direction at the top node (node 1). In this project, this surface force is also in the form of a unit impulse load acting over a circular area, for the reasons explained in the System Response to Arbitrary Loading section. In the physical time and spatial domain, this boundary condition is mathematically expressed as shown in figure 343.

\[P_{z1}(r,t) = R(r) \cdot \delta(t) \]

\[R(r) = \begin{cases} 1, & 0 < r \leq a \\ 0, & r > a \end{cases} \]

Figure 343. Equation. Boundary conditions.

Where \(\delta(t) \) is the Dirac delta function for the impulse loading, and \(a \) is the radius of the circular loaded area. However, note that the stiffness matrices were previously derived in the Laplace-Hankel domain rather than the physical domain. Therefore, it is also necessary to convert the above boundary condition into the one in the transformed domain. Because the Laplace transform of \(\delta(t) \) is equal to 1, taking the Laplace-Hankel transforms of the equation shown in figure 343 simply results in the equation shown in figure 344.

\[P_{z1}(k,s) = \frac{a}{k} J_1(ka) \]

Figure 344. Equation. Boundary conditions in the Laplace-Hankel domain.
INVERSION OF LAPLACE AND HANKEL TRANSFORMS

As mentioned, the displacements at all nodes of the system can be obtained through the equations shown in figure 342 from the global stiffness matrix and the force boundary condition described in the previous sections. Note again that the displacements obtained in this manner are in the Laplace-Hankel domain and need to be inverse transformed back to the physical domain. However, it has been shown that even for an elastic half-space (which simply has a single boundary) subjected to a point load, the closed form inversion of the Laplace-Hankel transformed displacement is rather complicated and is close to impossible for a generalized problem. Therefore, the closed form inversion of the displacements obtained from the equations shown in figure 342 is not even attempted because of the mathematical complexity arising from the viscoelastic material behavior and the wave propagation phenomenon. Instead, the inversion is carried out numerically for both the Laplace and Hankel transforms.

NUMERICAL INVERSION OF THE HANKEL TRANSFORM

As mentioned earlier, Hankel transforms of orders zero and one were used to transform the vertical and radial displacements, respectively. Therefore, the inverse Hankel transform of respective orders must be carried out for the two displacements. In this appendix, the numerical integration scheme is outlined for the vertical displacement (i.e., the inverse Hankel transform of order zero). The inverse transform of the radial displacement can also be evaluated in a similar manner. The closed form equation for the inverse Hankel transform of the vertical displacement at node i is given as the equation in figure 345.

$$\tilde{U}_{zi}(r) = \int_{0}^{\infty} \tilde{U}_{zi}(k)J_0(kr)kd\kappa$$

Figure 345. Equation. Inverse Hankel transform of the vertical displacement.

This integral can also be written as the series of integrals shown in figure 346.

$$\tilde{U}_{zi}(r) = \int_{b_1}^{b_2} \tilde{U}_{zi}(k)J_0(kr)kd\kappa + \int_{b_2}^{b_3} \tilde{U}_{zi}(k)J_0(kr)kd\kappa + \cdots + \int_{b_{n+1}}^{b_n} \tilde{U}_{zi}(k)J_0(kr)kd\kappa + \cdots$$

Figure 346. Equation. Inverse Hankel transform as a series of integrals.

Then, each integral in the right-hand side of the equation in figure 346 must be evaluated numerically. Upon selecting the six-point Gaussian quadrature as the numerical scheme to use, the integral in the Figure 346 can be evaluated as shown in figure 347.
Where x_p and w_p are the Gaussian nodes and their corresponding weights, respectively.

The parameter b_n defines the limits for each integration, which can be chosen arbitrarily. However, Cornille indicated that the convergence of the Gaussian quadrature would be greatly improved if the limits were selected to be the successive roots of the derivative of the Bessel function that comprised the kernel of the inverse transform. Based on a sensitivity analysis conducted by the research team for this project, subdividing the region between the successive roots of the Bessel function of order one (that is, the derivative of the Bessel function of order zero) into 10 smaller regions of equal intervals provided satisfactory results for the numerical integration.

Note that the upper bound of the integral shown in figure 345 is equal to infinity. This indicates that the summation of integrals shown in figure 346 should also span an infinite range. However, as was indicated by Kim, the numerical integration converges very rapidly even after the first few cycles of the Bessel function comprising the kernel of the inverse Hankel transform. Therefore, in Kim’s static solution for a viscoelastic layered system, the first five cycles of the Bessel function were used to invert the Hankel transform near the loaded area, and fewer cycles were used in the region far from the loading. The developers of the axisymmetric spectral element method used the Fourier-Bessel series (which is the discrete version of the Hankel transform) in their solution and the summation was also carried out for approximately the first five cycles of the Bessel function. Although the details are omitted for this report, the sensitivity analysis performed for the proposed algorithm also showed that the numerical integration over the first five cycles of the Bessel function is adequate for the solution.

