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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2 
ft2 square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2 

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1,000 L shall be shown in m3 
MASS 

oz ounces 28.35 grams g 
lb pounds 0.454 kilograms kg 
T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”) 

TEMPERATURE (exact degrees) 
°F Fahrenheit 5 (F-32)/9 Celsius °C or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf poundforce 4.45 newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH 
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 
m2 square meters 10.764 square feet ft2 
m2 square meters 1.195 square yards yd2 
ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 
m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz 
kg kilograms 2.202 pounds lb 
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lb) T 

TEMPERATURE (exact degrees) 
°C Celsius 1.8C+32 Fahrenheit °F 

ILLUMINATION 
lx lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N newtons 2.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2 
*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. 
(Revised March 2003) 
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CHAPTER 1. INTRODUCTION 

BACKGROUND 

Improving the performance and extending the life of transportation infrastructure is a 
long-standing goal of the Federal Highway Administration (FHWA) and the transportation 
community. The Moving Ahead for Progress in the 21st Century (MAP-21) Act further 
underscored the need for continued efforts in these areas.(1) The Act emphasizes risk-based and 
performance-based planning and programming for maintaining the National Highway System 
(NHS) and transportation investment decisionmaking. In keeping with the MAP-21 requirements, 
in January 2015, the FHWA issued a notice of draft proposed rulemaking (NPRM) for the 
establishment of pavement performance measures, targets, and reporting.(2) The final ruling 
released in Code of Federal Regulations (CFR) Title 23, Part 490 in 2017 retained most of the 
provisions of the NPRM but made a few changes.(2) It established measures for State 
departments of transportation (DOTs) to use to carry out the National Highway Performance 
Program and to assess the condition of pavements on NHS excluding the interstate system, 
bridges carrying NHS including on- and off-ramps connected to the NHS, and pavements on the 
interstate system. 

As agencies establish performance targets and measure progress to assess if they are meeting 
those targets, it is also recognized that condition assessment data can only serve as a lagging 
indicator to predict future performance. In other words, a prediction of the future rate of distress 
development after the onset of initial distress does not provide the opportunity to optimize 
maintenance needs. Likewise, generalizing the rate of deterioration for a family of pavement 
sections—typically grouped by surface type, functional class, and climate—fails to consider the 
impact of materials and construction quality, resulting in a less than optimal level of planning for 
maintenance and investment needs. 

However, large volumes of data collected during construction, including quality assurance (QA) 
and other construction data, have shown potential to serve as leading indicators of pavement 
performance. This practice is the fundamental basis for the development of performance-related 
specifications (PRS) for QA, which tend to evaluate the relative impact of material and 
construction deviations on performance. Hence a tremendous opportunity exists to integrate 
these data into an agency’s pavement management system (PMS) for improved performance 
forecasting models. Additionally, QA and construction data can be repurposed for performance 
modeling so that an agency might meet performance targets. These data align well with the 
hypothesis that pavement infrastructure delivered using the best construction technology and 
accepted using performance-based metrics has the best chance to meet these highly desirable 
construction and operational goals ushered in by MAP-21. 

In general, highway agencies have made few advancements to formally link a construction phase 
with performance; however, this step is an essential undertaking. The goal of this study was to 
fill that gap and attempt to better associate construction QA and other as-built data as being 
leading indicators for performance prediction. If this association is validated, an opportunity will 
exist to integrate construction data into an agency’s PMS models to support its pavement 
management and investment decisions. As digital data collection is increasingly becoming the 
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norm in construction, it also supports data sharing and cross-functional activities within a 
highway agency. Moreover, repurposing these data into new procedures will increase the value 
gained from investments made in improved construction and QA technologies and practices. At a 
minimum, it is expected that a recurrent effort to correlate construction and QA data to 
performance would be a decisive method to monitor the effectiveness of specifications and to 
streamline future QA activities to maximize performance goals. 

Pavement Management Data 

The PMS model is a key planning tool used by a State Highway Agency (SHA) to support its 
pavement management program and investment decisions. PMS software programs store 
pavement condition data collected periodically from the agency’s highway network. They also 
include pavement deterioration models used by agencies to plan their maintenance and 
rehabilitation (M&R) activities. These models are based on field distress data and highway 
classification information, and thus these models do not necessarily reflect the as-built pavement 
performance. 

There are several challenges when considering statistical model development for performance 
prediction. The fundamental attribute of pavement management data is that it is never perfect; 
instead, it encompasses material or construction variability, impact of actual traffic levels, and 
unanticipated component variations. Essentially, pavement management data are actual and more 
realistic than data generated from controlled field experiments or test sections. Ultimately, PMS 
data cannot be refuted, as it is the best record of the performance of the entire network and the 
basis for performance forecasting. 

Network-level field performance data cannot be used to determine the cause of, or circumstances 
leading to, failures. As a result, network-level analyses or performance forecasting models are 
not suitable to determine the age for the onset of failures and rate of deterioration, unless the 
factors that directly affect performance can be incorporated. Coincidentally, the most useful 
feature, cause-and effect-analyses, is possible with the integration of construction and QA data. 
This project evaluates the scope for improving performance forecasting by integrating the 
as-built construction and QA data. By doing so, distress development patterns can be less 
generalized and can more closely reflect field conditions for each project. 

QA in Pavement Construction 

QA comprises various planned and systematic activities performed to ensure that the best design 
practices, materials, and construction procedures are used to prevent premature performance 
failures. QA might adequately provide the public with a satisfactory level of service throughout 
the intended pavement design life. A QA program involves the evaluation of every activity that 
contributes to performance, including design, development of plans and specifications, 
construction, and maintenance. Processes in the QA program produce information that can be 
used to forecast performance, including materials certification, contractor quality control (QC), 
agency acceptance, inspection, and independent assurance (IA) testing. 

Highway agencies in the United States have adopted different procedures to establish compliance 
requirements, which include materials and construction specifications, and to identify 
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appropriate quality characteristics to calculate pay factors. Over the past two decades, agencies at 
the national level have attempted to synthesize State construction QA practices and develop 
optimal procedures for QA specifications. (See references 3, 4, 5, 6, and 7.) These studies show 
that a variety of attributes are used for QC and acceptance of hot mix asphalt (HMA) and 
portland cement concrete (PCC) materials and pavements (table 1). When calculating pay 
factors, SHAs generally use gradation, asphalt content, air voids, in-place density, and 
smoothness or international roughness index (IRI) as the acceptance quality characteristics 
(AQC) for HMA; PCC AQC include thickness, air content, smoothness, and flexural or 
compressive strength.(3,4) 

Table 1. Pavement material and structural attributes used for QC and acceptance. 

Pavement 
Type 

Commonly Used Pavement Quality 
Characteristic 

Less Commonly Used Pavement 
Quality Characteristic 

HMA 

• Asphalt content 
• Gradation 
• Density/composition 
• VFA 
• Voids total mix 
• VMA 
• Aggregate fractured faces 
• Thickness 

• Modulus/stability 
• Indirect tensile strength and 

retained tensile strength (moisture 
sensitivity) 

• Aggregate shape, size, angularity, 
hardness 

• Wheel tracking test 
• Sand equivalence 
• Asphalt temperature at placement 
• Plant mix temperature 
• Binder properties 

PCC 

• Air content 
• Density 
• Thickness 
• Slump 
• Core/cylinder/beam strength 
• w/c ratio 
• Aggregate fractured faces 

• Gradation 
• Sand equivalence 
• Permeability 
• Hardened air properties 

Unbound 
materials 

• Resilient modulus 
• CBR 
• Cohesion and angle of internal 

friction 
• Density 

• Frost resistance 
• Durability index 
• Resistance to moisture damage 

All 
• Permeability 
• Ride quality 
• Friction 

• Texture 
• Noise 

VMA = voids in mineral aggregate; VFA = voids filled with asphalt; CBR = California bearing ratio; w/c ratio = 
water-to-cementitious materials ratio. 
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The QC and acceptance attributes summarized in table 1 provide a measure of the quality of 
materials and workmanship. 

Previous attempts aimed to establish a correlation between material properties and field 
performance based on the key distresses modeled, especially those in the mechanistic-empirical 
(M-E) pavement design procedures. (See references 8, 9, 10, 11, 12, 13, and 14.) These studies 
are described in chapter 2. QA processes provide an opportunity to examine, at the time of 
construction, specific material characteristics that can directly affect performance. 

Further studies, such as the National Council of Highway Research Program (NCHRP) project 
10-65, which evaluated nondestructive testing (NDT) technologies used for flexible pavement 
QC/QA, recommended test methods and protocols that are effective in identifying anomalies in 
construction, material properties (stiffness of unbound or modulus of HMA), and layer 
thicknesses that can be related to performance.(15) A key element of these recommendations, 
giving agencies the opportunity to track as-built performance, was the focus on larger sample 
size and full coverage rather than localized testing. This focus would, however, require the use of 
performance prediction tools such as the American Association of State Highway and 
Transportation Officials (AASHTO) product, AASHTOWare Pavement ME Design procedure, 
for new and rehabilitated pavements developed over a series of national efforts. (See references 
16, 17, 18, 19, 20, and 21.) The FHWA PRS tools are PaveSpec 4.0 for jointed plain concrete 
pavement (JPCP), FlexPAVE™ for flexible pavements, and High Performance Paving for 
analyzing early age behavior of PCC in rigid pavements.(22,23) 

During the past two decades, some agencies have been proactively managing material durability 
through QA. This practice has resulted in additional tests being adopted, such as permeability 
and air void tests, to mitigate durability-related problems. Other recent, proven technologies that 
have been evaluated include infrared (IR) imaging for uniformity in placement temperature and 
evaluation of segregation potential in HMA paving, ground-penetrating radar (GPR) for layer 
thickness and material property measurements, magnetic tomography for dowel bar alignment in 
JPCP and layer thickness measurements, nonnuclear density gauge for in-place density, and 
various other ultrasound, seismic, and acoustic devices. However, these technologies see limited 
use by agencies during routine QC and acceptance. 

Data from Automation in Highway Construction 

Automation in highway construction data is relatively new, yet it constitutes an exponentially 
growing dataset related to the collection of construction data because it provides 100 percent 
coverage. Automation in highway construction refers to intelligent construction systems and 
technologies (ICST) that are rapidly evolving as construction moves away from paper-based 
document management to digital processes. Current and emerging ICST include remote sensing 
with various types of light detection and ranging (LiDAR) and unmanned aircraft systems 
(UAS), automated machine guidance (AMG), intelligent compaction (IC), GPR, and several 
digital methods of real-time verification for construction inspection and QA. ICST require and 
produce a vast amount of digital data, much of which is three-dimensional (3D). There is the 
potential to use some or all these data in executing, measuring, and accepting construction. This 
use is an emerging area that is the subject of FHWA research activities and technology 
deployment. There is an opportunity to use the data, when captured and stored during 
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construction, in the management and maintenance of the assets. This data use fits in the wider 
initiative for building information modeling (BIM) (also referred to as civil integrated 
management [CIM] in some cases) that is being supported by NCHRP, AASHTO, and other 
organizations. 

Another growing area is the use of 3D as-found survey data for asset inventory and condition. 
Currently, mobile LiDAR data are the 3D data source that is emerging as being most beneficial. 
Some States have begun to capture and consolidate mobile LiDAR data for large areas of their 
highway network to monitor the inventory and assess the condition of various assets. Although 
current asset management systems for pavements, bridges, and highways are databases, or 
geographic information system (GIS)-based geospatial databases, a looming convergence of 3D 
data of various types, formats, and spatial accuracies is available to support asset management 
decisions. The time is ripe—before these systems and processes mature based on parameters 
optimized for data collection, data storage, QA, or other functions—to include performance 
management as an important factor in establishing the cost benefit of different systems, data 
types, or spatial resolutions. With robust planning, 3D data-based construction processes can 
collect data in a format that supports use in performance management, such as collecting as-built 
pavement data at a spatial resolution that is compatible with the mobile LiDAR data being 
collected. This function might enable early detection of physical characteristics, like layer 
thicknesses, before pavement distress is apparent at the surface. At a more basic level, data from 
other QA testing with location referencing can be mapped to segments of a construction project. 

Potential for Integration of QA and Construction Data for PMS 

The preceding discussions alluded to the availability of large datasets and information from the 
field that can serve as more realistic leading indicators of in situ performance and can better 
guide agency pavement management and investment decisions. Additionally, agencies will be 
better equipped to meet performance targets in the MAP-21 ruling. However, using data for these 
purposes requires assimilation and integration of various data and information sources. Also, no 
single dataset is likely to have great value standing alone, but, when aggregated, combined, and 
integrated, data become valuable resources for innovations in performance forecasting. This 
tenet is fundamental to this effort. 

The primary challenge faced when data results are integrated is not from a technical perspective, 
but from processes and organizational constraints; for instance, construction and pavement 
management are generally two separate groups within an SHA and may result in silos, from both 
a process and system perspective. That being stated, SHAs are pushing the pace of asset 
management advancement, including a holistic review of data and breaking traditional silos. This 
project explores the viability of integrating data collected by different functions of a highway 
agency and then demonstrates its value for pavement management. 

OBJECTIVES 

The main objective of this project was to examine QA data and other as-built construction data 
and then develop processes to utilize these data as leading indicators for performance predictions 
within an agency’s PMS to support pavement management and investment decisions. The goal 
was to demonstrate that these developed processes improve performance prediction reliability 
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because of the incorporation of construction and QA data. The ultimate objective was to develop 
practical recommendations and best practices for the inclusion of these data within the pavement 
management decisionmaking framework. This framework is expected to provide a foundation 
that may evolve, grow, and, in the future, incorporate improved pavement testing and data 
processing techniques. Importantly, the framework also will facilitate and encourage the 
development of pavement testing and data processing methodologies within each agency. 

To achieve these objectives, the project involved the following procedures: 

• Systematic evaluation of all data collected by agencies during construction, and review of 
best practices for using these data beyond acceptance needs, i.e., for potential future 
performance predictions, particularly in relation to the final National Performance 
Management Measures in 23 CFR Part 490. Data of interest included the following: 

o QA data that are most readily available, such as the AQC used in pay factors, and that 
can be directly correlated to performance. 

o QA data that are not used as AQC but serve as good indicators of future performance. 
These data may be available in mix-design-approval databases, material 
certifications, inspection reports, or checklists. 

o Other as-built data that are generated during construction but are not always used as 
performance indicators. These data may include the use of innovative technologies or 
other nontraditional QA test procedures that provide material and structural 
parameters that are highly correlated with performance, as well as knowledge about 
the use of 3D construction records from both the design and construction stages. 
Contractors are often not required to provide such as-built records to agencies. 

• Identification of agencies that are proactive in using as-built data to track pavement 
performance and that willingly made data and information available for the project. 

• Assessment of data storage, accessibility, and potential for integration across datasets, 
which are essential for performance prediction models. 

• Evaluation of the viability of using QA and construction data to establish correlations and 
to develop performance models, so QA and construction data can be used as leading 
indicators of performance in an agency’s PMS. 

• Development of methodologies and case studies to integrate these data and prediction 
models into PMS for enhanced performance predictions and improved management of 
their network and investment decisions. 

• Recommendations for improved QA testing practices that could support and leverage 
their use in PMS and help characterize variability and reliability in performance 
prediction. 

The project was divided into two phases. Phase I involved information gathering from State 
agencies and evaluation of the viability of integrating agency datasets for establishing 
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correlations between QA parameters and performance. Phase Ⅱ developed statistical models, 
generated use cases to examine improvements in forecasting, and developed guidelines for QA 
practices to support use of data for PMS. 

ORGANIZATION OF REPORT 

The report is divided into the following chapters: 

• Chapter 1: introduces the research project and discusses project objectives. 

• Chapter 2: provides a summary of QA practices, discusses construction parameter use 
that is significant for performance, and highlights the critical material properties that 
impact performance. 

• Chapter 3: discusses the findings from the survey of State practices and the selection of 
State agencies to use their data for analyses and case studies. 

• Chapter 4: describes the QA and PMS data collection and data assembly, provides a 
detailed description of the datasets used, and includes specifics necessary to integrate 
with other datasets. Note: This chapter does not identify QA parameters that impact 
performance and does not present performance prediction models. 

• Chapter 5: describes the data integration methodologies adopted in the project. Note: This 
chapter does not identify QA parameters that impact performance and does not present 
performance prediction models. 

• Chapter 6: describes the statistical analyses performed to correlate QA data with 
performance and presents use cases to demonstrate methodologies to integrate QA and 
construction data with performance. 

• Chapter 7: provides the summary and conclusions from the study. 

• Chapter 8: describes a general framework envisioned by the research team for integrating 
QA data into an agency’s PMS and provides recommendations. 

The report includes a list of cited references. 
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CHAPTER 2. REVIEW OF INFORMATION RELATED TO QA PROGRAMS AND 
PAVEMENT CONDITION 

This chapter presents an overview of QA programs, evolving technologies, and methods to 
predict performance for use in pavement management. First, this chapter focuses on traditional 
QA practices and material testing involved at different stages of construction and describes the 
potential to establish correlation with performance. Next, this chapter discusses innovative 
technologies increasingly in use for QA and then advancements in construction technologies that 
permit real-time construction data storage along with spatial location referencing. Last, this 
chapter provides an overview of pavement management data collection. Published literature and 
State specifications provide a vast amount of information on these topics, but the project team 
has addressed these topics in the context of the project scope and project objectives discussed in 
chapter 1. 

TRADITIONAL QA PRACTICES 

A QA program aims to ensure that the quality of the final product after construction meets 
contract requirements. QA comprises several elements, including material certifications and mix 
design approvals, sampling and testing procedures for contractor QC, agency acceptance testing, 
verification testing, agency inspection, IA, and the agency’s dispute resolution system. 23 CFR 
Part 637 provides policies and guidance for State DOTs to develop QA procedures that ensure 
the quality of materials and workmanship of a Federal-aid highway construction project on the 
NHS.(24) In addition to requiring qualified staff within the agency and maintaining a centralized 
laboratory testing capability, it also provides detailed requirements for the acceptance, IA, and 
material certification programs. 

For the acceptance program, CFR Part 637 identifies the frequency of testing, test locations 
during production and construction, the specific attributes to be inspected, procedures and 
conditions for use of contractor QC test results for acceptance, dispute resolution system if IA 
deviates from QC results, and procedures for design build. For the IA program, it provides means 
and methods to evaluate the qualified sampling and testing personnel and the testing equipment, 
including test equipment calibration, laboratory certifications, use of split samples and 
proficiency samples, and submission of annual reports to FHWA. 

Therefore, QA programs in SHAs are generally well developed and normally involve statistically 
based specifications for QC and acceptance. The QA programs are generally managed for each 
material type, HMA, PCC, aggregates, and earthwork. The primary difference between the 
various agency programs is whether contractor data are used in the acceptance decision.(4) This 
difference has no practical effect on what QA data are available or how the available data can 
potentially be used. However, the data that are available and accessible, which will vary from 
one agency to another, will determine whether the data can potentially be used for integration 
with PMS. QA practices for HMA and PCC are discussed in the following sections. 
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QA of HMA Materials 

A typical HMA QA program includes the following three major components: 

• Performance graded (PG) asphalt binder QA. 
• Aggregate QA. 
• HMA production and construction QA. 

The following sections provide brief descriptions of these components and the data that are 
typically available for analysis. 

PG Asphalt Binder QA 

The performance grading system is used by all U.S. States for specifying asphalt binders, and 
highway agencies typically have QA programs for PG binders that require binder suppliers to 
have a QC program meeting the requirements of AASHTO R 26, Standard Practice for 
Certifying Suppliers of Performance-Graded Asphalt Binders.(25,26) This standard addresses the 
testing to be performed on the binder, the frequency of testing and reporting of results, the 
qualifications of the laboratory and personnel performing the tests, and steps the supplier will 
take to ensure the binder is supplied in compliance with AASHTO M 320, Standard 
Specification for Performance-Graded Asphalt Binder for the grade specified.(27) Under the 
typical SHA PG asphalt binder QA program, the binder supplier certifies the performance grade 
of the binder on a production lot basis, and the agency performs acceptance tests on independent 
samples of selected lots. The data available from typical PG asphalt binder QA programs are 
summarized in table 2, along with their relationship to pavement performance. It is important to 
note that the lot defined by the binder QA program is different than the lot defined in the HMA 
production and construction QA program for a given project. Therefore, typical PG binder QA 
programs can provide average properties at the specification temperatures for the various grades 
of binder used on projects in the State. 

Table 2. Summary of data available for a typical agency performance grading QA 
program. 

Property Relationship to Performance 
Original G*/sin δ at specified high pavement 
temperature. Indicator of permanent 

deformation potential. RTFOT residue G*/sin δ at specified high pavement 
temperature. 
PAV residue G*/sin δ at specified intermediate pavement 
temperature. 

Indicator of load-associated 
cracking potential. 

PAV residue creep stiffness at 10℃ above the specified 
low pavement temperature. Indicator of thermal cracking 

potential. PAV residue m-value at 10℃ above the specified low 
pavement temperature. 

G* = shear modulus; δ = phase angle; RTFOT = rolling thin film oven test; PAV = pressure aging vessel. 
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Aggregate QA 

The aggregates used in HMA, PCC, bases, and subbases are generally produced under an 
aggregate QA program. Because a standard practice similar to AASHTO R 26 is not available 
for aggregate production, the aggregate QA program is usually more detailed compared with the 
PG asphalt binder QA program.(26) The typical aggregate QA program describes the testing and 
control that the aggregate supplier must provide to ensure the aggregates: 

• Are resistant to degradation during production and under traffic loading. 
• Are resistant to disintegration due to weathering. 
• Contain minimal amounts of clay particles and other deleterious materials. 
• Are produced with specified gradations. 

The data available from a typical aggregate QA program are listed in table 3. Although 
relationships between these aggregate properties and HMA mixture performance are not 
available, it is generally accepted that current specification limits provide suitable aggregates for 
HMA mixtures.(8,28) 

Table 3. Summary of data available for a typical agency aggregate QA program. 

Property AASHTO Test Method 
Toughness and abrasion resistance  AASHTO T 96(29) 
Aggregate angularity and morphology AASHTO T 335(30) 
Durability and soundness AASHTO T 104(31) 
Clay content AASHTO T 90(32) or AASHTO T 176(33)  
Gradation AASHTO T 27(34) and AASHTO T 11(35) 
Specific gravity AASHTO T 84(36) and AASHTO T 85(37) 

HMA Production and Construction QA 

HMA production and construction QA programs have detailed specifications that assign 
responsibilities for the contractor and the agency during: 

• Mixture design. 
• QC. 
• Acceptance. 

Most HMA production and construction QA programs also include pay factors based on 
statistical analysis of specific quality indicators. The data available from HMA production and 
construction QA are discussed in the following sections. 

Mixture Design 

Every HMA mixture used in flexible pavement construction has an associated mixture design. 
Most HMA mixtures in the United States are designed in accordance with AASHTO M 323, 
Standard Specification for Superpave Volumetric Design, or AASHTO M 325, Standard 
Specification for Stone Matrix Asphalt, with minor modifications to meet local conditions.(38,39) 
The mixture design identifies the grade of binder used in the mixture and establishes the target 
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gradation of the aggregates, the amount of asphalt binder in the mixture, and the volumetric 
properties of the mixture. Table 4 summarizes the data available from a typical HMA mixture 
design. During production, many properties of the mixture might vary and, as shown in table 4, 
are included in the QC and acceptance testing records. Note that the performance grading 
properties of the binder, the type and percentage of recycled binder, and the bulk specific gravity 
of the aggregates and the binder are not usually tested as part of QC and acceptance. These 
properties are usually only available from the mixture design. These important properties are 
used to derive the inputs to some of the models that use QA data to estimate key engineering and 
performance properties of HMA that are discussed in the following sections. 

Table 4. Summary of data available from a typical HMA mixture design. 

Property 
Reported During QC 

and Acceptance 
Design traffic level N/A 
Nominal maximum aggregate size and gradation Yes 
Performance grade of the binder No 
Type and percentage of recycled asphalt binder No 
Bulk specific gravity of the combined aggregate No 
Effective specific gravity of the aggregate Yes 
Bulk specific gravity of the binder No 
Design compaction level N/A 
Design binder content Yes 
Design air void content Yes 
Design VMA Sometimes 
Design VFA Sometimes 
FAA No 
Coarse aggregate crushed faces No 
Fine aggregate sand equivalent No 
Coarse aggregate flat and elongated particles No 
Filler-to-effective asphalt ratio Sometimes 
Moisture sensitivity No 

FAA = fine aggregate angularity; N/A = not applicable. 

In addition to the data in table 4, some agencies require specific performance tests to be 
conducted and reported during mixture design. The most common required performance testing 
is a test of rutting resistance usually measured with a wheel tracking device. A few agencies are 
beginning to require fracture tests for low- or intermediate-temperature cracking, and at least one 
agency requires mixture permeability to be measured and reported during mixture design. 

QC and Acceptance 

In a typical highway agency QA program for HMA, similar testing is performed for QC and 
acceptance; however, the frequency of testing is much greater for QC compared with acceptance. 
Table 5 summarizes the data available from QC and acceptance testing performed during HMA 
mixture production and pavement construction. Many agencies do not use volumetric properties 
such as voids in mineral aggregate (VMA), voids filled with asphalt (VFA), or filler-to-effective 
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asphalt ratio for QC or acceptance; however, these properties can be calculated from the QC and 
acceptance data using aggregate and binder specific gravity data from the mixture design. 

Table 5. Summary of data available from typical HMA production and construction QC 
and acceptance testing. 

Property Method 
Asphalt content AASHTO T 308(40) 
Gradation AASHTO T 27(34) and AASHTO T 11(35) 
In-place compaction Cores using AASHTO T 166(41) or nuclear gauge calibrated to 

cores 
Laboratory air voids AASHTO T 312(42) 
Thickness Cores or yield 
Ride quality AASHTO R 54(43) 

Except for ride quality, the production and construction QC and acceptance data are collected on 
a lot and sublot basis. A lot is typically defined as 1 day’s production, which is divided into four 
or more sublots for sampling and testing. When QC data are used for acceptance, the highway 
agency will typically perform verification testing on 10 percent of the QC samples. 

QA of PCC Materials 

QA for PCC materials is moving toward performance PRS from materials and methods 
provisions. Within the confines of the PRS, the contractor has scope for mix design adjustments 
to meet certain performance criteria specified by the agency. Again, just as with HMA, the QA 
program may vary from one agency to another in terms of whether the contractor’s QC test data 
are used for agency acceptance. 

The PCC QA program consists of the following components: 

• QA for the individual components of a PCC mix design (e.g., cement, fly ash, coarse and 
fine aggregates, air-entraining admixtures [AEA], chemical admixtures, curing 
compounds). 

• Mix design approval. 

• PCC production and construction QA. 

QA for Individual Components of PCC Mix Design 

QA for individual components of PCC mix design is the process by which the agency ensures 
that each individual component of the PCC mix design meets the agency specifications. These 
specifications are intended for the selection of quality materials and identification of durability 
potential, especially specifications related to alkali-silica reaction (ASR) potential. The 
contractor is expected to provide material test data and/or material certification from the 
manufacturer or supplier. In some ways, these data are analogous to the binder certification 
provided by the binder supplier or contractor in QA for HMA materials. Some key test results 
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and material certifications submitted to the agency are reported in table 6. Please note QA for 
admixtures and curing compounds are not discussed in this publication. 

Table 6. Summary of data available from PCC materials QA program. 

Material Test Method Information Provided 
Cement type ASTM C 150(44) Cement type, the 

chemical/mineralogical composition, 
and the alkalinity, which is key to 
controlling durability/ASR problems. 

Fly ash class ASTM C 618(45) Fly ash class (C or F), calcium oxide 
content (to decide use in ASR 
potential mixes), loss of ignition. 

Fine aggregates (gradation, 
sand equivalency, fineness 
modulus, specific gravity, 
potential for ASR) 

AASHTO M 6(46) 
AASHTO T 11(32) 
AASHTO T 176(33) 
AASHTO T 27(34) 
AASHTO T 84(36) 
ASTM C 1260(47) 

Gradation, sand equivalency, fineness 
modulus, specific gravity, potential 
for ASR. 

Coarse aggregates (gradation, 
nominal aggregate size, 
abrasion, specific gravity) 

AASHTO M 80(48) 
AASHTO T 27(34) 
AASHTO T 96(29) 
AASHTO T 85(37) 

Gradation, nominal aggregate size, 
abrasion, specific gravity. 

Mix Design QA 

Before construction, the agency obtains test results for the approved mix design. Often 
contractors may work with independent and private testing laboratories to develop mix designs 
that meet the performance-based specifications. In such cases, mix designs are optimized after a 
series of iterative trial batching. Depending on the owner agency and the governing 
specifications for PCC mix designs, several of the following test data are available for fresh 
concrete properties and hardened concrete properties. Table 7 provides a summary. 
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Table 7. Summary of data available from mix design approval stage. 

Test Properties Test Method Information Provided 
Fresh concrete 
properties 

AASHTO T 121(49) Unit weight air content 
AASHTO T 196(50) Unit weight air content 
AASHTO T 119(51) Slump 
ASTM C 232(52) Bleeding 
ASTM C 403(53) Initial and final set time 

Hardened concrete 
properties 

AASHTO T 22(54) Compressive strength 
AASHTO T 97*(55) Flexural strength, 
ASTM C 469*(56) Modulus of elasticity 
AASHTO T 198*(57) Splitting tensile strength 
AASHTO T 336*(58) CTE 
AASHTO T 160*(59) Length change due to concrete shrinkage 

Durability properties ASTM C 457(60) Parameters of air void system in 
hardened concrete 

ASTM C 666(61) Rapid freeze-thaw resistance 
ASTM C 672(62) Scaling resistance 

*Less commonly tested by agencies and contractors and increasing adoption because of AASHTOWare Pavement 
ME Design input requirement. The common practice currently is to determine these properties using laboratory 
testing and develop materials libraries for AASHTOWare Pavement ME inputs, particularly for PCC coefficient of 
thermal expansion (CTE) and length change due to shrinkage. 

PCC Production and Construction QA 

During production and construction, contractor QC and agency acceptance procedures require 
nearly the same battery of tests. The tests performed in QC and acceptance are presented in 
table 8. These data are often easily accessible through agency QA databases. 

The main goal of presenting details of the traditional QA programs in this section is to highlight 
the fact that several material properties and index properties are collected as part of agency QA 
procedures. The availability and accessibility of these data might vary from one agency to 
another, as would the sophistication of their data storage methods. However, for the current 
study, the fact that such data are collected and should be available if systematic data management 
practices are followed is valuable for formulating performance prediction methods. 
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Table 8. Summary of test data collected in contractor QC and agency acceptance 
procedures. 

Test Properties Information Provided 
Coarse and fine aggregate properties Gradation 

Sand equivalence 
Fresh concrete properties Air content 

Slump 

w/c ratio 
Hardened concrete properties Compressive strength 

Flexural strength 
Permeability (AASHTO T 277)(63) 

Pavement  Thickness 

IRI/ride quality (AASHTO R 54)(43) 
Texture 
Dowel bar alignment 

Note: Gradation, air content, slump, compressive strength, thickness, and IRI are the most commonly tested. Dowel 
bar alignment is included among QA parameters listed in the section, Evolving QA and Pavement Evaluation 
Practices. 

DERIVED ENGINEERING AND PERFORMANCE PARAMETERS AS INDICATORS 
OF PERFORMANCE 

Each QA data item collected in traditional QA practices discussed in the previous section might 
not necessarily form a strong indicator of performance individually. In other words, each 
parameter on its own is not a standalone engineering property directly correlated to performance. 
However, several statistical models have been derived for estimating key engineering and 
performance properties of HMA and PCC materials based on mixture composition and/or index 
properties. Most of the input data needed to use these derived models are collected as part of a 
typical QA program for HMA and PCC. 

This fact is especially relevant for this study because these engineering properties are considered 
strong indicators of performance and often are key inputs to M-E design procedures. The effort 
involved in measuring the mechanical and engineering properties might be far greater than 
would be practical for routine QA. It is worth noting that the AASHTOWare Pavement ME 
procedure recommends the use of some of these correlations to estimate level 2 and level 3 
inputs to the design. In some ways, the use of these models would be aligned and in agreement 
with modern design methods. Some of these models are presented in the following sections, 
along with a discussion of the data needed to use the model. 

Empirical Models for Estimating HMA Properties and Performance 

HMA Dynamic Modulus 

The dynamic modulus of HMA layers is a key input in the AASHTOWare Pavement ME Design 
software. Several models for estimating the dynamic modulus from binder properties and 
mixture composition have been developed.(9,16,64) However, most of these models require binder 
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stiffness data from a binder master curve as an input, and databases of typical binder master 
curve parameters are not readily available. Therefore, the most useful model for estimating 
dynamic modulus for use as a potential leading indicator of pavement performance is the level 3 
model used in NCHRP Project 1-37A and expressed as equations in figure 1 through figure 8.(16) 

 

Figure 1. Equation. Estimation of HMA dynamic modulus.(16) 

Where: 
|E*| = dynamic modulus, 105 psi. 
δ, α = mix-specific fitting parameters. δ represents the minimum value of E*, and δ + α 

represents the maximum value of E* 
β, γ = mix-specific parameters representing shape of the sigmoidal function in figure 1. 
tr = time of loading at the reference temperature, defined in figure 8. 

 
Figure 2. Equation. Calculation of δ parameter. 

Where: 
ρ200 = percent passing No. 200 sieve. 
ρ4 = percent retained on No. 4 sieve. 
Va = percent air voids. 
VFA = percent voids filled with asphalt, which is the difference between percent VMA and 

the percent Va.  

 
Figure 3. Equation. Calculation of air voids parameter. 

Where: 
Gmb = bulk specific gravity of compacted HMA. 
Gmm = maximum specific gravity of HMA. 

Figure 3 provides the expression for Va, to calculate VFA shown in figure 2. 

 
Figure 4. Equation. Calculation of voids parameter. 
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Where: 
Gmb = bulk specific gravity of compacted HMA. 
Gsb = bulk specific gravity of combined aggregate in HMA. 
Pb = asphalt content of HMA. 

Figure 4 provides the expression for VMA, used to calculate VFA shown in figure 2.  

 
Figure 5. Equation. Calculation of α parameter. 

Where: 
ρ38 = percent retained on 3/8 in sieve. 
ρ34 = percent retained on 3/4 in sieve. 

Figure 5 provides the expression for α, shown in figure 1. 

 
Figure 6. Equation. Calculation of β parameter. 

Where  = viscosity in 106 Poise at the reference temperature. 

Figure 6 provides the expression for β, shown in figure 1. 

 
Figure 7. Equation. Calculation of viscosity temperature parameter. 

Where: 
ηt = viscosity at temperature of interest. 
A = intercept of viscosity temperature susceptibility relationship. 
VTS = slope of viscosity temperature susceptibility relationship. 
t = temperature in degrees Rankine = ℉ + 459.67. 
γ = 0.313351. 

Figure 7 provides the expression for the viscosity parameter shown in figure 6. 

 
Figure 8. Equation. Calculation of the temperature parameter. 

Where c = 1.255882. 

Figure 8 provides the expression for log (tr) parameter shown in figure 1. 
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Typical values of the viscosity temperature susceptibility parameters A and VTS are tabulated in 
table 9 and table 10, respectively, for different PG asphalt binders.(16) Recycled binder from 
reclaimed asphalt pavement (RAP) or recycled asphalt shingles (RAS) can be accounted for by 
modifying the high- and low-temperature performance grade of the virgin binder in the mixture. 
Table 11 presents typical changes in the high- and low-temperature performance grade per 
percentage of recycled binder in the mixture.(65) Knowing the performance grade of the virgin 
binder and the amount and type of recycled binder in the mixture, the performance grade of the 
combined binder in the mixture can be estimated using the grade changes tabulated in table 11. 

Table 9. Typical viscosity temperature susceptibility parameter A values for PG asphalt 
binders at the given high- and low-temperature grade.(16) 

High-Temp. Grade 
Low-Temp. Grade 

−10 −16 −22 −28 −34 −40 −46 
46 — — — — 11.504 10.101 8.755 
52 13.386 13.305 12.755 11.840 10.707 9.496 8.310 
58 12.316 12.248 11.787 11.010 10.035 8.976 — 
64 11.432 11.375 10.980 10.312 9.461 8.524 — 
70 10.690 10.641 10.299 9.715 8.965 8.129 — 
76 10.059 10.015 9.715 9.200 8.532 — — 
82 9.514 9.475 9.209 8.750 8.151 — — 

—No data. 

Table 10. Typical viscosity temperature susceptibility parameter VTS values for PG 
asphalt binders at the given high and low temperature grade.(16) 

High-Temp. Grade 
Low-Temp. Grade 

−10 −16 −22 −28 −34 −40 −46 
46 — — — — −3.901 −3.393 −2.905 
52 −4.570 −4.541 −4.342 −4.012 −3.602 −3.164 −2.736 
58 −4.172 −4.147 −3.981 −3.701 −3.350 −2.968 — 
64 −3.842 −3.822 −3.680 −3.440 −3.134 −2.798 — 
70 −3.566 −3.548 −3.426 −3.217 −2.948 −2.648 — 
76 −3.331 −3.315 −3.208 −3.024 −2.785 — — 
82 −3.128 −3.114 −3.019 −2.856 −2.642 — — 

—No data. 

Table 11. Typical changes in performance grade when using recycled binders.(65) 

Grade 

Increase of Performance Grade per 
Percent Recycled Binder Added (℃), 

RAP 

Increase of Performance Grade per 
Percent Recycled Binder Added (℃), 

RAS 
High 0.23 0.58 
Low 0.08 0.23 
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Although the equation in figure 1 appears complicated because it requires a number of inputs, all 
the inputs are available from a typical agency QA program for HMA. Table 12 maps the required 
input parameters to data available from a typical agency QA program. 

Table 12. Location of input data for AASHTOWare Pavement ME level 3 equations. 

Parameter Data Location in Typical Agency QA Program 
Binder viscosity temperature 
parameter A Mix design binder grade modified for recycled binder 

content. Binder viscosity temperature 
parameter B 
ρ200 

Production and construction QC and acceptance test data. ρ4 
ρ38 
ρ34 
Va Production and construction QC and acceptance test data: 

• Gmb and Gmm from in-place compaction. 
• Pb from mix testing. 
• Mix design for Gsb. 

VMA 

VFA 

Low-Temperature Creep Compliance and Strength 

Other key inputs in the AASHTOWare Pavement ME Design software for HMA layers are the 
low-temperature creep compliance and strength of the HMA mixtures. Data from a typical 
agency HMA QA program can be used with the level 3 models developed in NCHRP Project 
1-37A to estimate the creep compliance and tensile strength using equations in figure 9 through 
figure 13.(16) All the inputs for figure 9 and figure 13 are available from a typical agency QA 
program for HMA. 

 
Figure 9. Equation. Expression to determine creep compliance.(16) 

Where: 

 
Figure 10. Equation. Calculation of D parameter. 

Where: 

 
Figure 11. Equation. Calculation of m parameter. 
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Where: 
Temp = temperature at which creep compliance is measured, ℉. 
Va = as-constructed air voids, percent. 
VFA = as-constructed VFA, percent. 
Pen77 = binder penetration at 77℉, mm/10. 

 
Figure 12. Equation. Calculation of Pen77 parameter. 

Where A = viscosity-temperature susceptibility intercept. 

 
Figure 13. Equation. Expression to determine indirect tensile strength.(16) 

Where TS = indirect tensile strength at 14℉, psi. 

Rutting Resistance Predictive Model 

One strategy for using QA data as a leading indicator is to use predicted performance from the 
AASHTOWare Pavement ME Design software. This type of analysis will be computationally 
intensive. A second approach is to use an index derived from models relating properties in a 
typical QA program for HMA to measure resistance to rutting and cracking. In NCHRP Project 
9-25, a model was developed to estimate HMA rutting resistance from mixture volumetric 
composition.(10) This model was subsequently improved through additional research in NCHRP 
Project 9-33 and Airfield Asphalt Pavement Technology Program Project 04-02.(10,11) Figure 14 
and figure 15 present the model, which can be used to estimate the rutting resistance of a mixture 
from volumetric composition, in-place compaction, and binder properties.(11) 

 
Figure 14. Equation. Allowable traffic for rutting criterion of 7.2 mm.(11) 

Where: 
TR = allowable traffic in million equivalent single-axle loads (ESALs) to an average rut 

depth of 7.2 mm. 
Nd = design gyrations. 
Ks = speed correction. 
Ks = (v/70)0.8, where v is the average traffic speed in km/h. 
Vd = design air void content, volume percent. 
VIP = in-place air void content, volume percent. 
M = 7.13 for mixtures containing typical polymer-modified binders, 1.00 otherwise. 
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Figure 15. Equation. Calculation of P parameter. 

Where: 
|G*|/sin δ = estimated aged PG grading parameter at high temperatures, determined at 

10 rad/s and at the yearly 7-d average maximum pavement temperature at 20 mm below 
the pavement surface, as determined using LTPPBind, version 3.1 (units of Pa/s); aged 
value can be estimated by multiplying the rolling thin film oven test (RTFOT) value by 
4.0 for long-term projects (10- to 20-yr design life), and by 2.5 for short-term projects of 
1–2 yr. 

Sa = specific surface of aggregate in mixture, m2/kg. 
Sa ≅ sum of the percent passing the 75-, 150-, and 300-μm sieves, divided by 5.0. 
VMA = design VMA for the mixture, volume. 

The primary difficulty in applying this model using data available from a typical agency QA 
program for HMA is estimating |G*|/sin δ at the pavement temperature for the location of the 
project. A typical agency PG binder QA program will provide average values of |G*|/sin δ for 
RTFOT condition at the grade temperatures (e.g., 58, 64, 70). Because most agencies specify 
binder grades using 98 percent reliability, the pavement temperature for the project location will 
generally be lower than the specified grade temperature. An approximation used in binder 
grading is that |G*|/sin δ doubles for each 6℃ decrease in temperature. Figure 16 expresses this 
approximation, allowing the RTFOT value of |G*|/sin δ to be estimated at the pavement 
temperature from the RTFOT value of |G*|/sin δ at the binder grade temperature that is collected 
as part of the PG binder QA program. Table 13 maps the required input parameters to data 
available from a typical agency QA program. 

 
Figure 16. Equation. Adjustment to estimate RTFOT result for pavement temperature. 

Where: 
(|G*|/sin δ)PT = estimated RTFOT |G*|/sin δ at the pavement temperature, kPa. 
(|G*|/sin δ)SPEC = estimated RTFOT |G*|/sin δ at the specification temperature, kPa. 
TGRADE = binder grading temperature, ℃. 
TP = LTPPBind 50 percent reliability pavement temperature, ℃ 
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Table 13. Location of input data for resistivity rutting model. 

Parameter Data Location in Typical Agency QA Program 

|G*|/sin δ 
Average value from PG binder QA program for the grade specified in the mix 
design adjusted for recycled binder (table 6), pavement temperature 
(figure 16), and aging (4.0 times for normal design life). 

Sa Production and construction QC and acceptance gradation data. 
Gsb 

Mix design. VMA 
Nd 
Vd 

VIP Production and construction QC and acceptance test data, Gmb and Gmm from 
in-place compaction. 

Ks Estimate based on roadway type. 
M PG binder QA program. Polymer modified binders are usually identified. 

Asphalt Institute Fatigue Equation 

The Asphalt Institute fatigue equation in figure 17 through figure 19 can be used in lieu of a 
structural analysis with AASHTOWare Pavement ME Design to develop an index related to the 
fatigue cracking potential of an HMA pavement section.(66) The tensile strain in figure 19 can be 
evaluated using the ILLI-PAVE algorithm for strain at the bottom of asphalt layer, which is 
reproduced as figure 19.(67) The HMA modulus required for both equations in figure 17 and 
figure 19 can be estimated at an appropriate intermediate pavement temperature using figure 1 
and a loading time of 0.1 s. A reasonable intermediate pavement temperature is the mean annual 
air temperature at the project location, which is available from local weather stations. Table 14 
maps the required input parameters for the equations in figure 17 through figure 19 to data 
available from a typical agency QA program. 

 
Figure 17. Equation. Asphalt Institute fatigue equation.(66) 

Where: 
Nf = number of cycles to failure. 
|E*| = mixture dynamic modulus, psi. 
εt = applied tensile strain, inches/inches. 
18.4 = field adjustment factor. 

 
Figure 18. Equation. Calculation of C parameter. 
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Figure 19. Equation. Estimation of tensile strain at the bottom of the asphalt layer.(67) 

Where: 
εt = tensile strain, µ inches/inches. 
Tac = thickness of asphalt concrete (AC), inches. 
Tb = thickness of aggregate base/subbase, inches. 
|E*| = mixture dynamic modulus, ksi. 
Eri = subgrade breakpoint resilient modulus; ksi suggested values are 12 for stiff, 8 for 

medium, 3 for soft, and 1 for very soft subgrade. 

Table 14. Location of input data for cracking analysis using the Asphalt Institute fatigue 
equation. 

Parameter Data Location in Typical Agency QA Program 
|E*| See figure 1 and table 7. 
Va Production and construction QC and acceptance test data: 

• Gmb and Gmm from in-place compaction. 
• Pb from mix testing. 
• Mix design for Gsb. 

VMA 

VFA 

Tac Production and construction QC and acceptance test data. 
Tb Construction QC and acceptance test data for granular layers. 
Eri Estimated based on description of subgrade soil. 

Critical Cracking Temperature 

An alternative to performing a thermal cracking analysis using the AASHTOWare Pavement ME 
Design software is to use low-temperature creep compliance and strength data estimated with the 
equations in figure 9 and figure 13 to calculate a critical cracking temperature for the HMA and 
then use the critical cracking temperature as an index of low-temperature cracking potential. 
LTSTRESS.xls is an example of a Microsoft® Excel® application that can be used to perform 
this analysis. LTSTRESS was developed at the Northeast Center of Excellence for Pavement 
Technology to reduce data from AASHTO T 322 and to perform a simplified 
thermo-viscoelastic analysis.(68) This analysis is like the thermal fracture model in the 
AASHTOWare Pavement ME Design software. It provides an estimate of the expected thermal 
cracking temperature for the material tested. It does not consider thermal fatigue or crack 
propagation, and it is strictly accurate only for single-event thermal cracking, as occurs during 
extreme low-temperature events. Through the equations in figure 9 and figure 13, the inputs 
needed for a critical cracking temperature analysis using LTSTRESS can be obtained from data 
collected as part of a typical agency QA program for HMA. 

Permeability 

Permeability is an important factor affecting the durability of asphalt concrete (AC) pavements 
that is not directly addressed in AASHTOWare Pavement ME. In NCHRP Project 9-25, an 
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equation to estimate permeability based on the volumetric properties of HMA was developed(10); 
figure 20 presents this permeability equation. Table 15 maps the input parameters for the 
permeability equation to data available from a typical agency QA program. 

 
Figure 20. Equation. Estimation of permeability based on mix gradation and 

volumetrics.(10) 

Where: 
κ = coefficient of permeability, 10−5 cm/s. 
VTMEff = effective air void content. 
VTMEff = VIP + 1.87 − 1.53 × Sa for VIP ≥ 1.53 × Sa + 1.87. 
VTMEff = 0 for VIP < 1.53 × Sa + 1.87. 
Sa = specific surface of aggregate in mixture, m2/kg. 
Sa ≅ sum of the percent passing the 75-, 150-, and 300-μm sieves, divided by 5.0. 

Table 15. Location of input data for permeability model. 

Parameter Data Location in Typical Agency QA Program 

VIP Production and construction QC and acceptance test data, Gmb and Gmm from 
in-place compaction. 

Sa Production and construction QC and acceptance gradation data. 

Models for Estimating PCC Properties and Performance 

Correlations Adopted in the AASHTOWare Pavement ME 

The AASHTOWare Pavement ME design procedure, now adopted by several agencies, includes 
several level 2 and level 3 correlations based on material property prediction models developed 
in the past. These correlations were used during the global calibration of the distress models and 
are default inputs integrated into the software program.(16,17) Parameters that are estimated using 
these correlations include PCC flexural strength, elastic modulus, coefficient of thermal 
expansion (CTE), and ultimate shrinkage, all of which are key inputs for damage calculation and 
performance predictions models. These models are: 

• PCC flexural strength model, shown in figure 21, based on Portland Cement Association 
and Long-Term Pavement Performance (LTPP) studies.(69,70) 

• PCC elastic modulus model as a function of density and compressive strength and shown 
in figure 22. This equation was borrowed from American Concrete Institute (ACI).(71) For 
unit weight of 145 lb/ft3, this equation reduces to the expression shown in figure 23. 

• PCC ultimate shrinkage strain model, which is a function of compressive strength, 
cement type, curing type, cement content, and water-to-cementitious materials ratio (w/c) 
ratio. This model was generated using historical shrinkage data and was subsequently 
adopted by the ACI.(72) The model is shown in figure 24. 
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Figure 21. Equation. PCC flexural strength model.(69,70) 

Where: 
MR = flexural strength in psi. 

 = compressive strength in psi. 

 
Figure 22. Equation. PCC elastic modulus model.(71) 

Where: 
Ec = modulus of elasticity in psi. 
ρ = the density in lb/ft3. 

 
Figure 23. Equation. Modulus prediction based on compressive strength alone.(71) 

 
Figure 24. Equation. Ultimate shrinkage strain.(72) 

Where: 
εsu = the ultimate shrinkage strain, ×10−6. 
C1 = the cement type factor = 1.0, 0.8, and 1.1 for type I, Ⅱ, Ⅲ cements, respectively. 
C2 = the curing factor = 0.75, 1.0, and 1.2 for steam curing, wet curing, and curing 

compound, respectively. 
w = water content, lb/ft3 for the PCC mix. 

 =28-d PCC compressive strength, psi. 

CTE defaults by coarse aggregate type, which was established based on testing and petrography 
performed under the LTPP program. The recommended CTE values for all aggregate types are 
summarized in table 16.(18) Note that these values represent materials nationwide. 
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Table 16. National PCC CTE averages based on LTPP data.(18) 

Primary Aggregate 
Origin 

Primary 
Aggregate Class 

Average PCC 
CTE (10−6/℉) 

Standard 
Deviation PCC 
CTE (10−6/℉) 

Number of 
LTPP Test 

Sections 
Igneous (extrusive) Andesite N/A N/A N/A 
Igneous (extrusive) Basalt 4.4 0.5 18 
Igneous (plutonic) Diabase 5.2 0.5 21 
Igneous (plutonic) Granite 4.8 0.6 69 
Metamorphic Schist 4.4 0.4 17 
Sedimentary Chert 6.1 0.6 25 
Sedimentary Dolomite 5.0 0.7 30 
Sedimentary Limestone 4.4 0.7 160 
Sedimentary Quartzite 5.2 0.5 9 
Sedimentary Sandstone 5.8 0.5 7 

The level 2 correlations listed in the equations in figure 21 through figure 24 and the level 3 
default values in table 16 have been modified by agencies as they adopted locally calibrated 
distress prediction models for the AASHTOWare Pavement M-E. However, note that these 
material properties are estimated as a function of the compressive strength of the PCC and/or 
other mix design parameters that are available from QA data collection (summarized in table 7 
and table 8). Therefore, these engineering properties can be calculated from the derived models 
and can be used as potential indicators of performance in statistical analyses. 

Correlations Developed from Long-Term Pavement Testing Data to Estimate PCC Properties 

Several previous research studies have attempted to develop correlations to predict PCC material 
properties based on index properties and mix proportioning factors. A very detailed review of 
existing literature and the models developed historically have been discussed in an LTPP 
research study.(14) However, the LTPP Data Analysis program conducted a study to utilize data 
collected from LTPP test sections to derive correlations to estimate PCC material properties. A 
key benefit recognized from this effort was that the correlations developed represented paving 
mixes (rather than a larger dataset from ACI and PCA studies that included structural concrete) 
and that they also represented the sections used in the calibration. Several correlations were 
developed for compressive strength, flexural strength, elastic modulus, indirect tensile strength, 
CTE, and rigid pavement design features. The correlations developed are presented, and their 
applications summarized, in the following figures and tables: 

• Compressive strength models are presented in figure 25 through figure 29, and their 
applications are summarized in table 17. 