NUMERICAL INVERSION OF THE LAPLACE TRANSFORM

For the inverse Laplace transform, a multiprecision numerical scheme known as the Fixed Talbot Algorithm is adopted in this report because of its efficiency, accuracy, and ease for implementation. The Bromwich integral is the standard equation for the inverse Laplace transform is given by figure 348.

\[
U_{zl}(t) = \frac{1}{\pi j} \int_{B} e^{ts} \tilde{U}_{zl}(s) ds
\]

Figure 348. Equation. Bromwich integral.
Where \(j = \sqrt{-1} \). The contour \(B \), chosen for the above integral, is along the path shown in figure 349.

\[
s(\theta) = \alpha \theta (\cot \theta + j), -\pi < \theta < +\pi
\]
\[
\alpha = \frac{2M}{5t}
\]

Figure 349. Equation. The contour for the Bromwich integral.

In figure 349, \(M \) is the number of precision decimal digits to be used for the numerical analysis. For the sake of accuracy, this value is specified to be equal to the machine precision. Replacing the contour path in figure 348 with the one shown in figure 349 produces the result shown in figure 350:

\[
U_{zi}(t) = \frac{\alpha}{\pi} \int_{0}^{\pi} \text{Re} \left[e^{ts(\theta)} U_{zi}(s(\theta)) (1 + j\gamma(\theta)) \right] d\theta
\]
\[
\gamma(\theta) = \theta + (\cot \theta - 1) \cot \theta
\]

Figure 350. Equation. Bromwich integral along the chosen contour path.

Finally, the inverse Laplace transform is obtained by approximating the integral shown in figure 350 through the trapezoidal rule shown in figure 351.

\[
U_{zi}(t) = \frac{\alpha}{M} \left\{ \frac{1}{2} U_{zi}(\alpha) e^{\alpha t} + \sum_{q=1}^{M-1} \text{Re} \left[e^{ts(\theta_q)} U_{zi}(s(\theta_q)) (1 + j\gamma(\theta_q)) \right] \right\}
\]
\[
\theta_q = \frac{q\pi}{M}
\]

Figure 351. Equation. Evaluation of Bromwich integral through the trapezoidal rule.

SYSTEM RESPONSE TO ARBITRARY LOADING

As described in the equations shown in figure 343, the boundary condition considered in the previous sections was for a unit impulse load distributed over a circular area. As such, the vertical displacement, \(U_{zi} \), obtained using the equation shown in figure 351 represents the unit impulse response of the layered system in time domain. The primary advantage of the time-domain unit impulse response is that the system response to any arbitrary loading can be obtained through the convolution integral.\(^{[114,3]}\) Theoretically, this convolution integral for a continuous function is given as shown in figure 352.

\[
y_{zi}(t) = U_{zi}(t) \ast T(t) = \int_{0}^{t} U_{zi}(t - \tau) T(\tau) d\tau
\]

Figure 352. Equation. Convolution integral for a continuous function.
Where $T(t)$ could be any arbitrary time-dependent loading function, and $y_{zi}(t)$ is the corresponding vertical displacement at node i. For a discrete signal such an FWD time history, figure 352 must evaluated numerically as shown in figure 353.\(^{(114,3)}\)

$$y_{zi}(t_n) = \sum_{t_p=1}^{t_n} U_{zi} (t_n - t_p) T(t_p) \Delta t$$

Figure 353. Equation. Numerical evaluation of the convolution integral.

Where Δt is time interval of the discrete signal, and $t_n = n\Delta t$ for an integer n.
APPENDIX D. FIELD MEASUREMENT FWD TEST DATA

FWD TEST DATA

FWD test information, sensor location, peak stress, peak load, and peak deflection for Waverly road test near Lansing, MI, at section 1 and 3 are shown in table 67 and table 68, respectively.

Table 67. FWD Test information from station 1 (afternoon test).