• Flexural strength models are presented in figure 30 through figure 32, and their 
applications are summarized in table 18. 

• Elastic modulus models are presented in figure 33 through figure 35, and their 
applications are summarized in table 19. 
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• Tensile strength model is presented in figure 36. This model is applicable in design and 
PMS for continuously reinforced concrete pavement (CRCP) projects when compressive 
strength is available. 

• Permanent built-in curl or warp effective temperature gradient (deltaT) model is 
presented in figure 37. This model is applicable in PMS when mix design and 
construction weather information are available, which typically is not known at the time 
of design. 

Note that all these correlations show how the engineering properties, directly considered as 
inputs to predict performance, can be derived as a function of QA data reported in table 6 
through table 8. 

 
Figure 25. Equation. 28-d cylinder strength model.(14) 

 
Figure 26. Equation. Short-term cylinder strength model.(14) 

 
Figure 27. Equation. Short-term core strength model.(14) 

 
Figure 28. Equation. All-ages core strength model.(14) 

 
Figure 29. Equation. Long-term core strength model.(14) 

Where, in equations presented in figure 25 through figure 29: 
CMC = cementitious material content, lb/ft3. 
uw = unit weight, lb/ft3. 
t = age, yr: t < 1.0 in figure 26 and figure 27; t > 5.0 in figure 29. 
MAS = maximum nominal aggregate size, inches. 
FM = fineness modulus of fine aggregate. 
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Table 17. Applications of the PCC compressive strength models in design, QA, and PMS.(14) 

Model Application 
Figure 25. Equation. 28-d cylinder strength 
model. 

28-d strength for design, QA. 

Figure 26. Equation. Short-term cylinder 
strength model. 

Design, QA, PMS, opening strength for ages 
< 1 yr. 

Figure 27. Equation. Short-term core strength 
model. 

Design, QA, PMS, opening/in situ strength, 
for ages < 1 yr. 

Figure 28. Equation. All-ages core strength 
model.  

Design, QA, PMS, in situ strength, at any age. 

Figure 29. Equation. Long-term core strength 
model. 

Rehabilitation design and in situ strength for 
ages > 5 yr. 

 
Figure 30. Equation. Flexural strength based on compressive strength.(14) 

 
Figure 31. Equation. Flexural strength based on age, unit weight, and w/c ratio.(14) 

 
Figure 32. Equation. Flexural strength based on age, unit weight, and cementitious 

material content.(14) 

Where, in equations presented in figure 30 through figure 32: 
MR = flexural strength, psi. 
MRt = flexural strength at age t yr, psi. 

= compressive strength determined at the same age, psi. 
t = pavement age, yr. 

Table 18. Applications of the PCC flexural strength models in design, QA, and PMS.(14) 

Model Application 
Figure 30. Equation. Flexural strength based 
on compressive strength. 

Design and PMS when compressive strength at 
given age is available. 

Figure 31. Equation. Flexural strength based 
on age, unit weight, and w/c ratio. 

Design and PMS when index properties are 
available; predicts for any age. 

Figure 32. Equation. Flexural strength based 
on age, unit weight, and cementitious 
material content. 

Design and PMS when index properties are 
available; predicts for any age. 
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Figure 33. Equation. Elastic modulus based on aggregate type.(14) 

 
Figure 34. Equation. Elastic modulus based on age and compressive strength.(14) 

 
Figure 35. Equation. Elastic modulus based on age and 28-d compressive strength.(14) 

Where, in equations represented in figure 33 through figure 35: 
Ec = PCC elastic modulus, psi. 
Et = elastic modulus at age t yr. 
uw = unit weight, pcf. 

= compressive strength at same age, psi. 

= 28-d compressive strength. 
t = age at which modulus is determined, yr. 
Dagg = regressed constant depending on aggregate type: andesite (1), basalt (0.9286), chert 

(1.0079), diabase (0.9215), dolomite (1.0254), granite (0.8333), limestone (1), quartzite 
(0.9511), sandstone (1). 

Table 19. Applications of the PCC elastic modulus models in design, QA, and PMS.(14) 

Model Application 
Figure 33. Equation. Elastic modulus based on 
aggregate type. 

Design and PMS when compressive strength 
at given age and aggregate type are available. 

Figure 34. Equation. Elastic modulus based on 
age and compressive strength. 

Design and PMS when compressive strength 
at given age is available; predicts for any age. 

Figure 35. Equation. Elastic modulus based on 
age and 28-d compressive strength. 

Design and PMS when 28-d compressive 
strength is available; predicts for any age. 

 
Figure 36. Equation. Indirect tensile strength model based on compressive strength.(14) 

Where: 
ft = indirect tensile strength of the PCC material. 

 = compressive strength of the mix determined at the same age. 
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Figure 37. Equation. DeltaT for JPCP design.(14) 

Where: 
deltaT/inch = predicted gradient in JPCP slab, ℉/inch. 
TR = difference between maximum and minimum temperature in construction month, ℉. 
SW = slab width, ft. 
PCCTHK = JPCP slab thickness, inches. 
uw = unit weight of PCC used in JPCP slab, lb/ft3. 
latitude = latitude of the project location, degrees. 

Fatigue Life of PCC from AASHTOWare Pavement ME or PRS Models 

The nationally calibrated PCC fatigue model, used for calculating damage accumulation for 
JPCP and CRCP fatigue models, presented in figure 38, can be used to develop an index related 
to the fatigue cracking potential of PCC pavement sections.(16) 

 
Figure 38. Equation. PCC fatigue model.(16) 

Where: 
N =  number of allowable load repetitions under conditions i, j, k, l, m, and n. 
MR = PCC modulus of rupture or flexural strength, psi. 
σ =applied stress at condition i, j, k, l, m, and n. 
C1 and C2 = PCC fatigue calibration constants 2.0 and 1.22. 

The adoption of such an equation will require certain approximations about traffic and other 
conditions. The applied stress can be determined through ISLAB 2000 analyses. However, 
combined with a good estimate for flexural strength using models presented in figure 30 through 
figure 32, the feasibility of using the fatigue model can be evaluated for use in PMS. Likewise, 
models developed under PRS can also be adopted. 

EXISTING STRATEGIES FOR USING HMA/PCC QA DATA AS LEADING 
PERFORMANCE INDICATORS FOR PAVEMENT MANAGEMENT 

The preceding sections described the data that are available from a typical agency QA program 
for HMA and PCC materials and models that use these data to estimate key engineering and 
performance properties for HMA/PCC. With these models, available QA data can be used to 
estimate the following properties of HMA and PCC materials summarized in table 20. 
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Table 20. Properties of HMA and PCC materials. 

HMA Properties PCC Properties 
• Dynamic modulus. 
• Low-temperature creep compliance. 
• Low-temperature tensile strength. 
• Critical thermal cracking temperature. 
• Rutting resistance as measured by the 

allowable traffic to an average rut depth of 
7.2 mm in the HMA layer. 

• Fatigue resistance as measured by the number 
of cycles to failure. 

• Permeability. 

• Compressive strength. 
• Flexural strength. 
• Elastic modulus. 
• CTE. 
• deltaT. 
• Fatigue resistance measured by 

number of cycles to failure. 

The following sections discuss two strategies already existing that can use properties derived 
from QA data as leading indicators of pavement performance in the agency PMS. 

AASHTOWare Pavement Design ME Software 

The primary HMA material inputs for the performance models in the AASHTOWare Pavement 
Design ME software can be estimated using the level 2 and level 3 relationships and QA data for 
HMA and PCC. This process will permit estimates of performance to be made directly with the 
AASHTOWare Pavement Design ME software. This approach has the advantage that the leading 
indicators are tied directly to the design methodology, should an agency adopt AASHTOWare 
Pavement Design ME for design. This approach, however, is computationally intensive, and for 
it to be reasonably accurate, local calibration of the AASHTOWare Pavement Design ME 
models will be necessary. The AASHTOWare Pavement Design ME performance models could 
be implemented in a less rigorous manner (such as national calibration using an 18,000 
single-axle load); however, such an implementation would be similar to the index approach 
discussed in the following section. It was not the intent of the project team to evaluate this 
strategy under the current project. However, it is appropriate to say that States may consider this 
option and conduct the specific analyses necessary. This approach also does not provide a 
method to integrate QA data into an agency’s PMS, but a very basic form of performance 
prediction from construction data already exists. 

Performance Indexes 

The preceding sections present several models that use data collected in a typical agency QA 
program for HMA and PCC to estimate performance-related properties. These can serve as 
indexes to improve pavement life models currently used in pavement management, such as the 
following: 
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• Rutting resistance from the NCHRP 9-25 resistivity model. 

• Fatigue life from the Asphalt Institute fatigue equation combined with ILLI-PAVE 
algorithms. 

• Permeability from the NCHRP 9-25 permeability equation. 

• Critical cracking temperature from a thermal viscoelastic analysis using creep compliance 
and tensile strength estimated using the AASHTOWare Pavement Design ME level 3 
models. 

• Fatigue life of PCC pavements from AASHTOWare Pavement ME. 

The primary advantage of these indexes is that they are easy to calculate and likely capture many 
of the important factors affecting the performance of HMA or PCC mixtures. Additionally, 
calibration of an approach using these properties as indexes will require significantly less effort 
and use performance data currently available in agency PMS. 

EVOLVING QA AND PAVEMENT EVALUATION PRACTICES 

Several innovative technologies, particularly those that nondestructively test materials, have been 
developed, evaluated, and adopted in the evaluation of highway structures. The most 
comprehensive evaluations were under the NCHRP 10-65 project and a series of Strategic 
Highway Research Program 2 (SHRP 2) research and implementation projects that advanced the 
state of practice for specific NDT technologies. (See references 15, 73, 74, 75, 76, and 77.) The 
main benefits of using NDT procedures are that a larger coverage can be achieved, and tests can 
be completed within short test times, even if the tests are performed at point locations. 

NCHRP 10-65 recommends technologies most effective for use in QC/QA, i.e., technologies 
capable of identifying construction anomalies, showing repeatability, and measuring material 
properties directly related to performance.(15) For example, the parameters considered 
performance indicators are key material inputs to the ME Design procedure, such as HMA 
modulus (rather than density) and unbound material stiffness (rather than density and moisture 
content). The SHRP 2 effort further evaluated specific NDT procedures under independent 
studies and made specific recommendations for appropriate technologies for construction 
evaluation. In addition, a few States (such as Washington, Texas, Wisconsin, Minnesota, Iowa, 
Utah, and Colorado) have been champions of, and have made significant advancements with the 
adoption of, these technologies, including the development of specifications. The project team 
observed that these evolving technologies have not seen wider adoption and implementation at a 
significant pace. Table 21 provides a summary of recommended and accepted practices for use in 
evaluating materials and construction quality. 
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Table 21. Summary of evolving technologies for use in QA. 

Material Property and 
Construction Issue Innovative and Evolving QA Technologies 

Modulus and stiffness 

Seismic methods, PSPA for HMA 
PSPA or impact echo for PCC. 
GeoGauge, a steady state vibratory device for unbound 
materials. 
FWD for rehabilitation design and evaluation. 

Density Nonnuclear density gauges for HMA. 

HMA layer delaminations GPR and impact echo/SASW. 

Thermal segregation and uniformity IR and GPR. 
VMA GPR. 
Layer thickness GPR, impact echo (especially for PCC). 
Dowel bar location and alignment 
in JPCP Magnetic tomography. 

Chemical composition and 
detection of additives Spectroscopy. 

Structural condition Continuous deflection measuring devices (also for 
PMS). 

Smoothness and IRI Profilers (also for PMS). 
FWD = falling weight deflectometer; PSPA = Portable Seismic Pavement Analyzer; SASW = spectral analysis 
of surface waves. 

Location Reference and Materials Data Tracking 

One of the main challenges with linking QA and construction data with pavement condition data 
is the difficulty in integrating the data because of the absence of common location referencing. 
The construction stage of the project identifies locations based on stationing in the plans. 
However, the performance data are referenced by the physical roadway mile referencing or 
mileposts (MPs). Construction QA, which is performed typically by lots, cannot be directly 
mapped to the physical location on the roadway, which could make performance tracking easier 
and enable a closer correlation to construction issues, should early failures occur. A recent 
FHWA study considered the application of radio-frequency identification (RFID) technology, a 
widely used system for inventory tracking in the commercial and consumer goods industries, for 
pavement applications.(78) RFID-based tracking of HMA material placement on roadways was 
identified as a successful application. The technology was not as effective for tracking PCC 
placements or for tracking temperature during the compaction of various lifts during paving 
operations. Although this technology has not gained traction in implementation, it is significant 
for the current study, as it enables RFID-assisted geolocation, which can be linked to pavement 
management data. All QA data collected at the time of construction can be tagged to the specific 
location on the project. 

The recent advancements in geospatial referencing, which is discussed in the next section, has 
also made the collection of QA data with location referencing a priority for many agencies. For 
example, Utah and Iowa DOTs have made significant efforts to enable density measurements 
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and other field QA test data collection with global positioning system (GPS) coordinates. This 
practice is expected to become the norm. 

Continuous Record of Pavement Data and Coverage 

Innovative technologies used for pavement evaluation, either in service or for QA, offer full 
coverage of the pavement layer surface, in contrast to test data collected only at point locations 
in traditional QA tests. This practice can offer a significant advantage for assessing material or 
construction variability and can be very useful for performance prediction in a finer mesh. 
Establishing correlations at the project level (unless for a forensic-type investigation) might not 
be practical, but the variability in results can be incorporated into performance prediction at the 
network level, as required for the current project. Data from full coverage can be incorporated 
into the framework to be developed under this project, especially if construction-related data 
with full coverage is foreseen to be the practice for the future of pavement construction. 

IC 

IC technology uses vibratory rollers with an integrated control system that can automatically 
adjust compactive effort in response to real-time feedback on changes in material stiffness during 
the compaction process. The rollers include accelerometers on the axle of drums that provide a 
continuous feedback to the machine. IC rollers also include survey-grade GPS tracking for 
location referencing, IR temperature sensors to measure mat temperature, and on-board 
computers that can display IC measurements as color-coded maps in real time. 

IC has been evaluated under national- and State-level projects that assessed the reliability of the 
technology in different soil types.(79,80,81) The early projects, which were mostly conducted by 
States interested in the technology, performed field demonstrations and evaluations on select 
construction jobs that favored the use of IC for controlling the compaction of unbound layers. 
The stiffness of the soil and unbound area can be mapped before surface layers/HMA materials 
are placed, so areas with weak supporting layers can be identified before compaction. It is also 
possible to develop stiffness-growth relationships to optimize the rolling pattern required during 
construction. Some of these studies also provided guidelines for specification development.(79,81) 
IC is widely used for both unbound and asphalt material compaction. Typical IC measurements 
include compaction meter value (CMV), number of roller passes, asphalt surface temperatures, 
and roller settings (vibration frequencies, amplitudes, and speeds). 

However, because the IC output is a composite value that is a response to the combined layer 
structure, there are concerns about the validity of the apparent stiffness reported by the IC roller 
for the layer being compacted. Several studies have been performed to authenticate the validity 
of IC measurements and to determine their use for pavement construction QA. This issue has yet 
to be resolved, as outcomes of such studies to date have, at best, been mixed. For example, an 
FHWA study reported that the final IC measurement value (ICMV) does not correlate well with 
core densities and stated that the ICMV is not recommended to replace cores for acceptance.(82) 
Several agencies use IC in construction, but none use it for QA. It is instead used to verify 
coverage and number of passes. From a pavement management or asset management standpoint, 
the ability to backtrack performance data to a compaction issue (number of passes or coverage) 
should be extremely valuable to an agency. Given the upsurge in its implementation, and the 
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coordinate tracking for each location in the project, IC becomes a valuable construction practice 
for potentially storing and using data in pavement management performance modeling. 

Continuous Deflection Monitoring Devices 

Continuous deflection monitoring devices (sometimes referred to as continuous deflection 
measuring devices or traffic speed deflection devices [TSDDs]) were identified by SHRP 2 as a 
promising technology for indepth evaluation.(73,76) Technologies for continuous deflection 
measurements are still evolving. The two devices that have been most commonly used for testing 
in the United States at the time of this study are the traffic speed deflectometer (TSD) and the 
rolling weight deflectometer (RWD). The Rapid Pavement Tester, or RAPTOR, has recently 
been introduced in the United States. While the specific device is not relevant to this study, it is 
noted that data collected using any given continuous deflection monitoring device can provide an 
indication of structural condition of the highway at a network level. Continuous deflection 
monitoring is considered an improvement over the falling weight deflectometer (FWD) device 
for the following main reasons: 

• Ability to measure pavement surface deflections at highway travel speeds rather than 
requiring traffic control and lane closures for testing. 

• Ability to provide data with spatial coverage rather than at specific points. 

• Practical for network-level testing. 

• Potential to integrate with PMS within an agency and provide the structural indication of 
the roadway. 

A recent FHWA study evaluated existing devices to establish reliable structural condition 
metrics.(83) Two devices were selected, the TSD and the RWD, for the evaluation at Minnesota 
DOT MnROAD facility. First, it was found that the RWD-based deflections were well correlated 
to the TSD-based deflections, validating the fact that measurements from both TSDDs related to 
the structural condition. The measurements were statistically repeatable. Indexes derived from 
the TSDD data were indicative of the structural condition at the network level. Data were 
averaged at different rates across the two devices: 0.1 mi for the RWD and 0.006 mi for the TSD. 
It was recommended that, for wider implementation, the highway agency should have the 
necessary data to assess the variability in deflection responses. 

The research produced several recommendations that essentially would validate the magnitude of 
response and its applicability to testing PCC pavements. However, one additional 
recommendation that is most relevant to this study is to utilize TSDD-derived structural indexes 
for the development of methodologies to predict the future condition of the highway. 

GEOSPATIAL CONSIDERATIONS IN CONSTRUCTION 

The state of the practice for construction data collection and management is in flux, thanks to a 
convergence of disruptive technologies. LiDAR technology, in both static and mobile forms, is 
maturing, as is global navigation satellite systems (GNSS) and AMG technology, while mobile 
computer applications (such as tablets and smartphones) and small unmanned aircraft systems 
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(sUAS) are creating an opportunity for capturing more information digitally than ever before. 
These technologies also change how information is collected. Past methods relied heavily on 
completing paper forms and providing narrative accounts of construction. These emergent 
technologies are beginning to add to narrative records with photographs, videos, and 3D data to 
provide a record of construction. 

Time savings of mobile technologies in particular offer opportunities for an increased volume of 
documented observations. Mobile technologies have also been found to change the makeup of 
observations. With traditional processes, text and equipment observations dominate inspection 
daily reports. When mobile technologies are used, photo and video observations become a 
significant part of the record, and more weather observations are collected. Mobile technologies 
offer the opportunity to read and write directly into databases, which has resulted in increases in 
both the volume of data and the consistency of those data.(84) 

This digital revolution that is sweeping through the construction industry also involves an 
increase in digital design information entering construction. Currently, much of this digital 
information is in the form of PDF documents, some with searchable text. Increasingly, agencies 
are providing 3D digital design data.(85,86) Contractors are using AMG technology in increasingly 
sophisticated practices, such as trench excavation, milling, and paving, and they are 
supplementing or creating new 3D data to load into this AMG equipment. However, there is still 
a lack of consistency in how, when, and indeed if these 3D data created by the contractor are 
provided to the agency.(87) 

The processes and policies that govern this emergent data are slow to change. Thus, the digital 
workflows developed with mobile technology often replicate the same manual processes. In 
some cases, there is reluctance to embrace the digital data, and it is secondary to the traditional 
paper-based process. For instance, 3D engineered model data are provided for reference 
information, subject to disclaimers, whereas the contract documents are the plans.(85) The design 
intent is more complete and more visually accessible in the 3D model than in the plans, which 
require interpolation, but resident engineers may lack the software and skill to interact with 3D 
models. 

During design, engineers focus a great deal of effort on precise geometric properties with little 
regard for the uncertainty associated with the depiction of the original ground conditions. In 
construction, however, the quantities and specifications take precedence, and design 
modifications are common when there are issues with mass balance or with the actual in situ 
conditions being significantly different from those anticipated in design.(87) These changes are 
increasingly being documented digitally, such as raster red lines in a PDF document, but not in a 
way that updates the 3D data from the design. These practices make for a systemic reliability 
problem with 3D design data for postconstruction applications. There is a trade-off between 
available digital data that could be ingested by, for example, GIS asset registries, and 
information that reflects the as-built conditions that must be manually transcribed from paper or 
digital records that are not consumable, such as red-lined PDF or paper plans. 

While the volume of data being delivered or collected in construction is increasing, the efforts to 
organize, streamline, and align that data lag. There is a significant gap in creating process 
efficiencies to modify inspection practices to take advantage of modern technology. Use of 
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GNSS rovers, for instance, in construction inspection offers many advantages. It is safer, as it is 
used more quickly in a more upright body position with a wider range of peripheral vision, than 
traditional methods. It affords the opportunity to collect more data, documenting measurements 
and constructed conditions that are repeatable and transparent. Contractors and resident 
engineers feel that the measurements using this technology are more accurate.(87) 

However, this technology is severely underused by inspectors, in part because of the cost of the 
GNSS rover technology, in part because of the reluctance by designers to provide reliable 3D 
design data, and in part because of the initial and ongoing training needs for implementing the 
technology. By contrast, contractors have embraced this technology widely, in particular for 
layout and QC, and do not report the same barriers to implementation. 

Contractor adoption of data-driven processes and mobile technology far exceeds that of owner 
agencies. Some emergent technologies are fleet management by means of on-board sensors (such 
as GPS) and materials tracking using RFID sensors.(88) These technologies provide increased 
documentation accuracy, as well as opportunities for real-time fleet and materials management. 
This approach is of interest because it provides more opportunities to increase efficiency and 
automation in fulfilling inspectors’ obligations to monitor construction equipment usage. 

Contractor adoption of AMG and processes to use AMG data and survey networks for QC are 
more mature and have much higher adoption rates, in particular for earthwork construction, 
which is typically performed with GNSS guidance. AMG applications that require more precise 
grade control, either with robotic total stations or laser-augmentation systems for elevation 
control, have less market penetration; however, the number is growing. These applications 
include fine grading of pavement stone base, asphalt paving (which has very low penetration in 
the highway market), and concrete paving. Asphalt milling is an emerging area that should grow 
as survey technologies evolve to make it more affordable to collect the data necessary to design 
milling profiles. 

AMG is of particular interest for two reasons. First, it requires a 3D model of the proposed 
roadway. Second, it can capture an as-built 3D surface model of each successive pavement 
operation. In practice, rather than discrete 3D models for each activity, the 3D model of the 
proposed final grade can be offset up or down in the cab of the equipment for each stage in 
pavement construction. The challenge with the AMG as-built data is reliability. The AMG 
operators are primarily building the road and usually have little training in the AMG systems. 
The as-built records would require careful checking. For this and other reasons, other methods of 
acquiring the interim surfaces might be more practical. Technology from sUAS is one option for 
subgrade and fine grade, although the current photogrammetry technology is less precise with 
paved surfaces. 

The interim surfaces may be compared to compute the depth of each pavement layer across the 
entire roadway. The depth can be presented visually in a highly detailed and accessible manner, 
such as heat maps and contours. However, it is important to recognize that there is a large degree 
of interpolation in the surfaces. For the sake of accuracy, data points are needed in a dense grid 
for microscale pavement analyses. Also, a very precise survey method needs to be correctly 
used. The types of surveying tools that can capture repeatable measurements at the necessary 
precision are sophisticated. The learning curve for robotic total stations is steeper than for GNSS 
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rovers, but it is surmountable. However, the precision of the instrument is usually reported at 
¼ inch, which means that depth measurements within payment bands (as little as 1/8-inch 
increments) are not repeatable to the degree necessary. Static LiDAR has better precision but a 
much steeper learning curve to operate and extract data. 

The contractor’s QC observations might be more accessible and would require less manipulation 
than surfaces. For concrete paving, contractors use a robotic total station behind the paver to 
check depth relative to a 3D surface. Depending on whether the surface represents the as-built 
base or design final grade, the QC will report either the depth (as a positive or negative number; 
the absolute difference represents the depth) or the tolerance relative to the final grade. The depth 
is more meaningful because it correlates with the acceptance criteria and payment bands.(89) In 
table 22, the contractor’s QC process is recorded in a spreadsheet of depths by station and offset, 
at 25-ft intervals. This QC process can be plotted, as shown in figure 39, to create depth contours 
for the entire slab. The challenge is to reconcile these station-based data to the lots for 
smoothness acceptance data and to the linear referencing system (LRS) to make it usable in asset 
management. 

Table 22. QC process at various stations and depths. 

Station Offset (ft) Depth (ft) 
520+00.789 −2.483 −1.035 
520+00.547 −12.505 −1.041 
520+00.312 −22.144 −1.047 
520+25.502 −2.111 −1.031 
520+25.459 −12.283 −1.036 
520+25.242 −22.606 −1.050 
520+50.727 −2.340 −1.037 
520+50.776 −12.341 −1.036 
520+50.798 −22.853 −1.034 
520+75.570 −2.521 −1.052 
520+75.545 −12.372 −1.038 
520+75.307 −22.440 −1.057 
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Source: FHWA. 

Figure 39. Graph. Plot of slab depths from contractor’s QC. 

The 3D data are easy to use and can be directly consumed, which are significant factors for a 
process to be accepted by resident engineers and inspectors. However, 3D equipment and data 
are incidental to the core functions of inspection. Usability is also a factor in the acceptability of 
the postconstruction data for asset managers. In the preceding example, the software converted 
the 3D data into a format that the contractor’s grade checkers could use. It provided immediately 
relevant data to the paving crew who could adapt in real time to ensure continuous QC. This 
direct link between 3D data and pavement payment factors leads to the technology being easily 
accepted by contractors and paving crews. This outcome creates an opportunity to collect 
additional information that is currently not required, such as the locations of saw cuts, dowel 
bars, existing or new repairs in the base or subgrade, and locations at which materials tests were 
collected. 

Contractors are now heavily engaged in collection of profile data to meet agencies’ smoothness 
specifications. These 3D raw data files are available from the contractor, and some agencies 
request this information in addition to the final report of the smoothness analysis for acceptance. 
However, requesting 3D raw profile data is not a consistent practice. The use of these 3D profile 
data as a deliverable for as-built records is a missed opportunity. Smoothness profile data could 
be used for future performance-based analysis because there is a correlation between initial 
pavement smoothness and LTPP.(90) 

The 3D engineered models used for design and AMG construction (and occasionally inspection) 
are not composed of data that are directly imported into a database for the purposes of reduction 
or analysis. The data collected in construction are survey points, which can be tagged with field 
codes that provide information about the feature that each point represents (such as subgrade, 
final grade, flow line, edge of pavement). Computer-aided design and drafting (CADD) software 
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then converts the survey points into two-dimensional or 3D lines, polygons, and surfaces. These 
data need to be processed to extract meaningful information such as payment quantities or 
pavement depths. 

Inspectors who use 3D data and GNSS rovers or robotic total stations check construction 
tolerances in real time, but they usually do not store observations unless there is a difference to 
the plans that needs to be captured.(87) In practice, as-built record requirements are not robust. 
Thus, most survey data collected for inspection are used only to measure pay quantities. No 
formal policies for inspection data organization are known; informally, data are sorted by item 
number and collection date for project-level storage and by construction project number on a 
network or document management system.(87) 

Even if the data could be located, the organization and the granularity of the data entering 
construction, from design or collected in construction, are not directly consumable by asset 
management systems. Data are spatially organized by geospatial coordinates and local station 
references during design and construction. Data are also organized by the LRS, which is tied to 
geospatial coordinates during asset management and planning. Information is organized by pay 
item during design and construction, but by asset for maintenance and preservation planning. 
Table 23 summarizes the data characteristics and organization strategies for asset information in 
different phases of the lifecycle.(91) 

Table 23. Data characteristics and organization by asset lifecycle phase.(91) 

Asset Information Design Construction Planning 
Spatial resolution 3D 3D 1D 
Network accuracy Subinch Subinch Feet 
Spatial datum Geospatial 

coordinates 
Station, offset, elevation Linear reference 

Data type CADD Paper/PDF documents Database fields 
Primary organization Project number Contract number Asset class 
Secondary 
organization 

Plan sheet Specification reference or 
pay item number 

Asset ID 

1D = one-dimensional. 

PAVEMENT MANAGEMENT SYSTEMS 

As per a recent synthesis of pavement management practices and quality management of 
pavement condition data, network-level pavement distress and smoothness data were collected 
by almost all agencies in the United States, with only one agency not collecting pavement 
distress data and three not collecting smoothness data at the network level.(92) Agencies in 
general defined distress (extent and severity) using methodologies similar to the LTPP program’s 
Distress Identification Manual for the Long-Term Pavement Performance Program.(93) A 
summary of the extent of distress data collection by the various agencies is given in table 24. 
This table also shows almost 100 percent coverage for IRI and rutting, while only 64 percent of 
DOTs collected faulting data. It must be noted that some DOTs do not collect faulting data 
because they have not constructed jointed concrete pavements historically. 
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Table 24. Summary of extent of distress data collection by the various agencies. 

Distress/IRI 
All Respondents Collecting Distress Type/IRI 

(Percent) 
IRI 100 
Cracking (fatigue) 89 
Cracking (transverse) 93 
Rutting 100 
Faulting 64 

The quality and accuracy of the pavement condition data reported in the PMS are pertinent to 
this study as the project explores the feasibility of correlating QA data to performance. States are 
increasingly invested in improving the quality of the pavement condition data. The 2009 review 
also determined that two-thirds of the agencies either maintain a QC plan for condition data 
collection or require the service producer to maintain one.(93) Further, about half of the States 
have a formal quality acceptance plan. The plans typically include calibration and verification of 
equipment and methods before the data collection; testing of known control segments before data 
collection; testing of known control or verification segments during data collection; checking of 
the reasonableness, completeness, and consistency of the data using software routines; and 
comparing the production data with existing time-series data. A small number of States are also 
using GIS-based tools to enhance the acceptance process. 

Review of FHWA Ruling 

Distress data maintained in the PMS form the metrics to meet MAP-21 performance targets. 
MAP-21 section 1203 proposed establishment of national goals to maintain the highway 
infrastructure asset system in a state of good repair. MAP-21, therefore, required the 
establishment of performance measures, in consultation with State DOTs, Metropolitan Planning 
Organizations, and other stakeholders, for assessment of pavement conditions on the interstate 
system and the NHS. 

In the ruling, FHWA determined performance ratings of Good, Fair, or Poor condition using a 
combination of pavement condition metrics. These data elements are routinely collected by 
SHAs and reported to Highway Performance Monitoring System (HPMS). As stated before, the 
ruling rates pavement condition in terms of roughness and cracking for all pavement types, 
rutting for asphalt pavement surfaces, and faulting for JPCP. The NPRM offered proposed 
performance targets in 80 FR 326 in January 2015, but provided revised threshold values in 
23 CFR Part 490 for the final ruling, which are presented in table 25.(2) 
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Table 25. Proposed national performance management measures, targets, and reporting.  

Surface Type Metric 
Good Rating 
Metric Range 

Fair Rating 
Metric Range 

Poor Rating 
Metric Range 

All pavements IRI, inches/mi <95 95–170 >170 
Asphalt pavement  Cracking, percent <5 5–20 >20 
Asphalt pavement Rutting, inches <0.20 0.20–0.40 >0.40 
Jointed concrete 
pavement Cracking, percent <5 5–15 >15 

Jointed concrete 
pavement Faulting, inches <0.1 0.1–0.15 >0.15 

CRCP Cracking, percent <5 5–10 >10 

To optimize infrastructure investments, a combined rating has been defined based on individual 
ratings for each pavement type. For a section in the HPMS to be rated in Good condition, the 
absolute values for all relevant metrics in table 25 need to remain below the threshold values 
reported. However, for a section to be rated in Poor condition, two or more of the relevant 
metrics must exceed the threshold values for Poor. Note that in specifying the thresholds, the 
ruling does not make a distinction between roadways in rural or urban areas or the population of 
the region. 

RELATIONSHIP BETWEEN QA AND PERFORMANCE DATA 

One of the first and very comprehensive efforts to link QA data to PMS was made by Hudson in 
2003 with detailed reviews of five State databases.(94) This study focused on Superpave material 
data. The absence of a common location reference did not permit a smooth integration of QA and 
PMS wherein the performance of each lot and sublot could be compared with construction 
quality data. The study also noted that data were averaged for a specific project segment, and, 
therefore, the ability to track QA to performance at a project level was a challenge to overcome. 
Furthermore, it was noted that a single QA material property was inadequate to draw a 
correlation to performance because failures are caused by the combination of material and 
construction factors, rather than due to a single factor at times. Future efforts examined 
variability in construction or attempted to relate construction and performance data. (See 
references 6, 7, 95, 96, and 97.) These studies noted the importance of considering the impact of 
variability on performance. 

Under the FHWA Advanced Quality Systems program, the value of well-managed databases was 
demonstrated through the correlation of QA and PMS data.(7) The project analyzed data from two 
State databases, one for HMA and the other for PCC pavements. The study performed a variety 
of analyses using QC data, acceptance data, and other State databases, including a comparison of 
contractor versus acceptance data. The analyses also focused on evaluating the effectiveness of 
specifications, and these showed how agencies could streamline QA and specification 
development process with regular review of their QA data. For example, as shown in figure 40 
and figure 41 for one State, while there is no evidence of change in variability of mixture design, 
with the introduction of new specifications in 2004, the mean density of mixtures has slightly 
increased, and the air voids have decreased as anticipated. 
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Source: FHWA. 

Figure 40. Graph. Variability in air voids with different specifications.(7) 

Source: FHWA. 

Figure 41. Graph. Variability in density with different specifications.(7) 

This study also demonstrated that there was not necessarily a correlation between pay factors 
obtained with QA data and performance, but certain key QA parameters held a strong 
correlation.(7) Figure 42 and figure 43 show that higher pay factors did not necessarily lead to 
reduced rutting, but IRI at the time of construction showed a strong correlation to future 
performance. However, the scope of this study did include developing statistical models to 
predict performance using combinations of construction parameters. Most studies up until this 

Mean StDev N 
0.07379 0.01525 33000 
0.07579 0.01347 2478 

0.01299 21838 

Mean 
0.9625 
0.9620 
0.9644 

StDev 
0.006020 
0.005318 
0.005690 

N 
21971 

1772 
13432 
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stage have concluded that, regardless of the data collection methodology, QA data can be related 
to performance when an empirical or mechanistic relationship exists or can be developed. 

 
Source: FHWA. 

Figure 42. Graph. Pay factors and performance. 

 
Source: FHWA. 

Figure 43. Graph. Initial IRI and final IRI. 
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Relationship Between QA Data Elements and Pavement Performance 

Research to enhance pavement condition forecasting models since the AASHTO Road Test in 
the late 1950s has established several empirical/mechanistic relationships that related QA and 
construction data, among others, to pavement performance measures. Examples of QA and 
construction-type data variables that impact the 23 CFR Part 490 national performance 
management measures or closely related performance measures are presented in table 26 and 
table 27 for flexible and rigid pavements, respectively. It is worth noting that, while all critical 
material properties that relate to performance are not directly measured, there are several 
correlations or models to predict the parameter based on material index properties or properties 
measured in QA. For example, PCC flexural strength and modulus can be predicted from 
compressive strength, while AC gradation, voids, and binder content can be used to predict AC 
modulus using Witczak’s model, similar to the methodology used in the AASHTOWare 
Pavement ME procedures, and as discussed in detail earlier in this chapter.(16) 
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Table 26. Relationship between commonly occurring AC pavement distress and QA test quality characteristics. 

Distress Types 
Cause and Failure 

Mechanism 

QA Test Properties 
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Alligator 
cracking 

Fatigue in AC layer from 
repeated horizontal tensile 
strain at the bottom of AC 
layer due to heavy axle loads. 

  —     — —    — — 

Rutting 

Permanent deformation in the 
AC, unbound base, and 
subgrade layers due to traffic 
loads, low strength, high voids 
in mix. 

  —      —     — 

Block and 
shrinkage 
cracking 

Permanent shrinking and 
hardening of the asphalt, low 
asphalt content (dry mix), 
excessive fines in AC mix, use 
of absorptive aggregates. 

— — —  — —  —  — — — — — 

Longitudinal 
cracking, wheel 
path 

Top-down fatigue associated 
with the state of bending stress 
near a wheel load. 

  —     — — — — — — — 

Longitudinal 
cracking, 
non-wheel path 

Poor joint constructing, AC 
surface temperature-related 
shrinkage, hardening of AC. 

— —  — — — — — —  — —  — 
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Distress Types 
Cause and Failure 

Mechanism 

QA Test Properties 
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Transverse 
cracking 

Contraction of AC due to low 
temperatures, hardening of 
asphalt cement, permanent 
shrinkage of AC due to 
absorption of asphalt into 
aggregates. 

—   —  —  —   — — — — 

Ride quality 
High initial roughness, 
excessive distress, swelling, 
and heaving. 

              

—No data. 
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Table 27. Relationship between commonly occurring PCC pavement distress and QA test quality characteristics. 

Distress 
Types 

Cause and Failure 
Mechanism 

QA Test Properties 
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  —  — —  —  — — —  — 
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transverse 
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Poor joint transfer, slab 
curling due to PCC 
thermal/moisture 
gradients, free moisture 
in underlying layers, 
pumping of fines in the 
underlying 
base/subbase. 

  —  — —        — 
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as percent 
cracking)* 

Development of 
longitudinal crack 2–3 ft 
from pavement edge, 
loss of edge support, 
loss of load transfer 
across transverse cracks, 
increasing transverse 
crack widths, and 
development of high 
tensile stresses at the top 
of the slab, causing the 
slab to punch out from 
the CRCP.* 

  —  —      — —  — 

Corner 
breaks 

Combination of repeated 
loading, low joint load 
transfer, and thermal 
curling and moisture 
warping, leading to 
pumping and cracking. 

  — — — —  —  —  —  — 
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Longitudinal 
slab cracking 

Repeated truck loads, 
loss of foundation 
support, and 
thermal/moisture 
gradient stresses 
resulting from upward 
slab curling, improper 
construction of joints, 
and/or opening the 
pavement to traffic 
before PCC has 
achieved adequate 
strength. 

  — — — —  —   — —  — 
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Distress 
Types 

Cause and Failure 
Mechanism 
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Spalling 

Slab expansion/ 
contraction, allowing 
trapping of 
incompressible in the 
joint, weak concrete at 
the joint, joint sawing 
time, poorly functioning 
load transfer device 
(misalignment, 
corrosion), and 
disintegration of PCC 
from freeze-thaw action. 

     —   —     — 

Ride quality 
High initial roughness, 
excessive distress, 
swelling, and heaving. 

              

—No data. 
*CRCP punch-out development is also affected by longitudinal steel content, depth of placement of longitudinal steel, friction characteristics with the base, and PCC 
shrinkage. In defining targets, the national pavement performance measure 23 CFR Part 490 expresses punch-outs in percent cracking. 
Note: M-E design procedures, including the AASHTOWare, quantify punch-outs as the number of punch-outs per mile. 
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CHAPTER 3. SUMMARY OF CURRENT STATE AGENCY PRACTICES 

STATES SELECTED FOR INTERVIEWS 

The project team required QA, construction, and performance data for analyses under this study. 
Thus, it was necessary to collect information from States with advanced QA and pavement 
management programs to select the most suitable datasets. Therefore, it was also important to 
ascertain the agency’s interest to utilize their construction and QA data for performance 
modeling and management of their highway network. 

The project team developed a short list of about 15 agencies most suitable for this study based on 
inputs from the team members who had worked with State QA, materials, and pavement 
management databases on other research projects. Most of these States also have experience with 
the use of innovative technologies in construction and 3D construction. Preliminary information 
was obtained from online reviews of State specifications to further narrow down agencies for 
detailed interviews. Four States were ultimately selected to obtain data appropriate for this 
research. The agencies considered for indepth interviews are listed in table 28; however, in 
keeping with the requirements of FHWA’s nonattribution policy, the project team does not 
identify the specific States that provided the data described (chapter 4), processed (chapter 5), 
and analyzed (chapter 6) under this study. Therefore, if the information provided in this chapter 
easily reveals the data source for the performance predictions presented in chapter 6, the project 
team chose not to identify the State agency in table 28 or elsewhere in this report. 

Table 28. State agencies included in the interviews and the subject areas of discussion. 

State PMS Construction 
QA 

HMA 
QA 

PCC 
QA 
UB 

NDT and 
Innovations 
(IC, GPR, 
MIT-Scan) 

3D and 
CIM 

Colorado ● ● ● ● ● ● ● 
Maryland ● ● ● ● ● — ● 
Florida ● ● ● ● ● ● ● 
Minnesota ● ● ● ● ● ● — 
Michigan ● ● ● — ● ● ● 
Utah ● ● ● ● ● ● ● 
Mississippi ● — ● — — — — 
State 1 ● — ● — ● — — 
Oregon ● — ● — — ● ● 

—No data. 
UB = unbound. 

During the interviews, the objective was to review specifications, the QA data collection 
practices (material approval, material certifications, QC, verification, and acceptance), data 
storage systems, PMS, condition data collection procedures, and performance forecasting models 
in the PMS. In addition, their adoption of nontraditional QA procedures and construction 
methods was specifically addressed. Information was gathered with the perspective of 
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identifying if the agency had the needed data for use in this project and if the agencies were 
interested in exploring the value of using construction data for performance prediction. The data 
categories evaluated with each agency are summarized in table 28. 

State Interview Details 

The information gathered from these agencies, as noted in table 28, clearly covered various 
aspects of construction and QA practices, as well as PMS, but also included details about the 
databases from the standpoint of data integration for the purposes of this project. The specific 
information collected was grouped into three broad areas—QA procedures, innovative 
technologies, and PMS and forecasting models. Within each agency, the project team contacted 
multiple staff from various departments/divisions. 

The project team submitted a summary of the objectives and the research approach for the 
current project and provided a formal list of questions and topics of discussion under each 
subject category. The participants were not expected to complete a formal survey, but the 
document was intended for highlighting discussion topics ahead of the interviews. While the 
document provided to the agencies is not included with this report, the specific topics discussed 
under each subject area in the questionnaire are listed as follows: 

QA Procedures 

The QA procedures are as follows: 

1. Stages of data collection and data storage/management: 

• Material certification. 
• QC. 
• Acceptance. 
• Special cases (warranties, PRS, design-build, and so on). 

2. Data being collected for each material type: 

3. Data collection methods: 

• Nonelectronic format. 
• Database—stand-alone or integrated. 

4. Location referencing system used by the different stages of data collection: 

• Grouped by project, lot, and MP. 
• Grouped by test number and day and time. 
• Time of sampling and testing. 
• Individual test results, replicates, and averages. 
• Test procedure identified. 
• Identification of test result source—contractor or agency. 
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5. Current status of data integration by department: 

• QA and PMS data. 
•  PMS and cost data. 
• QA and M&R procedures. 

Innovative Technologies 

6. Use of nontraditional and innovative NDT technologies and sampling rate: 

• IC, GPR, IR, RWD—for full coverage. 
• Seismic, FWD, LWD, MIT-Scan, spectroscopy—point location tests. 
• Existing specifications or QA requirements in contracts. 
• Purpose of use—QC, QA, routine, forensics, rehabilitation, research and 

development, or pilot projects. 

7. Use of data from these technologies in managing a pavement network: 

• Is it incorporated into QA databases? 
• Is the location referencing adequate/suitable for wider use of these data? 
• Is it consistent with other QA information for easy referencing and integration? 
• Is there 100 percent sampling/mesh size data for each pass of compaction or lift by 

lift? 

8. Automation in highway construction: 

• Technologies (3D LiDAR, AMS, and so on). 
• Standard agency practice with specifications and on a project-by-project case. 
• Data collected. 
• Status of as-built records (whether submitted to agency). 

PMS and Forecasting Models 

9. Performance measures in the PMS and metrics used: 

• All pavements—IRI, inches/mi. 
• Asphalt pavement and jointed concrete pavement—fatigue cracking, percent. 
• Asphalt pavement—rutting, inches. 
• Jointed concrete pavement—faulting, inches. 
• CRCP—cracking, percent (percent area with longitudinal crack or punch-out). 

10. Other distresses/functional characteristics. 

11. Indexes such as pavement condition index (PCI), deduct values, safety index. 

12. Types of models used for pavement performance forecasting: 



56 

• Polynomials for families of pavements. 
• Empirical models. 
• M-E models. 

13. Data being used to drive the models: 

• Distress—e.g., cracking, rutting, PCI, IRI at different ages. 

• Design—e.g., pavement type, thickness, base type. 

• Materials—e.g., PCC strength, HMA modulus, gradation, subgrade type. 

• Traffic—e.g., average annual daily traffic (AADT), percentage of trucks. 

• QA data—e.g., HMA density, PCC compressive strength, aggregate moisture content, 
subgrade density, IR in-place paving temperature, initial IRI. 

• Construction data—e.g., IC, density, survey data, inspection reports data, QC data. 

• Other data. 

SUMMARY OF INTERVIEWS 

This section presents a summary of the information collected from key States listed in table 28. 
The information was clearly more detailed and more comprehensive for some States than for 
others. Information is, therefore, presented by State. Information on State practices for CIM is 
presented under a separate section titled State Practices with Use of CIM in this chapter because 
it provides a general overview of the state of practice and covers additional State agencies 
beyond those listed in table 28. 

Florida DOT 

Florida DOT (FDOT) is known to have comprehensive QA and PMS programs. The agency has 
made modest advancements with the adoption of 3D construction and the evaluation of 
innovative technologies like GPR and IC. The project team recognized that FDOT has also 
pursued the implementation of the AASHTOWare Pavement ME program and, therefore, will be 
proactive about collecting material data that are indicators of performance. Finally, FDOT is one 
of the few States that includes both HMA and PCC pavements in its highway network and 
thorough material testing programs for both materials. 

PMS 

Pavement management condition data are collected and officially published on April 1 every 
year. The PMS incorporates data from the Roadway Characteristics Inventory database and 
combines the pavement condition data collected as part of the surveys. The reference IDs 
available in the database include the roadway ID, MP, deficiency, and IRI. Before the collection 
of the PMS data, various kinds of information about the roadway are collected, including county, 
section, subsection, construction limits, section length, surface type, significant changes in 
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pavement condition, presence of structures longer than 0.25 mi, and presence of roadway 
segments longer than 0.25 mi with a different surface type. 

Condition data are collected annually between April and December, and the data are provided by 
the State Materials Office. It includes four groups of surveyors with four vans to collect imagery 
for several distresses and laser data to estimate rutting. 

The forecasting models use homegrown statistical models based on SAS® analyses. The models 
are grouped by location and materials, i.e., surface type. The PMS divides the statewide network 
into eight locations, which consists of seven districts and one turnpike. 

Construction 

All planning and design elements are incorporated into the construction plans. All surveying is 
done by the construction team and by the contractors. An estimated 80 percent of the design 
surveys are performed by consultants on behalf of the agency, and 100 percent of the 
construction surveys are performed by the contractors. FDOT has been moving toward 3D 
construction in recent years, and all data are acquired in 3D format for the development of 
construction plans. Virtually all survey is in 3D format. They are combining aerial data from 
helicopters and topographic data from traditional surveys and LiDAR to develop 3D construction 
models. LiDAR data are limited, but FDOT also collects asset data and pavement marking data. 
LiDAR data collection is not standardized at this time. 

For large projects, planning and design are being performed in 3D. FDOT has 40 to 50 projects 
designed in 3D format to date. Furthermore, the focus of the 3D data collection is for planning 
and design, e.g., in determining the right-of-way acquisition and availability. 

As-built data are collected by the contractors, and postconstruction surveys are not performed by 
the agency. Postconstruction information is not available with the State at this time. However, 
FDOT is exploring the option of collecting 3D postconstruction from the contractors. 
e-Construction has been initiated and is in place at FDOT. However, there are no tools to manage 
all the 3D data and use the data for other analyses, which FDOT is interested in doing. 

Innovative Technologies 

FDOT has evaluated and has used GPR on a limited scale. The main idea is in moving from 
manual to highway speeds. It is mainly used for predesign testing for rehabilitation projects and 
for forensic cases. The GPR technology used is different for the two applications, air-coupled 
antenna for high-speed surveys and ground-coupled antenna for forensic evaluations. GPR is 
also used to locate utilities. The DOT also planned to collect cross-slope data with smoothness. 

QA 

QA data are collected at different stages of the construction project, like the standard procedures 
discussed in chapter 2. The data are stored by project number, highway/State road number, 
district, and stations. With the current referencing system, it is not convenient to reference the 
physical location on a roadway. 
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QA data are available from embankment to the surface layer. Materials test data are stored from 
HMA/PCC mix preapproval stage, QC, and independent verification stages. Unbound materials 
data that can be accessed from the QA database include gradation, optimum moisture content, 
dry density, percent compaction, permeability, Atterberg limits, organic content, sulfates, and 
chloride contents. For AC, the process control data include gradation, bulk specific gravity, rice 
density, and gyratory air voids. Therefore, test data are collected from lose material samples as 
well as cores taken from the pavement. All data are stored in the laboratory information 
management system (LIMS). Currently, the contractor test data are input by the contractor into 
LIMS. In addition, Microsoft Excel spreadsheets are used for some field data such as 
straight-edge data and core information. Materials data can be obtained or summarized by 
project, but they are typically accessed only when a need arises, as in the event of a dispute 
resolution. 

FDOT expected to replace LIMS with an in-house developed materials database system, MAC. 
The key difference is that the LIMS database can track material test location by construction 
station numbers, but the MAC system has spatial or GPS referencing. As of now, there are no 
plans to convert the legacy system to the MAC. 

Maryland State Highway Administration 

QA 

The Maryland State Highway Administration (MDSHA) QA data include preapproval or 
material certification data as well as construction data. Construction data are stored in the 
construction management system (CMS). It includes typical QA data such as binder type, 
polished aggregates, and aggregate gradation, as discussed in chapter 2. MDSHA is also 
developing the materials management system (MMS), which has about 3 yr of materials data 
available. The information will be more suitable for linking with PMS. 

The AC binder data are stored in a different Microsoft Access® database, 
MDWareTestData020216. These data include binder certification data from the supplier with 
M 320 results, as well as agency acceptance tests performed during construction. MDSHA uses 
f-test and t-test verifications to decide whether to include contractor test results for calculating 
pay factors. 

With unbound materials, nuclear density testing is the only type of QA testing currently being 
performed. Maryland is familiar with new technologies such as LWD and IC. New technologies 
are routinely evaluated. The State is interested in adopting new technologies, but there are no 
immediate plans to do so. 

Pavement Management 

MDSHA manages 17,000 lane miles. PMS condition data are collected annually for highways on 
the NHS, whereas for State-maintained highways, condition data are collected in 3-yr cycles 
(one-fourth of the network is State Highways [SHs]). Data are collected for both HMA and PCC 
surface pavements, but most of the highways fall under the HMA pavement category 
(98.5 percent). To develop condition data, images and profiles are collected using ARAN, and all 
condition data are stored in an Oracle® database. Condition data include the following: 
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• IRI. 
• Rutting. 
• Structural cracking (longitudinal cracking in the wheel path). 
• Functional cracking (transverse cracking, longitudinal cracking [non-wheel path]), also 

including sealed cracks. 
• Friction. 
• Faulting and cracking for JPCP. 

PMS section is at least 1 mi long; some are longer. Images collected for the PMS condition data 
are available from 2001. However, the existing distress data represent only the last 3 yr. The 
algorithms to calculate distresses were updated in 2015, and the PMS was updated starting in 
2016. MDSHA uses a combination of commercial software and in-house developed modules, 
which include unit cost, performance, and construction history. Commercial software is also 
used for postprocessing. MDSHA has a robust QA process for validating and verifying condition 
data. 

The network is divided into multiple families for each distress type. For example, the network 
comprises 30 families of pavements for ride quality based on traffic level, surface type, climate, 
and highway class. Linear and exponential models that are a function of pavement age are used 
for performance forecasting. The model coefficients are updated periodically. 

The forecasting horizon is 5–7 yr with a 6-yr optimization window. The PMS has target lane 
mile years, and, therefore, the performance measure is the extension of lane mile years possible 
with each treatment type. Local districts make the M&R decisions based on rate of return on 
investments. 