<table>
<thead>
<tr>
<th>Contact Radius 5.9</th>
<th>Morning Test</th>
<th>Afternoon Test</th>
<th>Evening Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drop 1</td>
<td>Drop 2</td>
<td>Drop 3</td>
</tr>
<tr>
<td>Stress (psi)</td>
<td>57.9</td>
<td>86.3</td>
<td>111.7</td>
</tr>
<tr>
<td>Force (kip)</td>
<td>6.33</td>
<td>9.46</td>
<td>12.23</td>
</tr>
<tr>
<td>Sensors location (inches)</td>
<td>Deflection (mil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 0</td>
<td>12.7</td>
<td>19.8</td>
<td>26.2</td>
</tr>
<tr>
<td>D2 8</td>
<td>9.8</td>
<td>15.3</td>
<td>20.4</td>
</tr>
<tr>
<td>D3 12</td>
<td>8.2</td>
<td>12.9</td>
<td>17.3</td>
</tr>
<tr>
<td>D4 18</td>
<td>5.9</td>
<td>9.5</td>
<td>12.8</td>
</tr>
<tr>
<td>D5 24</td>
<td>4.4</td>
<td>7.1</td>
<td>9.6</td>
</tr>
<tr>
<td>D6 36</td>
<td>2.6</td>
<td>4.1</td>
<td>5.6</td>
</tr>
<tr>
<td>D7 48</td>
<td>1.7</td>
<td>2.6</td>
<td>3.6</td>
</tr>
<tr>
<td>D8 60</td>
<td>1.1</td>
<td>1.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table 68. FWD Test information from station 3 (afternoon test).

<table>
<thead>
<tr>
<th>Contact Radius 5.9</th>
<th>Morning Test</th>
<th>Afternoon Test</th>
<th>Evening test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drop 1</td>
<td>Drop 2</td>
<td>Drop 3</td>
</tr>
<tr>
<td>Stress (psi)</td>
<td>57.3</td>
<td>85.6</td>
<td>111.0</td>
</tr>
<tr>
<td>Force (kip)</td>
<td>6.28</td>
<td>9.37</td>
<td>12.16</td>
</tr>
<tr>
<td>Sensors location (inches)</td>
<td>Deflection (mil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 0</td>
<td>14.7</td>
<td>22.2</td>
<td>29.2</td>
</tr>
<tr>
<td>D2 8</td>
<td>11.8</td>
<td>17.9</td>
<td>23.4</td>
</tr>
<tr>
<td>D3 12</td>
<td>9.9</td>
<td>15.0</td>
<td>19.8</td>
</tr>
<tr>
<td>D4 18</td>
<td>7.3</td>
<td>11.2</td>
<td>14.7</td>
</tr>
<tr>
<td>D5 24</td>
<td>5.3</td>
<td>8.2</td>
<td>10.9</td>
</tr>
<tr>
<td>D6 36</td>
<td>3.0</td>
<td>4.6</td>
<td>6.2</td>
</tr>
<tr>
<td>D7 48</td>
<td>1.8</td>
<td>2.8</td>
<td>3.9</td>
</tr>
<tr>
<td>D8 60</td>
<td>1.2</td>
<td>2.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Temperatures along the depth of the pavement were recorded each time the FWD test was performed. Variation in temperature along the depth at section 1 and section 3 at three FWD tests are shown in table 69 and table 70, respectively.

Table 69. Temperature profile at section 1.

<table>
<thead>
<tr>
<th>Time (h:min)</th>
<th>Temperature for Actual Depth (°F)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning 9:40</td>
<td>63.1, 61.0, 59.7, 59.2, 59.2, 59.4</td>
<td>Cloudy</td>
</tr>
<tr>
<td>Afternoon 14:05</td>
<td>90.0, 83.8, 74.8, 68.5, 65.1, 62.8</td>
<td>Cloudy</td>
</tr>
<tr>
<td>Evening 19:05</td>
<td>91.6, 90.0, 85.1, 79.9, 75.7, 72.1</td>
<td>Cloudy</td>
</tr>
</tbody>
</table>

Temperature holes 5 ft behind FWD load (north).

Table 70. Temperature profile at section 3.

<table>
<thead>
<tr>
<th>Time (h:min)</th>
<th>Temperature for Actual Depth (°F)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:15</td>
<td>68.7, 64.0, 60.3, 59.2, 58.5, 58.3</td>
<td>Cloudy</td>
</tr>
<tr>
<td>14:40</td>
<td>87.1, 81.1, 73.4, 69.3, 65.7, 63.1</td>
<td>Cloudy</td>
</tr>
<tr>
<td>19:45</td>
<td>82.6, 83.7, 80.2, 77.0, 73.8, 70.3</td>
<td>Cloudy</td>
</tr>
</tbody>
</table>

Temperature holes 10 ft behind FWD load (north).

LABORATORY-MEASURED RESULTS FOR WAVERLY ROAD

Figure 354 through figure 356 present graphs of the laboratory-measured results for Waverly Road using different sample sizes.

Figure 354. Graph. Laboratory-measured dynamic modulus at station 1 using 1.5- by 3.94-inch samples.
Figure 355. Graph. Laboratory-measured dynamic modulus at station 1 using 3.94- by 5.9-inch samples.

Figure 356. Graph. Laboratory-measured dynamic modulus at station 3 using 1.5- by 3.94-inch samples.
REFERENCES