Integration with QA and Other Data for Improving Forecasting Models 

MDSHA has a keen interest to link data from other databases, including QA data with PMS. At 
this stage, the value of doing this is not perceived to be of significance for improving forecasting 
alone. They are not certain whether it may truly improve the precision of predictions. However, 
the interest also extends to the value for policymaking (specification developments) and future 
decision making, as well as for changing project cost and life cycle cost. Examples cited by 
MDSHA include the following: 

• Example 1: service life of different HMA mixes: 
o Do gap-graded HMA mixes crack faster/earlier than other mix types? 
o Does RAP crack faster/earlier than other mix types? 
o Can dust content from RAP affect performance? 
o How can performance of these mix types be improved? 

• Example 2: material specifications: 
o Is there a relationship between raveling potential and aggregate angularity for chip 

seals? 
o Is it more raveling for less angular aggregates? 
o Is it better to invest in more angular aggregates to reduce future raveling? 
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• Example 3: friction characteristics based on aggregate sources and traffic: 
o Can a relationship be developed between quarry source, mix percent, and crash rates 

or stopping distance? 
o Is congestion a better indicator of crash rates than aggregate quality? 
o Can aggregate hardness (mix blended hardness) be linked to field-measured friction? 
o Can current MDSHA model consider traffic level (functional class) only? 
o Is it possible to link eventually with safety data? 

• Example 4: cracking and rutting prediction: 
o Do AC mix design properties, binder properties, and dust-to-binder ratio impact 

cracking and rutting? 

• Example 5: establish rutting prediction: 
o Is rutting more significant in localized areas (e.g., 200 ft to stopping at an 

intersection; poor rutting at intersection, rut depth = 0.24 inches, very poor rutting = 
0.5 inches for 100 ft). 

o Are point-by-point rutting properties more important? 
o Does rutting need all layer properties, thicknesses, and so on? 

PMS can be linked with CMS for information such as construction date, quantities, bid items, 
cost, overall project cost broken by treatment cost, and so on. There are plans to merge a MMS 
to PMS. However, keeping up with evolving linear referencing methods in a CMS is 
challenging. The State is beginning to use Esri products for location referencing for highways, 
and the implementation is in the early stages. No plans exist as of now to reference materials data 
with GPS. MDSHA is working internally to link construction, QA, and PMS databases. They 
recognize that, because networks were built before establishing MMS, a great opportunity was 
missed to link construction and performance data. 

There are also several challenges for a smooth integration of QA and PMS for reliable 
forecasting. Issues in using QA data may include the following: 

• There may be difficulty in determining from where quarry materials will be coming for 
new projects. Maryland is a geologically diverse State with many quarries, 
bedrocks/faults, limestone pockets, and so on, and there is significant diversity even 
within quarries. The prediction may be done postconstruction after the quarry source is 
known. 

• QA data alone are not adequate; instead project-specific construction quality must be 
considered in the models. 

• There are some concerns with current QA data: 
o HMA can have the same volumetric properties but with very different coarse 

aggregate gradations. 

o HMA with varying binder amounts can achieve the same volumetric properties. 
Percent binder in HMA can influence cracking potential. MDSHA has not established 
a minimum binder content for mixes. Acceptance is mostly based on volumetrics. 
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• QA data will help with forecasting performance of existing pavements and future 
pavements with similar materials. 

• At the planning stage, performance may be estimated based on design. Postconstruction, 
with known QA and construction properties, performance predictions can be revised. 

Minnesota DOT 

Pavement Management 

Minnesota DOT (MnDOT) PMS system covers approximately 4,100 mi of pavement. Typical 
the PMS section is 1 mi long. PMS is based on collection of up to 10 distress types and is 
identified by route, MP, direction, and so on. Distress/condition data are collected using various 
standards. Transverse and longitudinal cracking is collected at low, medium, and high severities, 
while alligator cracking is collected with the yes/no rating. PMS uses a rating system to develop 
and report condition indexes. Individual distress is not reported or directly used. 

Distress collection and reporting effort are not aligned to MAP-21 or HPMS. PMS data are 
currently linked to a roadway history database, which can be integrated with PMS files. 
Roadway history database contains information on layer type, thickness, M&R type, construction 
number, and so on. Detailed information on materials properties (e.g., mix design, binder type) is 
not available in the construction history table. MnDOT updates M&R history data as new 
information is obtained from the districts or when there is a significant change in 
distress/smoothness. Pavement layer-type and thickness data are provided in a separate table. 
Thus, with the current setup, for each PMS section, reports containing construction and 
maintenance histories, layer type, and so on, can be generated. 

PMS allows for forecasting future conditions and can project future conditions. Forecasting is 
done for up to 50 yr. Simple regression models are fitted to historical condition data (data 
collected since last significant M&R). PMS uses default forecasting models where historical 
condition data are not available, the data available are erroneous, or there is no change in 
condition. Currently, pavement layer types and thickness, although available, are not used in 
condition forecasting. PMS reports percentage of the network in Good/Fair/Poor condition. This 
report is compared with actual values obtained the following year. Comparisons have shown the 
predictions/forecasts are accurate within the short term. Forecasts in the 8- to 10-yr prediction 
horizons are much sketchier. For forecasting condition in the 10- to 15-yr prediction horizons, 
default models are used. Inputs for the forecasting models include: 

• Location (rural/urban). 
• Thin/thick. 
• Mix type. 
• Maintenance type (e.g., microsurfacing, seal coat). 
• Minor/major rehabilitation (e.g., unbonded overlay, diamond grinding). 

The default forecasting models are updated with major changes to pavement materials or 
design/construction practices (e.g., Marshall to Superpave HMA). Distress data are currently not 
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collected using HPMS reporting standards. Thus, the MnDOT distress data are converted into 
HPMS formats for reporting purposes. 

Work is underway to improve PMS and other related databases. Specific improvements include 
development of new location referencing system for MnDOT PMS and other related databases; 
redevelopment of roadway history database (new schema, revised inputs, and so on); and 
replacing the current mainframe data storage setup with an Oracle database. As currently set up, 
integrating QA and PMS data will be very cumbersome and challenging. MnDOT believes that 
including QA data in PMS will be beneficial in improving the accuracy of default forecasting 
models. 

QA of HMA 

For MnDOT, asphalt and HMA material test data are obtained from many sources. For AC, 
sampling is typically done at the plant, site, or behind the paver. Each sample is split by MnDOT 
and the contractor. MnDOT inspectors randomly test the MnDOT samples, while the contractor 
is required to perform lab air voids, maximum/rice specific gravity, AC binder content, 
gradation, asphalt film thickness, coarse/fine aggregate angularity (FAA), and fine-to-effective 
asphalt content-type tests on their samples. For AC binders, at least one test is performed per 
1,000 T or one test per 50,000 gal for each test/sampling. Binder samples are taken just before it 
enters the drum at the plant. The MnDOT inspector observes/supervises contractor sampling. For 
typical production rates, contractor performs up to four tests, while MnDOT performs at least 
one companion test. MnDOT does not test virgin aggregates. In-place density and thickness are 
obtained from field cores. DOT’s chemical lab performs asphalt binder acceptance tests, 
including dynamic shear rheometer (DSR), and other standard M 320 tests. Additional AC 
binder data are available from the combined State binder group (namely Minnesota, Iowa, 
Wisconsin, Nebraska, North Dakota, and South Dakota). These are supplier’s certification test 
data. Testing is part of the supplier’s internal QA program, which is done to allow the States to 
reduce testing frequency (making 1 per 50,000-gal testing frequency feasible). The MnDOT 
chemical lab works with binder suppliers and thus has the suppliers’ test results. 

MnDOT does not have an established QA database at the State level. All contractors track QA 
testing and results in Excel spreadsheets or PDF files (legacy data are paper hardcopies or PDFs, 
while more recent data are electronic Microsoft Excel spreadsheets). Contractors provide mix 
design and certification tests for approval. The test data provided by the districts are stored in the 
DOT’s LIMS databases. Asphalt mix test from the MnDOT chemical lab is stored in LIMS and 
other databases. The LRS or coordinate system in place in LIMS contain project number, 
location (if available), station, and date. 

MnDOT is currently considering the feasibility of setting up a QA database. Although road 
contractors are supposed to provide QA test data to MnDOT, this procedure mostly does not 
happen at the State level. For the most part, QA test-type information is kept at the district level. 

QA of PCC 

MnDOT has developed and adopted an advanced QA program for PCC materials that focuses on 
durability and long-lasting characteristics instead of strength alone. This program has created 
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increased testing and process control for all materials, especially aggregates. The improved 
specifications and QA program, which in effect provide higher incentives for quality materials, 
have resulted in enhanced performance of concrete pavements. MnDOT has performed studies to 
validate field performance results for the revised specifications. Principal factors that guide the 
current specifications are: 

• Mix durability. 
• Curing practices. 
• Incentives/disincentives based on w/c ratio, aggregate gradation, coarse aggregate 

quality, and smoothness. 

Strength is achieved through the control of the w/c ratio. In fact, mix strength values have 
increased by 30 percent with the control on the w/c ratio. In the process, concrete is made more 
durable by reducing permeability and thus making it more freeze-thaw resistant and less 
susceptible to aggregate deteriorations. The specifications also ensure that w/c ratio is reduced by 
taking out water and not by increasing cementitious content. 

MnDOT has incorporated a unique aggregate QC. The material tests on the aggregates depend 
on the aggregate type. Granites, gneiss, and quartzite provide an automatic incentive. Carbonates 
and dolostones have a control on absorption, and gravels have a control on carbonate content. 
The gradation specification promotes lower water demand, which leads to lower w/c ratios, thus 
reducing permeability. It also reduces segregation, promotes workability, and reduces paste 
content, thus reducing the risk of shrinkage cracks. 

Currently, statewide field testing and acceptance data are entered in the State LIMS database. 
However, before the aggregates are used in a paving mix for a construction project, MnDOT 
ensures the aggregates and other materials meet specification requirements. Aggregate supply 
sources test aggregates every month, and MnDOT ensures that the plant meets specification 
requirements (or alternatively provides test data). Certified sources for cementitious arterials are 
also encouraged. Flexural strength of beams is used for acceptance. While the QA program is 
extremely effective, data are not formatted for integration with PMS. Validations may be 
performed on an individual project basis. 

Innovative Technologies 

MnDOT has piloted some innovative test technologies such as IC and thermal profiling using IR. 
In fact, MnDOT was one of the first agencies to hold IC demonstration projects and pilots more 
than a decade ago. Use of IC has been relatively limited. The criteria for using IC is that 
highways have four or more lanes, or the projects are for six-lane highway. MnDOT was 
scheduled for 100 percent deployment of IC in the 2017/2018 construction season. As of 2015, 
IC was used in approximately 18 out of the 135 projects. Developing a relationship between IC 
and cut cores (density) will reduce the need for coring. 

MnDOT is also piloting IR technologies for thermal profiling. Starting in 2015, at least 
20 percent of their projects use IR. Currently, IC and IR are not part of the regular pavement 
construction specifications. They can, however, be included via special provision. MnDOT 
encourages districts to use IC as IR as much as possible. 
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MnDOT does not use nuclear density testing, as the quality of density estimates is inadequate. 
Thus, nuclear density testing can be used for internal contractor QC but not DOT acceptance 
testing. MnDOT researchers have investigated feasibility of 3D GPR (including use of TTI 
scanning technologies for assessing HMA density along with the longitudinal joint). This 
assessment is currently being done at the research-level testing, with researchers evaluating the 
feasibility of using it on limited 1-mi sections of pavement. 

DOT suggestions for data integration include the following: 

• Software is needed for use in integration. 
• Information must be entered once. 
• Including location information (i.e., GPS) as part of overall QA testing/sampling will 

make integration much more straightforward. 
• Target data must include vast contractor test data. 

Advantages of integrated data include the following: 

• Development of trends and relationships between QA-type data and performance (e.g., 
FAA relationship with density). 

• Statistical analysis and development of type mean value and variance. Currently, the 
setup does not allow for such statistical analysis, correlations, and so on. 

Colorado DOT 

Pavement Management 

The Colorado DOT (CDOT) collects distress data consistent with LTPP protocols. Data are 
averaged to every 1/10th mi. The data include all distress measures relevant to the 2017 ruling in 
23 CFR Part 490. In addition, cracking distresses are categorized by severity levels. Distress 
types include fatigue cracking, longitudinal cracking, transverse cracking, corner breaks, rutting, 
and ride quality as IRI. Cracking distress severities used are low, moderate, and high. As of 
2015, although CDOT had not made significant changes for meeting MAP-21 requirements yet, 
changes to the performance indicators/metrics had been made, and a new manual and models 
were being developed. Data inputs had not been changed either. 

A new index referred to as the drivability life (DL) has been introduced that replaces the 
serviceability index parameter. DL is an indication, in years, of how long a highway will have 
acceptable driving conditions: 

• Acceptable driving condition implies that safe and effective travel is possible on a 
roadway. It is a function of smoothness, pavement distress, and safety. 

• Unacceptable driving condition does not mean “impassable.” It implies that drivers must 
reduce speeds to compensate for unsafe factors, navigate around damaged pavement, or 
endure rough rides. 

DL scale for reporting condition is represented as follows: 
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• Over 10 yr DL (High). 
• 4–10 yr DL (Moderate). 
• 3 yr DL or less (Low). 

The current forecasting models use S-shaped logarithmic curves to forecast future conditions. 
The performance curve is a pavement deterioration model based on a distress index collected 
over time. A performance curve is generated on a project segment basis and regressed using the 
historical index values for the road section. Figure 44 shows a sample PMS segment for which 
the last work was performed in 2006. To use the DL concept, there must be at least 5 consecutive 
yr of historical data, including the current year, available since the last treatment. The standard 
deviation cannot be greater than 10, and the R2 value cannot be less than 0.5. If these criteria are 
satisfied, project-specific forecasting is done. If not, additional data from similar projects are 
used to develop predictions. If the use of additional data does not meet the criteria, default curves 
are used for prediction. The default family curve is also shown in figure 44 for this specific PMS 
segment. 

DL is determined from the performance curve to estimate when the next major rehabilitation or 
reconstruction should be considered. This procedure entails defining the apparent age and the 
threshold age. The apparent age is the age at which the performance curve shows the current 
measured distress level. The threshold age is the age at which the performance curve indicates 
failure. DL is defined as the time needed from the apparent age to reach the threshold age 
starting from the apparent age, as shown in figure 44. 

 
Source: FHWA. 

Figure 44. Graph. DL regression curve for a CDOT PMS section. 
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CDOT uses an internal LRS and consists of MP, route, and direction. GPS referencing is 
available on a limited basis and may enable data integration. A cross reference through contracts 
data enables the integration with QA data. PMS and QA data cannot be mapped to a specific 
location. Rather, mapping is limited to a construction contract. 

Performance projections are made for 20-yr analysis periods and provide inputs for strategic 
funding levels. However, their actual short-term budgeting is for 4 yr, and CDOT regions use it 
for 4 yr for project selection. The State Governor’s office uses a 10-yr planning term, and goals 
and plans for highway investments are based on 10-yr forecasting. Changes to forecasting 
models may impact these activities. With their current forecasting models, their predictions are 
accurate some years and deviate from field outcomes in other years. Nevertheless, CDOT has 
found that, over time, the averages predictions are close to field data. Distress data directly 
measured by sensors, such as IRI, are generally more stable. Variability is mostly observed in 
distresses that involve a more subjective process. 

Concerning interest in using QA data for PMS forecasting models, CDOT believed that such 
correlations might help identify causes for the failures noted in their network. They recognize 
that adequacy of construction impacts performance. 

QA Program 

CDOT QA program uses SiteManager, as well as multiple in-house database programs. HMA 
data are managed in a program called Quality Control Quality Assurance HMA Master, which 
consists of three modules for air voids, mix design, and gradation information. These data are 
purely field construction data. Preconstruction and mix design information are maintained in 
SiteManager and in-house databases. All PCC QA data, including mix design data and lab/field 
test data, are stored in a Microsoft Access database. Details of the QA database are provided in 
chapter 4 and chapter 5. 

Utah DOT 

The project team conducted a very short and brief meeting with Utah DOT (UDOT). The 
meeting attendees from UDOT comprised staff from various functions of the DOT, rather than 
individual discussions with staff from each function. 

QA and Innovative Technologies 

The existing QA program at Utah was standard, although UDOT is preparing to enhance the 
geospatial referencing for the QA data collection. Typical QA parameters discussed in chapter 2 
were included in the QC and acceptance procedures. For HMA, criteria were established for 
binder content, gradation, voids, and density. For PCC, criteria were established for gradation, 
slump, strength, and density. All HMA and PCC test data, including mix design, QC, and 
verification results, are stored in a database. Unbound material data are not stored in the 
database. The database program is an Oracle Apex application with a web-based interface for 
statewide use. The referencing used is project stationing and offset. Other supplementary 
programs (using Microsoft Excel) are maintained to record project accounting, pay quantities, 
and other documentation. UDOT has evaluated IC for HMA under demonstration projects and 
mapped stiffness values for the construction projects. IC has not been used for acceptance. 
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PMS 

Pavement condition data are collected every other year on the entire network, and the distresses 
included in the PMS are IRI, slab cracking, joint spalling, faulting for PCC pavements and IRI, 
cracking, fatigue cracking, and wheel-path rutting for HMA pavements. Pavement forecasting is 
performed for a 20-yr analysis period. Forecasting models used are polynomial models. 
Condition forecasting is performed to manage funding allocations and project selection. 

Mississippi DOT 

QA 

The Mississippi DOT maintains its QA data in the SiteManager application. All test data 
generated at the district and central headquarters laboratories are stored in the database. The 
majority of paving projects in Mississippi constitute flexible pavements, and therefore detailed 
information on PCC test data were not available. 

HMA QA procedures begin with the submission of mix design information from contractors and 
verifications from within the Mississippi DOT performed at the central laboratory. The 
contractor’s mix design is used and is stored in the database. Binder testing includes the 
AASHTO M 320 test data, which are provided by the supplier. Binder test results are integrated 
into the QA database. The mix approval testing is maintained in Microsoft Excel files and in soft 
copies. Once the mix design is approved, the project test data entry is transferred to the districts. 
For acceptance, volumetrics testing is performed in the district laboratories, and binder testing is 
performed in the central laboratory. For acceptance, the district uses a sample size that is about 
10 percent of that used for QC. Districts maintain all data in Microsoft Excel files. All 
construction QA data are referenced by project number, county, road, and station number. Test 
results from field cores are referenced by station and offset. All soil QA tests are performed in 
the district labs, and data are stored in SiteManager. No innovative technologies have been used 
for QA. 

Pavement Management 

The Mississippi DOT manages 27,000 lane miles, and PMS data are collected for over 
13,500 lane miles. Pavement condition data have been collected annually since 2010. On divided 
highways, testing is conducted in both directions, and on undivided highways, tests are 
performed in either the northbound or eastbound lanes. Mississippi performs condition surveys 
on 100 percent of the roadways every year, and data are averaged over a 0.1-mi length. PMS data 
include alligator cracking, transverse cracking, longitudinal cracking, and rutting IRI, and these 
data may be available for several months of the year. The State is transitioning to probability 
matrices for performance prediction. Pavement condition ratings on a scale of 1–100 are used. 
M&R treatments are selected based on decision trees that are designed for each pavement-type 
number of lanes-traffic category. 
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Michigan DOT 

Pavement Management 

Michigan DOT has been collecting visual distress data since the early 1990s on approximately 
12,000 lane miles of pavements. Sampling rate for distress surveys is 30 percent. Automated 
imaging technologies have been used since 1992/1993. Images are reviewed at workstations, and 
the extent and severity of distress is determined and recorded. Extent and severity of distress 
types—such as transverse, block, and longitudinal cracking, raveling, flushing, scaling, shattered 
slabs, joint deterioration, and so on—are determined from the images collected from the field. 
Note that load- and nonload-related distress are aggregated separately, and load-related cracking 
is not reported in Michigan DOT database. Distress surveys are conducted every 2 yr for 
100 percent of the truck outer lane. For separated highways, distress data are collected in both 
directions. Longitudinal and transverse profile has been collected for highways since the late 
1990s. For highways on the NHS, this profile collection is done annually. IRI, faulting, and 
rutting are reported every 1/10th mi using field distress data collected every 2 yr. Faulting data 
were collected in the last decade. Michigan DOT is currently in compliance with the provisions 
of MAP-21 (although the national performance management measures ruling requires 
100 percent sampling rate). Michigan DOT may adopt automated distress recognition systems to 
achieve 100 percent sampling rate. Michigan DOT has some concerns about use of such 
technology at this time, as new 3D technologies are currently being developed. There is no need 
at this stage for making significant changes. 

Distress data are stored in an Oracle database. Images are stored on Michigan DOT servers and 
external hard drives. Michigan DOT uses two main LRS: route and MPs as well as construction 
control points. Longitudinal/transverse profile data and derived performance measures (IRI, 
faulting, rutting) are linked directly to GPS coordinates, which are easily integrated into the 
route/MP system. Condition forecasting consists of the following: 

• Transform data on cracking and rutting (extent, severity, type, and so on) into an index 
for cracking, rutting, and so on. 

• Plot historical distress index versus age/time. 
• Fit logistic growth model to distress index and age data. 
• Set the threshold distress index value to 50. 
• Set the distress index below 50, which triggers preventive maintenance treatment. 

Thus, historical distress index data are used to forecast future condition and performance. Time 
to distress index = 50 is a key measure for maintenance programming and planning. A list of 
pavement sections needing M&R is determined and published annually. 

Default performance models are available for each pavement and M&R type (i.e., families of 
pavement). The default deterioration curves are used in PMS and for lifecycle cost analysis. 
Planning and programming are done separately for the seven Michigan DOT regions in 5-yr 
cycles. 
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QA 

Testing for soils and subgrade characterization is not done. The same tests are conducted for all 
pavement types, and these are aggregate material density tests (for acceptance and certification). 
Testing conducted on geosynthetic materials is done only for certification. 

Base/subbase aggregate tests are conducted by Michigan DOT full-service regional laboratory 
facilities or by suppliers as part of certification. A variety of tests are conducted to characterize 
frost susceptibility. Sampling and lab testing along with field nuclear density testing frequency 
are recommended as per material type. Regional test data are reported and stored in paper files to 
the central office/lab. Certification of regional labs is done by Michigan DOT’s central lab. 

Lab density tests are conducted on site. The tests are conducted basically for payments and not 
forensics or QA. Density testing has been incorporated into Michigan DOTs e-Construction 
system. The e-Construction system is currently in the process of digitizing paper documents. 

Innovative Technologies 

Michigan DOT has piloted some innovative test technologies such as IC. Michigan DOT is in the 
process of adopting this technology. Currently, IC is for contractor QC only. Michigan DOT uses 
the IC test maps (not data) obtained from contractors to identify “soft spots” for nuclear density 
testing. IC utilizes a combination of station and offset as LRS. There is no direct way to integrate 
with other LRS, such as route and MP. Michigan DOT is internally working on establishing 
uniform LRS across business units. 

e-Construction 

Currently most QA test data in Michigan DOT are stored on paper and reside as hardcopies of 
project files. With moves toward e-Construction, Michigan DOT is adopting the PDF format for 
storing records. No electronic database for storing QA test data is currently under development. 
Current e-Construction initiative comprises attempts to document all key construction activities 
using PDF. Michigan DOT has no plans for a database yet. Paper hardcopies will all be replaced 
by PDF electronic documents. Information from Michigan DOT inspectors (e.g., date, weather, 
progress, issues, work items, material placement) will all be tracked and documented 
electronically. FieldManager and SiteManager will be used by Michigan DOT as part of 
e-Construction. FieldManager is currently used to store field data from inspectors. All activities 
from construction to payments are being tracked electronically, including material sources. 

State 1 DOT 

This DOT is not being identified in this report to satisfy the nonattribution policy because data 
from State 1 were used in the statistical data analyses for this project. Certain features and 
practices are unique to State 1 in the list in table 28, making its identity obvious in the data 
analyses section. It is therefore being referred to as State 1 in this section and throughout this 
report. 

The project team was aware from experience working with State 1 DOT data that the QA data 
contained multiple test results per lot and, therefore, provided an opportunity to consider the 
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impact of variability on performance. The data used from State 1 are explained in detail in 
chapter 4 and chapter 5. 

State 1 was not interviewed in detail; however, State 1 DOT has actively advanced its QA 
procedures, developed construction quality database systems, and engaged in enabling 
cross-linking its databases. The database systems were originally established in supporting the 
agency’s intentions to ensure all materials and construction workmanship meet specification 
requirements. It continues to use most of the traditional QA test methods and is making ongoing 
efforts in the adoption of PRS. State 1 DOT maintains a database to store and track material 
approval tests performed in the central laboratory and includes test results for soils, aggregates, 
and asphalt materials. It also maintains a separate database to store data from construction and 
includes QC, acceptance, and IA test results that cover aggregates, soils, asphalt binders, HMA, 
and PCC materials. Data are stored by project, material type, layer, lot, and individual test 
results. These data are used to calculate project averages for quality acceptance and contractor 
pay factors. The QA database has no direct links to the PMS or traffic database. 

Oregon DOT 

A brief discussion with Oregon DOT was held, particularly about its long-term plans to digitize 
construction activities and associate all data with a location reference. Oregon DOT maintains a 
mature PMS; however, construction QA data were not sufficiently available in an electronic 
format. Oregon DOT is making headways with the adoption of IC and IR technology. Recent 
projects have IC data and comprehensive QA data in an electronic format. These data include 
binder, aggregate, and HMA test results, as well as field acceptance data. Additionally, this State 
is rapidly adopting AMG for construction; however, the current specifications do not require the 
contractor to submit 3D as-built plans, and, as such, no cross-functional use of these data is 
envisioned at this point. 

STATE PRACTICES WITH USE OF CIM 

There is a growing movement under the umbrella of CIM to revisit how design and construction 
data are organized and shared so that the information provided is more consumable for 
downstream users. While plan sheets and PDF documents are durable, secure, and universally 
accessible, the information within these documents is less accessible. As States’ e-Construction 
practices mature, there is growing capability maturity for presenting information digitally, which 
is presented in table 29. 

Table 29. Capability maturity for electronic construction data. 

Information 
Type Level 1 Level 2 Level 3 Level 4 

File format PDF PDF PDF Varies 
Geometric data Raster Vector Vector Vector 
Attribute data Raster Searchable text Searchable text Database fields 
Searchable No Yes Yes Yes 
Validated No No Yes Yes 
Inquirable No No No Yes 
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At the first level, information is in a PDF document in a raster format. It is readable but cannot 
be searched or extracted. At the second level, information is in a vector PDF document. Now it is 
searchable, and geometric properties can be extracted and measured. At the third level, the vector 
PDF documents are created from fillable forms with drop-down fields. Now the documents have 
information that is prevalidated. At the fourth level, there is migration away from PDF 
documents. There is little precedent for the fourth level or beyond in practice, but many States 
have established their vision for the fourth level. 

Increasingly, States recognize that the data created in design and collected in construction are an 
asset for the agency. While agency organization is still siloed, and collaboration is not as strong 
as it might be, many agencies have ongoing data governance initiatives. These agencies include 
Minnesota, Florida, and California.(98,99,100) This situation is raising awareness of the 
cross-functional value of data and the need to ensure that data are accessible, logically organized, 
and secure. In practice, data collection, organization, and storage are still not aligned for different 
functional uses, such as design, construction, and asset management and planning. However, the 
industry has much momentum around transforming processes with 3D engineered models and 
e-Construction. Many agencies are forming visions for level 4 electronic construction data 
practices and increasing the maturity of their current practices. 

In recent years, there have been research efforts around BIM practices in which many agencies 
have participated. The themes of portable, durable, and accessible asset information that can be 
read and written from mobile devices frequently emerge. A domestic scan involved 
representatives from Iowa, Michigan, Arizona, Utah, Pennsylvania, and Florida DOTs. The scan 
tour also visited New York, Texas, Virginia, and Wisconsin DOTs to capture the practices in 
those States.(101) 

Evolving practices for data management were also captured in surveys and case studies 
conducted in the development of a guidebook for CIM. These practices included electronic 
archiving and updating of plans, digital asset management, MMSs, and mobile devices. The 
specific software tools that were found for digital data management were ProjectWise, AASHTO 
Project, and Microsoft SharePoint®.(102) Microsoft SharePoint can manage single sign-on into 
multiple databases, which UDOT is pursuing. Another software tool that manages a single 
sign-on is Headlight from Pavia Systems. These single sign-on interfaces enable inspectors to 
collect various types of data in a single interface and push that data to different databases, one of 
which is AASHTO’s SiteManager, another being Oracle MasterWorks. The success of these 
tools for managing construction data (for use in construction) sets a platform to build off for 
collecting and managing data in construction for future purposes, like reporting and predicting 
pavement conditions. 

Iowa DOT has conducted several projects in which the 3D CADD data have superseded the PDF 
plans for highway construction and inspection. Building off this success, Iowa DOT has a vision 
to move quickly to implement what they call “Intelligent Plans,” which are 3D CADD models 
connected to data in an Oracle database and accessed from mobile devices in the field. The intent 
of this effort is to provide design and construction data that meet the needs in construction, and it 
also serves maintenance and asset management. This vision includes advancing Iowa DOT’s use 
of digital as-built records. The Design, Construction, and Maintenance Departments have 
collaborated to identify 23 priority assets and the associated spatial resolution and attributes to 
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collect. To advance this initiative, Iowa DOT’s inspectors need an easy tool to capture the 
electronic as-built data and a data warehouse in which to store and serve the data.(103) 

While Montana DOT (MDT) is still piloting 3D design practices and using 3D data in 
construction inspection, it already has a vision to implement “Intelligent Models” throughout the 
lifecycle of select roadway assets. This vision includes using the 3D design data in construction 
inspection and providing asset inventory information, which would provide roadway geometric 
information, plant mix and surfacing depths, and other asset information for MDT’s asset 
management system. MDT’s target implementation date is 2022, with a staged implementation 
that began with piloting 3D design in 2016.(104) 

UDOT has been implementing “Intelligent Design and Construction” since 2014, when the first 
implementation plan was drafted. UDOT’s vision is to phase out plans and replace them with 3D 
models, receiving a 3D model as an as-built record from the contractor.(105) In a plans-free 
delivery, all annotations and other information normally contained in a plans set must be 
embedded in the 3D model. Utah’s first pilot project, a widening project on SR-20, was 
completed successfully in the summer of 2016 using the Contract Manager/General Contractor 
procurement model. Challenges that UDOT are facing include data incompatibility between 
proprietary software and a need for user-friendly software for field staff.(105) 

UDOT developed a data warehouse in 2013. This data warehouse includes geospatial data assets, 
as well as nonspatial data assets, such as UDOT’s construction cost database. In 2012, UDOT 
initiated biennial statewide surface asset inventories to populate and maintain a current 
inventory. This inventory includes pavement types and areas and edge types and is integrated 
with pavement distress information that is collected using the same vehicle but a different 
sensor.(106) The data warehouse includes safety data, such as spatially located skid resistance, 
centerline and edge rumble strips, shoulder widths, and so on. The various data sources are 
aligned to the same spatial reference, which has enabled UDOT to create applications that query 
multiple databases in the data warehouse to aid in decisionmaking. 

One pavement preservation design application queries the spatial asset inventory, safety 
database, and construction cost database to aid in preservation of the project design. In as little as 
5 min, designers can extract quantities and estimate costs for preservation activities, such as mill 
and repaving, as well as identify any safety issues in the project limits and estimate the return on 
investment for a variety of safety improvements (for instance rumble strips or shoulder 
widening) based on the crash history in that location. UDOT estimates annual cost savings of 
over $1.5 million from automation efficiencies created by the data warehouse and 
applications.(106) These costs do not include the value of being able to make better, more 
informed decisions based on reliable data. 

Pennsylvania DOT (PennDOT) began developing mobile applications for construction inspectors 
in 2013. Pavement materials testing was one of the first applications developed for 
PennDOT.(107) The application enables inspectors to collect materials testing information from 
the field and migrate it into PennDOT’s back-end materials database via SharePoint.(108) 
PennDOT’s application for project site activity documentation has an interface that lets 
inspectors select from prepopulated, validated lists, such as preapproved materials suppliers, and 
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can store locations that are read directly from the mobile device’s GPS and reconciled to project 
baselines (such as station and offset).(109) 

DATA USED FOR PROJECT ANALYSES—PERFORMANCE MODELING AND CASE 
STUDIES 

Summary of Agency Practices Leading to Selection of Data for Analyses 

The survey of State DOTs to collect information on their QA and PMS databases and the 
potential for establishing correlations led to the following conclusions: 

• No State is set up to automate or directly correlate QA to PMS. 

• There is, at least to a fair degree, an interest in bridging the gap between the construction 
and PMS activities. However, the reasons for each DOT’s interest in cross-linking these 
databases may vary. 

• States recognize that there is an increased scope for facilitating the integration process by 
the enhancements in as-built data collection largely enabled by automation in 
construction technologies. Current practice does not permit the use of as-built records. 

• The extent of QA data available, the types of data collected, the extent of data accessible 
electronically, and storage methods vary across agencies. The efforts involved in 
assembling and integrating databases will remain unique to each agency. 

• Data integration allows mapping performance to QA data by project or by location and 
requires significant effort. 

It was with the understanding of the preceding information that the project team selected 
agencies to obtain data for the analyses under this project. In addition, knowledge of specific 
details of databases in each agency was a factor in selecting agency databases for use in this 
study. 

State Data Used for Performance Prediction Under Current Study 

Based on State agency interviews and information obtained about datasets that can be potentially 
used to validate correlations between QA data and performance, the project team selected data 
from four States. The selection of these agencies enabled a wide range of analyses covering 
different pavement types, QA parameters, innovative technologies, and levels/tiers of analyses. 
The following factors were considered in selecting the States: 

• The ability to include different material parameters in the analyses with these data. Data 
from multiple States were considered useful to highlight the similarities and differences 
in the outcomes from one State to another. 

• The ability to perform both network- and project-level analyses. 

• Historical condition data over an adequate period for performance forecasting. 
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• Agency’s general vision for improving PMS and desire to use QA data for forecasting. 

• Maturity and advancements in the construction quality database system. 

• The extent of data maintained in electronic format versus in paper records. 

• Data from evolving QA and construction technologies. 

• Suitable location referencing formats across different databases and the ability to identify 
data for a given project segment within each database. 

• General efforts of the DOT that align with project goals. 

• State DOT willingness to assist the project team. 

Specific reasons for selecting individual States for analyses were as follows: 

• State 1: 
o Comprehensive and well-organized data in both QA and PMS databases. 
o QA data organized by lots and assigned by specific dates of paving. 
o Ability to access traffic and climate data from other national databases to develop a 

case study, demonstrating the added value of integrating other agency databases. 

• State 2: 
o Ability to analyze both PCC and HMA projects. 

o Availability of QA data and PMS data, with the ability to match the location 
references at both the network and project levels and, therefore, the ability to perform 
a project-level case study. 

o Ability to consider at least two innovative technologies: in this case, the MIT-Scan 
for PCC pavements and a continuous deflection monitoring device/RWD for HMA 
pavements. 

• State 3: 
o Comprehensive and well-organized data in both QA and PMS databases. 
o Existing interest in pursuing the use of construction data for structural and functional 

performance measures. The main interest was in using aggregate properties, AC 
properties for the prediction of cracking, and rutting in HMA. 

• State 4: Use of IC data from three construction projects with corresponding QA in-field 
HMA density data and QA material mix design data, which enabled a project-level case 
study. 

A summary of the analyses performed using data from these States is presented in table 30 and 
table 31 for HMA pavement and in table 32 and table 33 for PCC pavements. 
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Note: Because of the lack of 3D data from as-built projects, the project team did not include case 
studies with data collected from 3D technologies under this project. 

Table 30. Summary of State databases used for analyses of flexible pavements. 

State QA/Construction Parameters 

State 1 

• Conventional QA data. 
• Derived parameters. 
• Average and COV for variability analyses. 
• Other national database to integrate traffic and climate.# 

State 2 
• Conventional data. 
• Innovative technologies.# 
• Continuous deflection monitoring device. 

State 3 • Conventional data. 
• Derived parameters. 

State 4# • IC.# 
• Conventional QA.# 

#Used for case study to demonstrate potential integration in PMS. 
COV = coefficient of variation. 

Table 31. Performance indicators selected for modeling flexible pavements related to PMSs 
at network or project level. 

State Rutting Cracking IRI 
State 1 Network* Network* — 

State 2 Project — Project 
Project Project Project 

State 3 Network Network — 
State 4# Project Project — 

—No data. 
*Considered both average values and variability through COV. 
#Case study only. 

Table 32. Summary of State databases used for analysis of rigid pavements. 

State QA/Construction Parameters 

State 2 
• Conventional data. 
• Innovative technologies. 
• MIT-Scan for dowel bar alignment.# 

#Used for case study to demonstrate potential integration in PMS. 
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Table 33. Performance indicators selected for modeling rigid pavements related to 
pavement management at network or project level. 

State Faulting Cracking IRI 

State 2 Network Network — 
8 projects — — 

—No data.
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CHAPTER 4. DATA IDENTIFICATION, DESCRIPTION, REVIEW, AND ASSEMBLY 

INTRODUCTION 

A key goal of this study was to assess the feasibility of utilizing QA test data as leading 
indicators of future highway pavement performance. Of specific importance is whether QA test 
data can be integrated into existing DOT PMS to improve accuracy and reliability of 
performance forecasting at the network level. Performance in the context of this study is 
described as pavement performance measures typically reported in DOT PMS, along with the 
performance measures recently established (defined and published) under the FHWA national 
performance management measures ruling. As described previously, the following broad QA and 
construction parameters were included in the analyses: 

• Construction and QA data collected as part of traditional QC and acceptance testing. 
These data include lab and field measurements of layer thicknesses, HMA volumetrics, 
binder data, PCC mix design indexes, PCC strength data, and so on. 

• Construction data collected from the adoption of innovative technologies. These data 
include advanced and expanded technologies, such as GPR, IC, IR, MIT-Scan, 
continuous deflection measuring devices (RWD, TSD), and so on. 

Effectively determining feasibility of utilizing QA data as leading indicators of highway 
pavement performance requires the following: 

• Determining QA/QC test data items available (i.e., type, extent of testing, storage) for 
inclusion in PMS as a leading indicator of performance. 

• Investigating feasibility of integrating traditional and nontraditional QA/QC data into 
existing PMS. 

• Analyzing statistically to determine whether QA/QC data aggregated at the PMS level 
(e.g., mean values for the typical PMS 0.1- to 1-mi sections) can be used as a leading 
indicator for pavement performance. 

This chapter describes work done to determine QA test data available for inclusion in PMS as a 
leading indicator for performance. 

Identification of DOT PMS and QA/QC Data 

Identification of QA/QC test data available for inclusion in PMS requires reviewing the PMS of 
the DOT as well as construction QA programs to ascertain data items collected and stored as 
routine practice. Based on the outcome of State DOT interviews described in chapter 3, data 
were used from four State DOT databases for indepth analyses and case studies as described in 
table 30 and table 31 for HMA pavement and in table 32 and table 33 for PCC pavements. The 
project team conducted a comprehensive review of their databases and the information therein, 
which are described in the next sections. Please note that because the analyses in State 4 were 
restricted to a case study using IC data, reviews and assembly of the database for State 4 were 
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limited to project-level QA and IC data from recent construction projects. No performance data 
were used to develop correlations at this point. 

STATE 1 DOT 

Pavement Management 

State 1 DOT has a comprehensive PMS and QA/QC testing program. The latest generation of the 
DOT PMS, developed in the mid-2000s, provides a wide variety of capabilities, including 
corrective/preventive M&R treatment selection optimization and planning. This PMS database 
relies on several data sources developed and used as part of earlier versions of the DOT PMS. 
The data sources are presented as follows: 

• State 1 pavement management database. 
• State 1 transportation information system. 
• State 1 highway log database. 
• State 1 DOT SQL server-based maintenance activities. 
• Image data. 
• State 1 DOT Materials Database, State 1 Materials Database (actual name withheld). 
• Feature inventory database. 
• State information data warehouse. 
• Traffic data files. 

Using the information available in these tables, the State 1 DOT has developed a PMS database. 
Key data items included in the State 1 DOT PMS are presented in table 34. 

Table 34. Summary of key data items included in the State 1 DOT PMS. 

Data Items Description 

Highway ID and 
referencing 

Route types, route number, route auxiliary ID, highway direction, and 
MP/reference nodes. Note the types of referencing used were mainly 
linear referencing or reference post and offset.  

Jurisdiction Districts, counties, cities. 
Administrative Functional class, elevation zones, and so on. 

Environment Environment (e.g., desert, mountain, transition), terrain (e.g., flat, 
rolling, and rugged). 

Pavement/median Pavement types (e.g., bituminous, concrete, or unpaved), median types 
(e.g., divided or undivided). 

Shoulder/drainage Shoulder, drainage, or curb types (shoulders, drainage, curbs, or 
sidewalks). 

Construction Construction activities, materials/layers, binders/aggregates, and 
aggregate sources. 

Distress types Performance measures that describe the units that are used in measuring 
the distress and severity defined as low, moderate, and high. 

Traffic Traffic counts, classes, and estimates of ESALs. 
Deflection Deflection information (device types). 
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QA Data 

State 1 DOT maintains detailed information of construction activities (construction history) and 
QA/QC material testing. This information is maintained and stored in the following databases: 

• State 1 DOT maintenance activities, which is SQL server based. The name of the 
database is not identified in the report but will be referred to as State 1 Maintenance 
Activities Database. 

• State 1 DOT Materials Database. The name of the database is not identified in the report 
but will be referred to as the State 1 Materials Database. 

The State 1 Maintenance Activities Database contains definitions of each maintenance activity 
and associated inventory feature and work unit. It also contains information regarding activity 
type, inventory feature, labor/equipment/material expended, and others. The State 1 Materials 
Database contains many data items that describe in detail materials types and properties used in 
maintenance activities. A summary of key data items in the State 1 Materials Database is 
presented in table 35. State 1 DOT also routinely collects material certification data that are not 
project specific and thus mostly reside in reports (PDF files) submitted by suppliers and 
contractors. 



80 

Table 35. Summary of key data items in State 1 Materials Database. 

Data Item Material 
Code Description 

Admix AD N/A 

Aggregate AG 

Bituminous-treated base (BB) 
Cement-treated base (CB) 
Cement-treated subgrade (CS) 
Lean concrete base (LC) 
Lime-treated subgrade (LS) 
Road mix (RM) 
Soil cement (SC) 

Aggregate base  AB Class 1–3 
Aggregate subbase  AS Class 4–6 

Asphaltic concrete  AC 

½-inch asphaltic concrete (12) 
½-inch fine band 417 AC (12F) 
½-inch coarse band 417 AC (12K) 
¾-inch asphaltic concrete (34) 
¾-inch fine band 417 AC (34F) 
¾-inch coarse band 417 AC (34K) 
Friction course (ACFC, FC) 
Asphalt rubber (AR–AC, RD) 
Asphalt-rubber asphaltic concrete friction course 
(AR–ACFC, RF) 
Base mix (BM) 
Bituminous-treated base (BB) 
Recycled asphaltic concrete (RC) 
Road mix (RM) 

Coarse aggregate CA Size 1 through 10, 24, 56, 57, 67, 68, 78, 79, 89, 
357, 467 

Embankment EM N/A 
Entrained air (air content) ET N/A 
Filter material FM N/A 
Fine aggregate  FA N/A 
Fly ash  FF N/A 
Mineral aggregate  MA N/A 
RAP RP Fine (F), coarse (C), other (O) 
Subgrade  SG N/A 
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STATE 2 DOT 

Pavement Management 

State 2 DOT pavement management program provides regions with information to facilitate 
pavement M&R decisionmaking. The program has the following purposes: 

• Collect and provide pavement condition data and develop the condition data report. 
• Investigate and report individual pavement sections remaining service life. 
• Develop Good/Fair/Poor maps and graphs. 
• Develop 20-yr network projections. 
• Develop M&R recommendations. 
• Develop regional budget allocation recommendations. 
• Develop annual pavement management, preventive maintenance, and surface treatment 

reports. 

Developing the reports listed previously requires comprehensive assessment of current pavement 
condition and forecasting of future (20-yr) pavement condition. PMS collects annual condition 
data for every highway on the State 2 DOT network (condition data collection dates back to 
1991, and old data are archived). Condition data, reported in 0.1-mi PMS sections, includes 
cracking, rutting, and IRI reported for every highway functional class and pavement type in 
accordance with the LTPP Distress Identification Manual, which subcategorizes all cracking 
distress into severity levels of low, moderate, and high.(93) Condition data also includes a 
continuous highway image log comprising windshield, left, and right shoulder views of the 
pavement surface collected every 26 ft. The three views, when aligned properly, form a 
120-degree panoramic view of the highway. Pavement surface photos taken every 5 ft, when 
stitched together, create a complete and continuous image of the data collection lane. From these 
images, all cracking distress is categorized and catalogued. Details of key pavement condition 
data collected are presented in table 36. 
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Table 36. Summary of pavement inventory and condition/distress information contained in 
PMS data. 

Data Item Description 
ID Unique PMS section identification number. 
HWY* Highway route number (e.g., 070A). 
DIR* Direction. 
LENGTH Section length in miles. 
BMP* Begin MP. 
EMP* End MP. 
DATE Date. 
ENGREGION State 2 DOT engineering region. 
SPEED Post speed limit. 
PAVETYPE Pavement type. 
SHLDRT Shoulder type. 
SHLDRW Shoulder width. 
SHLDR_COND Shoulder condition. 
IRI (MEAN, LEFT, RIGHT, STD. DEV.) Various smoothness (IRI) statistics. 
RUT (LEFT, RIGHT, STD. DEV., MAX) Various rutting statistics. 
FAULT (AVERAGE, MAX) Various transverse joint faulting statistics. 
FATIGUE (L, M, H) Fatigue cracking (low, medium, high severity). 

TRANSCOUNT (L, M, H) Number of transverse cracks (low, medium, high 
severity). 

TRANSLENGTH (L, M, H) Length of transverse cracks (low, medium, high 
severity). 

LONG (L, M, H) Length of longitudinal cracks (low, medium, high 
severity). 

CORNER (L, M, H) Number of corner breaks (low, medium, high 
severity). 

CURVE Curve or otherwise. 
GRADE Section grade and slope. 
LONGITUDE (DD, UTM) Longitude. 
LATITUDE (DD, UTM) Latitude. 
ELEVATION Elevation. 
COLLECT_DATE Data collection date. 

*Key referencing data items. 
DD = decimal degree; UTM = universal traverse mercader. 

Construction QA Data 

State 2 DOT maintains an in-house database, referred to as the QC/QA Master Database, to enter 
and store HMA QA data. This program contains three modules. The program can store 
information related to gradation, voids, and densities. The program is designed to generate 
reports in PDF format. Each report is project specific, identified by a subaccount (SUBAC) 
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number. The program, clearly developed at a time when the practice was to manually produce 
QA reports, serves as a step up to electronic report generation. This program is not designed to 
provide access to the data in a “database” format but instead generates reports in a PDF format. 
However, the data do exist in the program and can be edited or redesigned. 

The QA test files, accessed in a PDF format for this project, contain an agency accounting 
reference number (the SUBAC number) for characterizing project location. A summary of 
specific data items contained in the QA test files is presented in table 37. Table 38 presents an 
example of QA data as extracted from the PDF files. 

Note that specific stations at which tests were performed are missing. The QC/QA Master 
Database includes a data field for entering station information, but the project team found that 
these data were generally missing in most project files. 

Table 37. Summary of data items contained in the QA test files (PDF reports). 

Data Items Description 
SUBAC* Subaccount number. 
MIX HMA mix type. 
TEST Test type. 
DATE Test date. 
YR Year of testing. 
AC HMA binder/asphalt content. 
DENSITY HMA density. 
VMA HMA voids in mineral aggregate. 
VOIDS HMA lab air voids. 
MAT Material type/designation. 
HWY Highway/route. 
BMP Begin MP. 
EMP End MP. 
Chainage* Sampling location within project. 

*Key referencing data items. 



84 

Table 38. Example of data contained in the QA records (PDF reports). 

Mix Date AC Density VMA Voids Material 
131343 9/17/2002 5.18 93.6 14.8 4.1 Bottom 
131343 9/18/2002 5.39 92.8 14.9 4.4 Bottom 
131343 9/18/2002 5.29 93.4 15.1 4.7 Bottom 
131343 9/19/2002 5.29 93.4 15 4.7 Bottom 
131343 9/20/2002 5.42 92.7 14.7 4.1 Bottom 
131343 9/20/2002 5.38 92 14.8 4.5 Bottom 
131343 9/23/2002 5.33 93.5 15 4.5 Bottom 
131343 9/27/2002 5.34 93.4 15.3 4.8 Bottom 
131343 10/2/2002 5.24 94 14.9 4.7 Bottom 
131343 10/2/2002 5.21 92.6 14.9 4.4 Bottom 
131343 10/2/2002 5.25 93.8 15.1 4.6 Bottom 
131343 10/3/2002 5.27 92.6 15 4.5 Bottom 
131343 10/3/2002 5.27 91.6 14.1 3.5 Bottom 
131343 10/9/2002 5.37 93.6 14.5 3.7 Bottom 
131343 10/9/2002 5.38 92.1 15.2 4.6 Bottom 
131343 10/10/2002 5.26 94.8 15.4 4.8 Bottom 
131343 10/10/2002 5.39 93.6 14.7 4 Bottom 
131343 10/11/2002 5.42 93.7 14.9 4.3 Bottom 
131343 10/11/2002 5.37 92.6 15 4.3 Bottom 
131343 10/14/2002 5.33 93.1 14.9 4.2 Bottom 

The challenge is to link this information to the PMS data in the absence of location references for 
each test data point. Information in project inventory database can be used to achieve this 
outcome. 

Pavement Inventory and Construction History 

State 2 DOT maintains pavement construction history data and inventory data in a database. The 
information in this construction history database is derived from construction or maintenance 
contracts. Each region of State 2 DOT maintains its own inventory databases in regional 
databases. It is the responsibility of each region to update the information and submit it to State 2 
DOT Pavement Management for compilation into a statewide database. The construction history 
database is composed of four tables, one each for project data and maintenance data and two 
reference tables. The project table contains information for projects with pavement depth greater 
than 2 inches. Projects considered as design projects with pavement depth less than 2 inches 
were also found in this table. The maintenance table contains only maintenance projects with 
depth less than 2 inches. Two reference tables contain four-letter work-type codes for 
construction and maintenance activities. State 2 DOT QA testing data reside mostly in 
project-specific PDF reports generated from State 2 DOT’s QA software programs. 

The project and maintenance data table each contain construction history and construction, 
rehabilitation, and maintenance projects throughout the State. The construction history 
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information includes inventory-type data for identifying project location, work type, costs, 
contractor, and acceptance date, as well as project SUBAC number and the MP limits for each 
SUBAC number. The State 2 DOT business/contracting office typically assigns a unique 
SUBAC number to a project. This number is used to track all payments and purchases made for a 
given project. Payments cover contractor works/labor, equipment hiring/rental, purchases of 
materials (e.g., HMA, PCC, aggregates), material testing, and characterization. 

The contract SUBAC number and the highway, route, direction, and MP limits are the key for 
linking the dataset with State 2 DOT QA and PMS databases, respectively. A summary of key 
data items contained in the maintenance data tables is presented in table 39. 

Table 39. Summary of key data contained in State 2 construction history database. 

Data Items Description Comments 
SUBAC* Subaccount number Links to QA 
PROJ_NUM Project number — 
DIR Direction of travel — 
DESCRIPTION Project description — 
HWY* Highway route number 

Link to PMS BEG_MP* Begin MP 
END_MP* End MP 
LENGTH Section/project length — 
REGION State 2 DOT engineering region — 

WORK_TYPE Work type (e.g., new construction, 
rehabilitation) 

— 

PAVE_TYPE Pavement type 
Validates with QA DEPTH New surface layer depth 

WIDTH Project width 
PRIME_CONT Prime contractor name — 
ACCEPT_DATE Project acceptance date Validates with QA 
ITEM_COST Cost — 
COST/SQYD/IN Project costs per square yard/inch — 
TOTAL_COST Total project cost — 
REJECTED-ADLP Rejected construction type 

Only in maintenance 
projects 

REASON-ADLP Reason for construction type 
KEY-ADLP Key construction type 
YEAR-ADLP Year of construction  

—No data. 
*Key referencing data items. 

Data Collected from Innovative QA Testing 

A key aspect of this research was to assess the feasibility of assembling and reviewing QA-type 
data from new technologies and then determining their feasibility to be used as a leading 
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indicator of future pavement performance. Two new technologies considered from State 2 DOT 
were: 

• Continuous deflection monitoring device: State 2 DOT selected the RWD device to 
provide deflection information on a highway in 2008, soon after an overlay construction 
project on SH AA. The RWD data provide an indirect measure of the structural capacity 
of asphalt pavements. These data were used by the project team to correlate with field 
performance. Note that the RWD is not considered a QA tool, but rather a tool to monitor 
structural capacity. However, because RWD test data were available from a period soon 
after construction, a measure of the structural condition was treated as data collected at 
the time of construction. 

• Magnetic tomography technology for dowel bar alignment: State 2 DOT developed QC 
specifications for the use of the MIT-Scan device to assess quality of construction of 
newly constructed JPCP joints. This device can measure the horizontal shift, the vertical 
shift, and the diagonal rotation of dowel bars at joints. The project team used data from 
several projects constructed between 2011 and 2013 in the analyses. 

As noted earlier, data obtained from testing are typically reported directly to various contractors 
(which may be used internally) or to research staff (which may be published in research reports). 
Data collected from such activities are not included in the State 2 DOT construction history 
database or QA/QC database. Descriptions of the data obtained are presented in the following 
sections. 

Travel Speed (Network-Level) Deflection Data 

The research team obtained from an independent contractor RWD-measured maximum 
deflection data. The contractor collected test data from a State route and covered approximately 
17 mi of pavement. Table 40 presents data samples obtained from the RWD. As shown in 
table 40, key data items—route ID, direction, and mile marker—were provided with deflection 
test data and pavement surface temperature. The inventory-type data items were of sufficient 
detail to enable the research team to link these data to the State 2 DOT PMS, the maintenance 
data tables of the construction history database, and other QA test data files. 
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Table 40. Example of deflection data recorded from the RWD device. 

Route ID Direction 
Mile 

Marker 

HMA 
Thickness 
(inches) 

Bells 
Temperature 

(℉) 

Total 
Deflection 

(mils) 
SR 100XX Northbound 1,030.325 4 58.47 14.14 
SR 100XX Northbound 1,030.425 4 58.47 9.59 
SR 100XX Northbound 1,030.525 4 58.47 11.47 
SR 100XX Northbound 1,030.625 4 58.47 18.01 
SR 100XX Northbound 1,030.725 4 58.47 19.21 
SR 100XX Northbound 1,030.825 4 58.47 16.56 
SR 100XX Northbound 1,030.925 4 58.47 16.52 
SR 100XX Northbound 1,031.025 4 58.47 18.28 
SR 100XX Northbound 1,031.125 4 58.47 15.27 
SR 100XX Northbound 1,031.225 4 58.47 15.29 
SR 100XX Northbound 1,031.325 4 58.47 12.67 
SR 100XX Northbound 1,031.425 4 58.47 20.28 
SR 100XX Northbound 1,031.525 4 58.47 17.95 
SR 100XX Northbound 1,031.625 4 58.47 16.73 
SR 100XX Northbound 1,031.725 4 58.47 16.82 

MIT-Scan Data 

The project team obtained MIT-Scan output data for several new JPCP projects in State 2. The 
projects were located on four highways: I-BB, US-CC, US-DD, and SR-EE. Information 
provided from MIT-Scan testing included: 

• Station information (construction station). 
• Test date. 
• Mean dowel depth. 
• Maximum vertical misalignment. 
• Maximum horizontal misalignment. 
• Maximum lateral position error (side shift). 

State 2 DOT also provided inventory-type data for characterizing pavement and joint location. 
Examples of the data provided are presented in table 41, which also highlights the specific joints 
and bars with shorter dowel depth. The inventory-type data included route ID, station/mile 
marker, direction, and so on, along with the MIT-Scan test data; these data were easily integrated 
with State 2 DOT PMS and QA-type data.
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Table 41. Example of MIT-Scan data obtained for analysis. 
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US DD 1 1 5.58 — 2.40* 2.10 −1.29 0.28 −0.28 −0.02 0 

0 

US DD 1 2 17.96 12.38 2.08* 2.42 −1.44 0.39 0.34 −0.19 0 
US DD 1 3 29.78 11.82 2.56* 1.94 −0.98 0.39 −0.17 −0.35 0 
US DD 1 4 41.67 11.89 2.70* 1.80 −1.22 0.38 −0.12 −0.36 0 
US DD 1 5 55.96 14.29 2.88* 1.62 −1.49 0.18 −0.04 −0.17 0 
US DD 1 6 89.12 33.16 3.48 1.02 −1.45 0.25 −0.06 −0.24 0 
US DD 1 7 101.75 12.64 3.25 1.25 −1.29 0.19 0.00 −0.19 0 
US DD 1 8 115.24 13.49 3.05 1.45 −1.53 0.58 0.55 −0.18 0 
US DD 1 9 125.94 10.70 2.96* 1.54 −1.81 0.21 −0.02 −0.21 0 
US DD 1 10 138.59 12.65 4.11 0.39 −0.94 0.55 −0.24 0.49 0 
US DD 2 1 5.80 — 3.84 0.66 −0.20 0.56 −0.44 −0.34 0 

6 

US DD 2 2 19.46 13.66 3.06 1.44 −0.94 0.12 −0.06 −0.10 0 
US DD 2 3 30.04 10.58 2.89* 1.61 −1.09 0.35 −0.30 −0.17 0 
US DD 2 4 41.30 11.26 3.04 1.46 −1.33 0.25 −0.13 −0.22 0 
US DD 2 5 55.56 14.26 3.49 1.01 −1.47 0.50 0.16 −0.48 0 
US DD 2 6 86.70 31.14 4.15 0.35 −1.88 1.12 −0.67 −0.90 5 
US DD 2 7 101.99 15.28 3.65 0.85 −0.83 0.45 −0.29 −0.34 0 
US DD 2 8 114.26 12.27 3.86 0.64 0.56 0.27 −0.11 0.24 0 
US DD 2 9 125.57 11.32 3.91 0.59 −1.46 0.38 −0.04 −0.38 0 
US DD 2 10 138.52 12.94 4.77 −0.27 −1.51 0.99 −0.97 −0.17 4 

—No data. 
*Joints and bars with shorter dowel depth.
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STATE 3 DOT 

Pavement Management Data 

The State 3 DOT PMS data are stored in a centralized data repository that contains the following: 

• Pavement inventory database (traffic, road descriptions): roadway geometry, designation, 
and traffic. These data are referenced at 0.1-mi intervals. 

• Pavement condition database (IRI, rutting, friction, cracking): ride quality, rutting, 
cracking, and friction condition data. These data also are segmented at 0.1-mi intervals. 

• Pavement construction/maintenance history and M&R costs database: records that 
identify every layer in the pavement structure, including construction, material type, and 
thickness data. The data are segmented in various lengths based on consistent 
construction history; intervals typically vary between 0.1 and 2 mi. 

The databases are merged and aggregated to provide summary information at the intervals 
defined in the construction history database to create the State 3 DOT PMS roadway section data 
required for analysis. A summary of State 3 DOT PMS data tables is presented in table 42. 

Table 42. Summary of relevant pavement condition data extracted from State 3 DOT PMS. 

Data Item Description 
SECTION ID Section ID number. 
TREATMENT ID Treatment ID. 
GLOBAL ROUTE ID Route global ID. 
SUB ROUTE ID Subroute ID. 
REGION/DISTRICT/COUNTY Region, engineering district, and county. 
ROUTE/RNUM/RSUFF Route type, number, and suffix. 
DIRECTION Direction of travel. 
BMP/EMP Begin/end MP. 
LANE NUMBER Total number of lanes. 
OUTER LANE Outer lane number. 
FUNC CLASS Highway functional class. 
GOVT CONTROL Government control classification. 
PAVEMENT TYPE Pavement type designation. 
TREATMENT THICKNESS Treatment thickness. 
CURRENT TREATMENT THICKNESS Current treatment thickness. 
LAYER NO Surface layer number. 
BIRTH/DEATH YEAR Treatment placement/replacement year. 
YEAR Treatment replacement year. 
AGE Treatment age. 
CONTRACT NUMBER Treatment contract number. 
FMIS FMIS number. 
LAYER DESCRIPTION Layer description. 
MATERIAL BAND SIZE Material band size. 
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Data Item Description 
YEAR ORDER Year material was ordered. 
MAT UNIQUE ID Material type unique ID. 
MATERIAL DESCRIPTION Material description. 
TREATMENT Treatment type description. 
LAYER TYPE DESCRIPTION Surface layer type description. 
MATERIAL MIX METHOD DESC Surface material mix type description. 

MATERIAL MIX TYPE DESC Surface material aggregate designation 
description. 

MATERIAL BINDER Treatment material binder type. 

MATERIAL TRAFFIC LEVEL DESC Material design traffic-level designation 
description. 

CONSTRUCTION TYPE DESC Construction type description. 
RUT (AVG, CNT, STDEV) Average rutting, count, standard deviation. 
RUT FAMILY Pavement family designation for forecasting. 

FC (DENSITY, CNT, STDEV) Functional cracking density, count, standard 
deviation. 

FCI (DENSITY, STDEV) Functional cracking index density, standard 
deviation. 

SC (DENSITY, CNT, STDEV) Structural cracking density, count, standard 
deviation. 

SCI (DENSITY, STDEV) Structural cracking index density, standard 
deviation. 

CRACKING FAMILY Family designation for forecasting structural 
cracking. 

FRICTION Surface friction. 
FMIS = Financial Management Information System. 

Construction QA Data 

State 3 DOT collected and stored construction QA data in many tables and formats. The key 
datasets for which QA information were stored in the TestData020216 database (a Microsoft 
Access database containing several individual datasets with various QA test datasets) are 
presented as follows: 

• BinderData. 
• MixDesignAggSourceXXX. 
• MixDesignXXX. 
• TestDataQA. 
• TestDataQC. 

See table 43 and table 44 for a summary of data examples included in the datasets listed 
previously. The information presented in these tables shows that State 3 DOT routinely conducts 
a wide range of testing as part of pavement construction QA/QC, and a vast amount of detailed 
information from the QA/QC testing program is available in the various datasets. For example, 
the detailed and comprehensive data available include AC DSR shear modulus (G*) origin and 
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DSR G* pavement data, AC bending beam rheometer (BBR) temperature 1, BBR stiffness 1, 
and BBR mean value 1 information, as well as HMA gradation, air voids, VMA, and other data. 
Information about aggregate sources and coarse aggregate friction properties are also available. 

Table 43. Summary of the State 3 DOT TestData020216 data tables. 

Binder Data Daily Sublot Production 
• ID. 
• Material type. 
• Sample ID number. 
• Sample date. 
• Sample record date. 
• Project serial number. 
• HMA plant ID. 
• Contract number. 
• PG grade. 
• Supplier. 
• Tank number. 
• Lot number. 
• Mix temperature (minimum/maximum). 
• Compaction temperature (minimum/maximum). 
• Rotational viscosity. 
• DSR temperature, G*, phase angle for original binder, 

RTFO, and PAV samples (from SHA and supplier). 
• BBR (temperature, stiffness). 
• MSCR. 
• Direct tension (temperature, strength, strain). 
• Critical crack temperature. 
• Project detail. 
• Sample taken from (truck number, truck tag number). 
• Viscosity test (SHA, supplier). 

• Project ID. 
• Activity. 
• JMFID. 
• Plant. 
• Mix trim. 
• Mix method. 
• Sequence. 
• Year. 
• Quarter. 
• Month. 
• Date. 
• Lot. 
• Sublot. 
• Begin time. 
• End time. 
• Actual production. 

MSCR = multiple stress creep recovery; PAV = pressure aging vessel; JMFID = job mix formula ID. 
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Table 44. Summary of the State 3 DOT TestData020216 data tables. 

Mix Design Aggregate 
Source XXX Mix Design XXX Test Data QA/QC 

1. Plant 
2. PRODUCT ID 
3. PRODUCT NUMBER 
4. Source 
5. Location 
6. COMP_PRODUCT ID 
7. Size 
8. PERCENTAGE 
9. Mat Type ID 
10. Mat Type 
11. Plant Reference 

12. PRODUCT ID 
13. PLANT Reference 
14. Mix Method 
15. Mix Type 
16. Band 
17. Gradation (2-in through No. 

200 sieve sizes) 
18. AC Producer 
19. AC Type 
20. AC Percent 
21. Coarse Aggregate 

Angularity 
22. Fine Aggregate Angularity 
23. Gmb 
24. Gmm 
25. VA 
26. VMA 
27. VFA 
28. Gse 
29. Gsb 
30. Mix Method, Temp, Type 
31. Region 
32. Sand Equivalent 
33. TSR 
34. Material Traffic Level 
35. Initial Traffic  

36. Project ID 
37. Activity 
38. JMFID 
39. Mix Trim 
40. Mix Method 
41. Sequence 
42. Year 
43. Quarter 
44. Month 
45. Test Date 
46. Lot 
47. Sublot 
48. Gradation (2-inch through 

No. 200 sieve sizes) 
49. Core Density 
50. Core Thickness 
51. Dust-to-Asphalt 
52. Gmb (Core) 
53. Gmb (Gyro) 
54. Gmb (meas.) 
55. Gmm 
56. Gmm (core) 
57. Nuclear Density 
58. Pb (percent) Ignition 
59. VFA 
60. VMA 
61. VTM 

Comp = compliance; Gse = effective aggregate specific gravity; TSR = tensile strength ratio; VTM = voids in total 
mix. 

STATE 4 DOT 

Data from State 4 were used only for a project-level case study on combining IC and QA data. 
State 4 is one of the agencies strongly adopting IC in construction and had major ongoing 
construction projects during the current research study. IC is being implemented by most States 
to capture a digital record of compaction coverage and the number of roller passes for each lift or 
layer of the pavement. Therefore, the agency can record the compaction history for the entire 
pavement, layer by layer and lift by lift. The IC vibratory rollers, which are equipped with 
accelerometers mounted on the axle of the drums, also have survey grade GPS tracking, IR 
temperature sensors, and on-board display of the construction area with IC measurements in 
color-coded maps. Typical IC measurements include CMV, number of roller passes, asphalt 
surface temperatures, and roller settings (vibration frequencies, amplitudes, and speeds). Several 
studies have been performed to authenticate the validity of IC measurements and to determine 
their use for pavement construction QA. A decision has not yet been made on this issue as 
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outcomes of such studies to date have been less encouraging about the ability to correlate density 
and IC outputs. 

Construction QA Data and IC Data 

The project team used State 4 DOT data to evaluate the ability to spatially map IC output records 
with traditional QA data and to also investigate the potential for correlation between these two 
datasets. A wide range of data were assembled and integrated for analysis. The project team 
collected IC data from three construction projects on three roadways that will be referred to as 
US-KK, I-LLL, and I-MM. QA data collected at the time of construction, including field density 
and lab aggregate, binder, and HMA test data, were also obtained. A summary of the data 
assembled are presented in table 45 and table 46 for IC and field QA data, respectively. 

Table 45. Description of IC data from State 4. 

Number Variable Description 
1 Time Data collection time/date. 
2 CellN_FT Northing coordinates (ft). 
3 CellE_FT Easting coordinates (ft). 
4 Elevation_FT Elevation (ft). 
5 PassNumber Roller pass number. 
6 LastRadioLtncy — 
7 DesignName Project name. 
8 Machine Roller equipment manufacturer. 
9 Speed_mph Roller speed. 
10 LastGPSMode — 
11 GPSAccTol_FT — 
12 TargPassCount Target number of passes to achieve adequate compaction. 
13 ValidPos — 
14 Lift HMA lift number. 
15 LastCMV Last CMV value. 
16 TargCMV Target CMV value. 
17 LastMDP Last MDP value. 
18 TargMDP Target MDP value. 
19 LastRMV Last RMV value. 
20 LastFreq_Hz Roller vibratory frequency. 
21 LastAmp_mm Roller amplitude. 
22 TargThickness_FT Target HMA lift thickness. 
23 MachineGear — 
24 VibeState Roller vibratory state (on/off). 
25 LastTemp_F HMA placement (in situ) temperature. 

—No data. 
MDP = machine drive power; RMV = resonant meter value. 
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Table 46. Summary of field HMA test data from State 4. 

Number Variable Description 
1 Project Project name 
2 Description Project description 
3 ID Test ID 
4 Northing Northing coordinates (ft) 
5 Easting Easting coordinates (ft) 
6 Test type HMA field cores density measurements 
7 Value Field density values 
8 Date Test date 

DATA REVIEW AND ASSEMBLY 

State 1 DOT 

State 1 DOT PMS and QA/QC Test Data Collection and Assembly 

The project team obtained from State 1 DOT several PMS data tables containing performance, 
rutting, and cracking data. The data tables STATE 1DOT_PERF_DATA, STATE1_RUTTING, 
and STATE1_CRACKING were assembled using data retrieved from State 1 DOT PMS. Data 
retrieval was facilitated by State 1 DOT-developed codes and queries. These data tables were 
received in Microsoft Excel format. All three data tables contained inventory-, traffic-, and 
performance-type data items. Inventory-type data items included unique PMS section identifiers 
(e.g., UNIQUEKEY and MPDIRID) as well as pavement location information defined by the 
PMS sections route type, route number, route suffix, highway direction, MP, and region. These 
tables included other data items such as pavement surface type and traffic. The three PMS data 
tables collectively contained several performance measures as well as the year in which 
condition data were collected. Performance data items reported in the three tables include the 
following: 

• Load-related cracking/distress. 
• Nonload-related cracking. 
• Patching. 
• Flushing. 
• Raveling. 
• Spalling. 
• Potholes. 
• Rutting. 
• Ride. 

From State 1 DOT, the project team obtained three data tables, in Microsoft Excel format, 
containing QA/QC type data items: dense graded asphaltic concrete, soil aggregate tabulation 
(aggregate base), and soil aggregate tabulation (subgrade). The State 1 DOT QA/QC data tables 
contained referencing-type information such as Transportation Accounting System (TRACS) 
number and Federal project number, code for material type, lot/sublot number, and material 
properties such as gradation, air voids, and VMA. For HMA materials, sampling of material for 
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testing was done at the plant or in the field. When State 1 DOT completed testing, the results 
were included in the State 1 DOT QA/QC data tables, along with information about the test 
sample location, time of testing, testing lab, and other data. See table 47 for summaries of the 
data items contained in the State 1 DOT QA/QC test data tables. 

Table 47. Summaries of the data items contained in the State 1 DOT QA/QC test data 
tables. 

Dense Graded Asphaltic 
Concrete 

Soil Aggregate Tabulation 
(Aggregate Base) 

Soil Aggregate Tabulation 
(Subgrade) 

• TRACS # 
• FEDERAL PROJECT # 
• MATTYPE 
• LOT 
• LOT_NUM 
• LOC DESC 
• LOT DATE 
• LOT_YR 
• VFA 
• IN PLACE AIR VOIDS 
• GRADATION 
• AC BINDER 

CONTENT 
• HMA BULK DENSITY 
• HMA RICE DENSITY 
• LAB HMA AIR VOIDS 
• HMA VMA 
• HMA VFA 
• HMA EFFECTIVE 

AGGREGATE 
SPECIFIC GRAVITY 

• TRACS # 
• MAT CODE 
• MAT TYPE 
• LOT OR SUFFIX 
• SAMPLE DATE/TIME 
• SAMPLE LOCATION 
• LIFT NUMBER 
• ROADWAY ID 
• FED PROJECT 

NUMBER 
• GRADATION 
• ATTERBERG LIMITS 
• OPTIMUM MOISTURE 

CONTENT 
• MAX. DRY DENSITY 
• COARSE 

ABSORPTION 
• COARSE SPECIFIC 

GRAVITY 
• SAND EQUIVALENT 
• MOISTURE CONTENT 

• TRACS # 
• MAT_TYPE 
• MAT_CODE 
• LOT_OR_SUFFIX 
• SAMPLE_NUMBER 
• SAMPLE_LOCATION 
• LIFT_NUMBER 
• ROADWAY_ID 
• SAMPLE_STATION 
• SAMPLE_OFFSET 
• ORIGINAL_SOURCE 
• FED_PROJECT_NUMBER 
• SAMPLE_DATETIME 

A review of the data available in the Dense Graded Asphaltic Concrete data table showed that it 
contained 1,731 records (table 48). The records were from projects located throughout the State, 
with records per county ranging from 21 to 309. The review also revealed that the most common 
HMA mix types were M 34 (surface mix) and M BM (base material). 



96 

Table 48. Summary of number of AC material test results for State 1 counties in the 
DENSE_GRADED_ASPHALTIC_CONCRETE data table. 

AC Mix 
Type 

Counties 
1 2 3 4 5 6 7 8 9 10 11 

M 12 — — — — — — — 11 — — — 
M 12K — 20 — — — — — — — — — 
M 34 — 25 — 45 278 16  255 19 239 81 
M 34A — — — — 5 — — — — — — 
M 34F 70 — — — — 20 — — — — — 
M 34K 41 38 14 — 26 14 21 — — 34 45 
M 34KA — 15 13 — — — — — — — — 
M 34KB — — 15 — — — — — — — — 
M BM — 46 59 — — 43 — 103 83 — 9 
M RD — — 28 — — — — — — — — 
Total 111 144 129 45 309 93 21 369 102 273 135 

—No data. 

The STATE 1 DOT Soil Aggregate Tabulation (Aggregate Base) QA/QC dataset contained 
18,034 records. None of the individual QA/QC test data items in the dataset reported data for all 
18,034 records. The amount of data available for each data item ranged from 0.1 to 99.5 percent. 
In general, gradation data (i.e., for sieve sizes 1-inch through No. 200) were available for most of 
the records; Atterberg limits, maximum dry density, and so on, were available for approximately 
10 percent of records. For the inventory-type data items such as TRACS_NUMBER, MAT 
CODE/TYPE, and SAMPLE DATE/TIME, information was available for all 18,034 records. See 
table 49 for a detailed summary of data availability in the table Soil Aggregate Tabulation 
(Aggregate Base). 
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Table 49. Summary of number of base/subbase aggregate material test results in the Soil 
Aggregate Tabulation (Aggregate Base) data table. 

Test Property Number of Records Total Records (Percent) 
TRACS number 18,034 100.0 
Material code 18,034 100.0 
Material type 18,034 100.0 
Lot or suffix 2,682 14.9 
Sample date/time 18,034 100.0 
Sample location 17,942 99.5 
Lift number 8,619 47.8 
Roadway ID 13,564 75.2 
Federal project number 16,726 92.7 
Percent passing No. 4 sieve 17,147 95.1 
Percent passing No. 40 sieve 17,052 94.6 
Percent passing No. 200 sieve 17,057 94.6 
Liquid limit 819 4.5 
Plastic limit 888 4.9 
Optimum moisture content 1,700 9.4 
Maximum dry density 1,700 9.4 
Coarse absorption 1,543 8.6 
Coarse specific gravity 1,543 8.6 
Sand equivalent 13 0.1 
Moisture content 2,702 15.0 

The State 1 DOT Soil Aggregate Tabulation (Subgrade) QA/QC dataset contained 9,684 records. 
The combination of TRACS number and Federal project number data items provided 
information for referencing the records in the data table. Inventory-type information was 
available for most records (more than 95 percent in general). Availability of QA/QC test data 
ranged from approximately 20 to 90 percent (e.g., gradation-type data availability was 
approximately 90 percent, whereas availability of Atterberg limits and density was closer to 
20 percent). Note that several test data were reported for a given project (defined by the 
combination of TRACS number and Federal project number). See table 50 for a detailed 
summary of data availability in table Soil Aggregate Tabulation (Subgrade). 
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Table 50. Summary of number of subgrade QA test results in the Soil Aggregate 
Tabulation (Subgrade) data table. 

Inventory Data Items Records Available All Records with Data (Percent) 
TRACS number 9,683 100.0 
Mat_Code 9,682 100.0 
Lot_or_Suffix 581 6.0 
Sample_Number 9,682 100.0 
Sample_Location 9,564 98.8 
Lift_Number 2,575 26.6 
Roadway_ID 8,479 87.6 
Sample_Station 8,829 91.2 
Sample_Offset 8,488 87.7 
Original_Source 9,163 94.6 
Fed_Project_Number 8,921 92.1 
Sample_Datetime 9,682 100.0 

State 1 DOT PMS and QA/QC Test Data Review 

The project team reviewed the assembled PMS and QA/QC data to assess accuracy and 
reasonableness. Data accuracy was assessed by developing plots of trends in performance 
measures (e.g., IRI versus data collection date) and histograms showing the distribution of 
QA/QC test data. See figure 45 through figure 48 for examples of plots of measured cracking 
and rutting versus data collection year for various State 1 DOT PMS sections. Note that rutting is 
reported for up to 10 offsets at a reference MP. The plots were generated for selected PMS 
sections and reviewed for reasonableness. Reasonableness was determined by assessing whether 
observed trends were as expected (e.g., increasing with time) and whether significant shifts in 
trends could be explained by construction/maintenance activity. The pavement construction 
history information was derived from State 1 DOT QA test data tables. The extent/amount of 
variability in measured data was also reviewed. For rutting, considerable amounts of variability 
were reported within PMS sections, as expected. Thus, the rutting and cracking data were found 
to be reasonable. 
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Source: FHWA. 

Figure 45. Graph. Cracking in State 1 PMS section U-FF Northbound MP 42. 

 
Source: FHWA. 

Figure 46. Graph. Cracking in State 1 PMS section I-GG Eastbound MP 23. 



100 

 
Source: FHWA. 

Figure 47. Graph. Rutting in State 1 PMS section I-HH Westbound MP 197. 

 
Source: FHWA. 

Figure 48. Graph. Rutting in State 1 PMS section I-GG Eastbound MP 37. 
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Figure 49 through figure 59 present distributions of HMA materials QA/QC test data items used 
to characterize key HMA material properties. Data presented in figure 49 through figure 59 
showed significant range in key HMA mix properties (not for all mix types). Specifically, for all 
HMA mix types, asphalt binder content ranged from 3 to 6.5 percent (noting a few outliers 
greater than 9 percent), HMA bulk density ranged from 135 to 160 pcf, and field-measured 
in-place HMA air voids ranged from 4 to 11 percent. Although the wide range in test values can 
partly be attributed to the plots representing all the commonly applied HMA mix types in State 1, 
the considerable range reported in HMA QA/QC test properties implies considerable variability 
or differences in key HMA properties that are known to impact performance. These properties 
include air voids, gradation, and dynamic modulus. 

 
Source: FHWA. 

Figure 49. Graph. Histogram showing distribution of AC mix binder content in State 1. 
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Source: FHWA. 

Figure 50. Graph. Histogram showing distribution of AC mix bulk density in State 1. 

 
Source: FHWA. 

Figure 51. Graph. Histogram showing distribution of AC mix rice density in State 1. 
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Source: FHWA. 

Figure 52. Graph. Histogram showing distribution of AC mix lab tested percent air voids 
in State 1. 

 
Source: FHWA. 

Figure 53. Graph. Histogram showing distribution of AC mix VMA in State 1. 
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Source: FHWA. 

Figure 54. Graph. Histogram showing distribution of AC mix VFA in State 1. 

 
Source: FHWA. 

Figure 55. Graph. Histogram showing distribution of AC mix in-place air voids in State 1. 
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Source: FHWA. 

Figure 56. Graph. Histogram showing distribution of AC mix binder-to-dust ratio in 
State 1. 

 
Source: FHWA. 

Figure 57. Graph. Histogram showing distribution of AC mix percent passing No. 4 sieve in 
State 1. 
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Source: FHWA. 

Figure 58. Graph. Histogram showing distribution of AC mix percent passing No. 40 sieve 
in State 1. 

 
Source: FHWA. 

Figure 59. Graph. Histogram showing distribution of AC mix percent passing No. 200 sieve 
in State 1. 
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Figure 60 through figure 66 present distributions of key aggregate base QA/QC test data used for 
characterizing aggregate base materials properties. Information in figure 60 through figure 66 
indicates significant variations in aggregate base materials properties across projects. The 
amount passing the No. 4 sieve ranged from 24 to 78 percent, while the amount passing the 
No. 40 sieve size ranged from 6 to 42 percent. The amount passing the No. 200 sieve ranged 
from 0 to 12 percent. 

The project team used the gradation data available to estimate D60 (grain diameter at 60 percent 
finer), which was used to compute California bearing ratio (CBR) and resilient modulus (Mr). As 
gradation (D60) is highly correlated to aggregate base CBR and Mr and impacts aggregate 
material sensitivity to moisture, significant variations within a project could lead to significant 
differences in project future performance. See figure 64 through figure 66 to view distributions 
of estimates of D60, CBR, and Mr. The ranges for these computed parameters for aggregate base 
materials were found to be reasonable, except for a few outliers. 

Figure 60 through figure 66 show that State 1 DOT aggregate base QA/QC data were of 
sufficient detail to estimate aggregate base Mr or CBR or determine the AASHTO soil class of 
the materials—basically level 3 aggregate material strength inputs for the AASHTOWare 
Pavement ME Design. 

 
Source: FHWA. 

Figure 60. Graph. Histogram showing distribution of aggregate base percent passing No. 4 
sieve in State 1. 



108 

 
Source: FHWA. 

Figure 61. Graph. Histogram showing distribution of aggregate base percent passing 
No. 40 sieve in State 1. 

 
Source: FHWA. 

Figure 62. Graph. Histogram showing distribution of aggregate base percent passing 
No. 200 sieve in State 1. 
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Source: FHWA. 

Figure 63. Graph. Histogram showing distribution of aggregate base liquid limit in State 1. 

 
Source: FHWA. 

Figure 64. Graph. Histogram showing distribution of aggregate base D60 in State 1. 
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Source: FHWA. 

Figure 65. Graph. Histogram showing distribution of aggregate base computed CBR in 
State 1. 

 
Source: FHWA. 

Figure 66. Graph. Histogram showing distribution of aggregate base computed Mr in 
State 1. 
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Figure 67 through figure 76 present distributions of key subgrade soil materials properties 
collected by State 1 DOT as part of QA. Information in figure 67 through figure 76 shows 
significant variations in subgrade soil properties across and within projects. 

The amount passing the No. 4 sieve ranges from 24 to 100 percent, while the amount passing the 
No. 40 sieve size ranged from 0 to 100 percent. The amount passing the No. 200 sieve ranged 
from 1 to 90 percent. As gradation affects subgrade soil material strength properties and 
sensitivity to moisture, significant variations within a project could lead to significant differences 
in pavement support available (see figure 75 and figure 76, where a wide range of computed 
CBR and Mr are presented as a result of differences in gradation). The range of computed CBR 
and Mr values was deemed reasonable. The information presented in the QA dataset as shown 
was of sufficient detail to estimate subgrade Mr or CBR or determine the materials AASHTO 
soil class, which is a level 3 input for the AASHTOWare Pavement ME Design. 

 
Source: FHWA. 

Figure 67. Graph. Histogram showing distribution of subgrade soil percent passing the 
No. 4 sieve (State 1 subgrade soil QA data). 
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Source: FHWA. 

Figure 68. Graph. Histogram showing distribution of subgrade soil percent passing the 
No. 40 sieve (State 1 subgrade soil QA data). 

 
Source: FHWA. 

Figure 69. Graph. Histogram showing distribution of subgrade soil percent passing the 
No. 200 sieve (State 1 subgrade soil QA data). 
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Source: FHWA. 

Figure 70. Graph. Histogram showing distribution of subgrade soil maximum dry density 
(State 1 subgrade soil QA data). 

 
Source: FHWA. 

Figure 71. Graph. Histogram showing distribution of subgrade soil optimum moisture 
content (State 1 subgrade soil QA data). 
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Source: FHWA. 

Figure 72. Graph. Histogram showing distribution of subgrade soil liquid limit (State 1 
subgrade soil QA data). 

 
Source: FHWA. 

Figure 73. Graph. Histogram showing distribution of subgrade soil plasticity index (State 1 
subgrade soil QA data). 
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Source: FHWA. 

Figure 74. Graph. Histogram showing distribution of subgrade soil D60 (State 1 subgrade 
soil QA data). 

 
Source: FHWA. 

Figure 75. Graph. Histogram showing distribution of subgrade soil computed CBR (State 1 
subgrade soil QA data). 
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Source: FHWA. 

Figure 76. Graph. Histogram showing distribution of subgrade soil computed Mr (State 1 
subgrade soil QA data). 

State 2 DOT 

State 2 DOT PMS and QA/QC Test Data Collection and Assembly 

The research team obtained from State 2 DOT several Microsoft Excel data tables with PMS 
data from 1998 through 2015 (table 51). The PMS files listed in table 51 contained 
approximately 60 pavement inventory and condition/distress data items that were used to 
characterize pavement condition. As shown in table 51, the pavement condition data represented 
approximately 11,000 lane miles of highway. Of the 11,000 mi, 89 percent were flexible 
pavements, 10.9 percent were rigid, while the remaining 0.1 percent was composite/other 
pavement types. State 2 DOT PMS data provided a detailed description of pavement location, 
type, traffic, and other descriptors (such as route type/number, begin MP [BMP], end MP [EMP], 
DIR, and longitude/latitude), along with condition data (characterized by load- and 
non-load-related distresses) and information about shoulder type, such as condition, grade, and 
speed. Table 52 presents a summary of data availability for the State 2 DOT PMS data table 
STATE 2DOTDataDelivery15.XLS. The research team selected table STATE 
2DOTDataDelivery15.XLS as it represented current DOT data collection practices. The 
information in table 52 shows nearly 100 percent data availability, except for eight, for all the 
data items. 
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Table 51. Summary of State 2 DOT PMS data files assembled for analysis. 

Data Files No. of Observations Length (mi) 
Condition98.XLS 111,251 10,820 
Condition99.XLS 112,268 10,815 
Condition00.XLS 113,310 10,813 
Condition01.XLS 111,195 10,657 
Condition02.XLS 106,733 10,231 
Condition03.XLS 106,876 10,426 
Roadware04.XLS 110,519 11,039 
Condition05.XLS 109,146 10,901 
Condition06.XLS 111,203 11,121 
Condition07.XLS 111,138 11,136 
Condition08.XLS 109,616 10,555 
Pathway09.XLS 109,804 10,642 
Pathway10.XLS 110,291 10,743 
Pathway11.XLS 110,888 10,651 
Pathway12.XLS 178,418 17,568 
Pathway13.XLS 109,453 10,700 
STATE 2DOTDataDelivery14.XLS 113,316 10,475 
STATE 2DOTDataDelivery15.XLS 113,676 11,265 

Table 52. Summary of data availability for the State 2 DOT PMS data table STATE 
2DOTDataDelivery15.XLS. 

Data Item Total Number of Records 
Records with Data Available 

(Percent) 
ID 113,676 100 
HWY 113,676 100 
DIR 113,676 100 
REFPOST 113,676 100 
SEGMENT 113,676 100 
LENGTH 113,676 100 
BMP 113,676 100 
EMP 113,676 100 
DATE 113,676 100 
ENGREGION 113,676 100 
SPEED 113,676 100 
PAVETYPE 113,676 100 
SHLDRT 113,676 100 
SHLDRW 113,676 100 
SHLDR_COND 113,676 100 
CONST 113,676 100 
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Data Item Total Number of Records 
Records with Data Available 

(Percent) 
IRI 113,676 100 
IRILEFT 113,676 100 
IRIRIGHT 113,676 100 
IRILEFTSD 57,280 50.4 
IRIRIGHTSD 57,280 50.4 
RUT 113,676 100 
RUTLEFT 113,676 100 
RUTRIGHT 113,676 100 
RUTLEFTSD 57,280 50.4 
RUTRIGHTSD 57,280 50.4 
RUTMAX 57,281 50.4 
FAULTAVG 113,676 100 
FAULTMAX 113,676 100 
FATIGUE_L 113,676 100 
FATIGUE_M 113,676 100 
FATIGUE_H 113,676 100 
FATIGUE 113,676 100 
TRANSCOUNT_L 113,676 100 
TRANSCOUNT_M 113,676 100 
TRANSCOUNT_H 113,676 100 
TRANSCOUNT 113,676 100 
TRANSLENGTH_L 113,676 100 
TRANSLENGTH_M 113,676 100 
TRANSLENGTH_H 113,676 100 
TRANSLENGTH 113,676 100 
LONG_L 113,676 100 
LONG_M 113,676 100 
LONG_H 113,676 100 
LONG 113,676 100 
CORNER_L 113,676 100 
CORNER_M 113,676 100 
CORNER_H 113,676 100 
CORNER 113,676 100 
RUMBLE 113,676 100 
CTYPE 57,280 50.4 
CURVE 57,280 50.4 
CLEN 57,280 50.4 
GRADE 113,676 100 
LATITUDE_DD 113,676 100 
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Data Item Total Number of Records 
Records with Data Available 

(Percent) 
LONGITUDE_DD 113,676 100 
LATITUDE_UTM 113,676 100 
LONGITUDE_UTM 113,676 100 
ELEVATION 113,676 100 
COLLECT_DATE 113,676 100 

Table 53 presents a summary of data availability in the maintenance data tables of the 
construction history database, the Mtc_Dir1-2.xlsx data table. The information presented shows 
that the data table contained 3,610 records. Data availability ranged from 0 to 100 percent. Key 
location information HWY, DIR, BEG_MP, and END_MP were 100 percent available, along 
with WORK_TYPE. For the SUBAC number, which provides the link to QA/QC test data, only 
24 percent of records reported this information. State 2 DOT provided the research team with 
electronic documents (PDF files) containing QA/QC test data summaries. The electronic 
documents provided information about the pavement location (HWY, DIR, BEG_MP, and 
END_MP) and SUBAC number. State 2 DOT also provided QA/QC test data, including 
gradation, VMA, and air voids. As it was not practical to review all QA/QC-related electronic 
documents in the DOT archives, the research team could not perform a full-scale assessment of 
QA/QC test data availability. However, for the projects for which such data were required, the 
DOT readily provided them. This outcome was an indicator that electronic documents containing 
QA/QC data were usually available. The research team did not analyze data availability for 
QA/QC testing using new technologies, as these were not collected and stored directly by the 
DOT. 
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Table 53. Summary of data availability for the State 2 DOT construction history database 
Dir1-2.xlsx data table. 

Data Item Total Number of Records 
Records with Data Available 

(Percent) 
Subac 876 24.3 
Proj_Num 1,990 55.1 
DIR 3,610 100.0 
Description 1,097 30.4 
HWY 3,610 100.0 
Beg_MP 3,610 100.0 
End_MP 3,610 100.0 
Length 3,610 100.0 
Region 3,610 100.0 
Work_Type 3,610 100.0 
Pave_Type 3,610 100.0 
Depth 3,610 100.0 
Width 1,679 46.5 
Prime_Cont 703 19.5 
Accept_Date 3,610 100.0 
Item_Cost 436 12.1 
Cost/SqYd/In 129 3.6 
Total_Cost 738 20.4 
REJECTED-ADLP 3,610 100.0 
REASON-ADLP 0 0.0 
KEY-ADLP 3610 100.0 
YEAR-ADLP 3,610 100.0 

State 2 DOT PMS and QA Test Data Review 

The research team reviewed the assembled PMS and QA data to assess accuracy and 
reasonableness. The team assessed data accuracy by developing plots of trends in performance 
measures (e.g., IRI versus data collection date) and histograms showing the distribution of 
QA/QC test data. Figure 77 through figure 79 present examples of plots of measured cracking, 
rutting, and IRI versus pavement age for various State 2 DOT PMS sections. The plots were 
generated for selected PMS sections and reviewed for reasonableness. Reasonableness was 
determined by assessing whether observed trends were as expected (e.g., increasing with time) 
and whether significant shifts in trends could be explained by construction/maintenance activity. 
The pavement construction history information was derived from State 2 DOT maintenance data 
tables. The trends in performance along with extent/amount of variability in measured data were 
as expected. 
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Source: FHWA. 

Figure 77. Graph. Plot showing fatigue cracking development for State 2 PMS section 
HWY IIA, MP 226.5–226.6. 

 
Source: FHWA. 

Figure 78. Graph. Plot showing rut depth development for State 2 PMS section HWY IIA, 
MP 225.7–225.8. 



122 

 
Source: FHWA. 

Figure 79. Graph. Plot showing IRI development for State 2 PMS section HWY JJA, 
MP 14.6–14.7. 

Figure 80 through figure 92 present plots of distributions of key QA test data obtained from the 
State 2 DOT records (PDF files) of acceptance testing for up to five projects and contractors. 
State 2 DOT collected QC data using new technologies (for a single TSDD and MIT-Scan 
project each). The data assembled were reviewed and found to be accurate and reasonable. 

The following results were observed: 

• Traditional QA test data were generally reasonable and were within expected ranges. 

• Traditional QA/QC test data within project variability were as low as expected and 
reported the most variability. 

• Maximum deflections measured from the RWD ranged from 2 to 30 mils. Thus, 
variability within the project was significant. This variability is an indication of 
significantly different pavement structural capacity along the project that could 
significantly impact structural performance. 

• MIT-Scan data also exhibited considerable variability, which could affect future 
performance. 
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Source: FHWA. 

Figure 80. Graph. Histogram showing distribution of State 2 DOT HMA binder content. 

 
Source: FHWA. 

Figure 81. Graph. Histogram showing distribution of State 2 DOT HMA mix density. 
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Source: FHWA. 

Figure 82. Graph. Histogram showing distribution of State 2 DOT HMA VMA. 

 
Source: FHWA. 

Figure 83. Graph. Histogram showing distribution of State 2 DOT HMA lab air voids. 
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Source: FHWA. 

Figure 84. Graph. Histogram showing distribution of RWD measured maximum 
deflections along 17 mi of a State route in State 2. 

 
Source: FHWA. 

Figure 85. Graph. Histogram showing distribution of MIT-Scan measured dowel position 
(measured from the slab edge) for a newly constructed JPCP in State 2. 
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Source: FHWA. 

Figure 86. Graph. Histogram showing distribution of MIT-Scan measured distance 
between adjacent dowel bars for a newly constructed JPCP in State 2. 

 
Source: FHWA. 

Figure 87. Graph. Histogram showing distribution of MIT-Scan depth of dowel bars 
(measured from the top of the slab) for a newly constructed JPCP in State 2. 
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Source: FHWA. 

Figure 88. Graph. Histogram showing distribution of MIT-Scan measured dowel 
deviations from vertical position (relative to midslab) for a newly constructed JPCP in 

State 2. 

 
Source: FHWA. 

Figure 89. Graph. Histogram showing distribution of MIT-Scan measured dowel 
deviations from lateral position (relative to design dowel location, i.e., 12-inch spacing) for 

a newly constructed JPCP in State 2. 
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Source: FHWA. 

Figure 90. Graph. Histogram showing distribution of MIT-Scan measured effective dowel 
misalignment for a newly constructed JPCP in State 2. 

 
Source: FHWA. 

Figure 91. Graph. Histogram showing distribution of MIT-Scan measured horizontal 
dowel misalignment for a newly constructed JPCP in State 2. 
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Source: FHWA. 

Figure 92. Graph. Histogram showing distribution of MIT-Scan measured vertical dowel 
misalignment for a newly constructed JPCP in State 2. 

State 3 DOT 

State 3 DOT PMS and QA/QC Test Data Collection and Assembly 

From State 3 DOT, the research team obtained three Microsoft Excel files containing summaries 
of the agencies cracking, rutting, and friction distress data, namely: 
TREND_CRACKING_SUMMARY_2-2-2016.xlsx, TREND_RUTTING_SUMMARY_2-2-
2016.xlsx, and TREND_FRICTION_SUMMARY_2-2-2016.xlsx. The summaries were 
extracted from State 3 DOT’s PMS database using agency-developed codes/queries for 2012, 
2013, and 2014. A summary of information contained in the three files is presented in table 54. 

Table 54. Summary of relevant pavement condition distress datasets extracted from the 
State 3 DOT PMS database. 

Data Item Description Rut Crack Friction 
ID NUMBER Pavement ID number (e.g., 3)    
SECTION ID Section ID number (e.g., 2)    
TREATMENT ID Treatment ID (e.g., 32178)   — 
GLOBAL ROUTE ID Route global ID (e.g., 19981)   — 
SUB ROUTE ID Subroute ID (e.g., 2)   — 
REGION Region within the State (e.g., 2)   — 
DISTRICT Engineering district (e.g., 4)   — 
COUNTY County (e.g., BA)    
ROUTE Route type (e.g., Interstate)    
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Data Item Description Rut Crack Friction 
RNUM Route number (e.g., 83)    
RSUFF Route number suffix (e.g., A)    
DIRECTION Direction of travel (e.g., south)    
BMP Begin MP (e.g., 10.5)    
EMP End MP (e.g., 11.01)    
LANE NUMBER Total number of lanes (e.g., 3)    
OUTER LANE Outer lane number (e.g., 1)    
FUNC CLASS Highway functional class (e.g., 1)    

GOVT CONTROL Government control classification 
(e.g., 1)    

PAVEMENT TYPE Pavement-type designation (e.g., 
flexible)    

TREATMENT 
THICKNESS Treatment thickness (e.g., 1.5 inches)   — 

CURRENT 
TREATMENT 
THICKNESS 

Current treatment thickness (e.g., 
1.5 inches)   

— 

LAYER NO Surface layer number (e.g., 6)    
BIRTH YEAR Treatment placement year (e.g., 1991)    

DEATH YEAR Treatment replacement year (e.g., 
1999)    

AGE Treatment age (e.g., 5 yr)    
CONTRACT 
NUMBER 

Treatment contract number (e.g., 
AW357451014)    

FMIS FMIS number    
LAYER 
DESCRIPTION Layer description (e.g., surface)    

MATERIAL BAND 
SIZE Material band size (e.g., band SC)    

YEAR ORDER Year material was ordered (e.g., 2008)    
MAT UNIQUE ID Material-type unique ID (e.g., 2690)    
MATERIAL 
DESCRIPTION 

Material description (e.g., gap-graded 
12.5 mm 70–22)    

TREATMENT 
Treatment-type description (e.g., grind 
overlay less than or equal to 1.5-inch 
grade increase) 

  — 

LAYER TYPE 
DESCRIPTION 

Surface layer-type description (e.g., 
asphalt)    

MATERIAL MIX 
METHOD DESC Surface mix type (e.g., A-hot mix)    

MATERIAL MIX 
TYPE DESC 

Surface material aggregate designation 
(H-high polish or G-gap graded)    
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Data Item Description Rut Crack Friction 

MATERIAL BINDER Treatment material binder type (e.g., 
70–22)    

MATERIAL 
TRAFFIC LEVEL 
DESC 

Material design traffic-level 
designation     

CONSTRUCTION 
TYPE DESC 

Construction-type description (e.g., 
minor rehabilitation or structural 
overlay) 

  
— 

AVG RUT Average rutting  — — 
CNT Rutting measurements count  — — 
STDEV Rutting standard deviation  — — 

RUT FAMILY PMS pavement family designation for 
forecasting rutting (e.g., 99)   — — 

FC DENSITY Functional (load-related) cracking 
density  

— 
 — 

FCD STDEV Functional (load-related) cracking 
standard deviation 

— 
 — 

FC CNT Functional (load-related) cracking 
count 

— 
 — 

FCI Functional (load-related) cracking 
index 

— 
 — 

FCI STDEV Functional (load-related) cracking 
index standard deviation 

— 
 — 

SC DENSITY Structural (load-related) cracking 
density  

— 
 — 

SCD STDEV Structural (load-related) cracking 
standard deviation 

— 
 — 

SC CNT Structural (load-related) cracking 
count 

— 
 — 

SCI Structural (load-related) cracking 
index 

— 
 — 

SCI STDEV Structural (load-related) cracking 
index standard deviation 

— 
 — 

CRACKING 
FAMILY 

PMS pavement family designation for 
forecasting cracking (e.g., 99)  

— 
 — 

FRICTION Surface friction — —  
—No data. 

On average, the datasets provided by State 3 DOT contained approximately 69,000 records. The 
69,000 records represented approximately 28,170 individual PMS sections. A summary of the 
PMS sections according to pavement type and functional class is presented in table 55, which 
shows that, of the 28,170 individual PMS sections, 60.3 percent were flexible (F) pavements, 
3.5 percent were rigid (R) pavements, and 35.8 percent were composite (FCJ) pavements. The 
remaining 0.5 percent of PMS sections were not classified. 



132 

Table 55. Summary of the PMS sections according to pavement type and functional class. 

Functional Class 
Pavement 

Type: Others 
Pavement 
Type: F 

Pavement 
Type: FC 

Pavement 
Type: R 

1 — 454 105 67 
11 8 633 638 349 
12 4 1,147 509 168 
14 45 4,833 3,100 301 
16 32 3,207 1,750 39 
17 8 489 191 — 
19 — 189 101 — 
2 13 1,541 691 47 
6 2 1,781 1,237 8 
7 10 1,932 1,292 6 
8 2 489 298 — 
9 3 289 163 — 

—No data. 

Regarding data availability, the review of all three distress summary files indicated that key data 
items used to characterizing a PMS section location (ROUTE, RNUM, RSUFF, DIRECTION, 
BMP, and EMP) or pavement condition (CRACKING, RUTTING, and FRICTION) were close 
to 100 percent available. Contract identification information (key data items CONTRACT and 
Financial Management Information System [FMIS] used mostly for linking PMS datasets to 
other information sources to establish PMS section construction history) was also generally 
available. The dataset also provided basic pavement construction material types, and these were 
generally available for all records. Table 56 presents an example of data availability summary for 
TREND_CRACKING_SUMMARY_2-2-2016.xlsx. 

Table 56. Summary of data availability for the State 3 DOT PMS cracking data table 
TREND_CRACKING_SUMMARY_2-2-2016.xlsx. 

Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

ID_ 68,824 100.0 
SECTION_ID 68,824 100.0 
TREATMENT_ID 68,824 100.0 
GLOBAL_ROUTE_ID 68,824 100.0 
SUB_ROUTE_ID 68,824 100.0 
REGION 68,824 100.0 
DISTRICT 68,824 100.0 
COUNTY 68,824 100.0 
ROUTE 68,824 100.0 
RNUM 68,824 100.0 
RSUFF 4,788 6.9 
DIRECTION 68,824 100.0 
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Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

BMP 68,824 100.0 
EMP 68,824 100.0 
LANE_NUMBER 68,824 100.0 
OUTER_LANE 68,824 100.0 
FUNC_CLASS 68,824 100.0 
GOVT_CONTROL 68,824 100.0 
PAVEMENT_TYPE 68,824 100.0 
TREATMENT_THICKNESS 6,8824 100.0 
CURRENT_TREATMENT_THICK
NESS 68,824 100.0 
LAYER_NO 68,824 100.0 
BIRTH_YEAR 68,824 100.0 
CONTRACT 68,824 100.0 
FMIS 68,824 100.0 
LAYER_DESCRIPTION 68,824 100.0 
MATERIAL_BAND_SIZE 68,824 100.0 
YEAR_ORDER 68,824 100.0 
MAT_UNIQUE_ID 68,824 100.0 
MATERIAL_DESCRIPTION 68,824 100.0 
TREATMENT 68,824 100.0 
LAYER_TYPE_DESCRIPTION 68,824 100.0 
MATERIAL_MIX_METHOD_DES
C 68,824 100.0 
MATERIAL_MIX_TYPE_DESC 68,824 100.0 
MATERIAL_BINDER 68,824 100.0 
MATERIAL_TRAFFIC_LEVEL_DE
SC 68,824 100.0 
CONSTRUCTION_TYPE_DESC 68,824 100.0 
DEATH_YEAR 68,824 100.0 
AGE 68,824 100.0 
FC_DENSITY 68,665 99.7 
FCD_STDEV 68,665 99.7 
FC_CNT 68,824 100.0 
FCI 68,665 99.7 
FCI_STDEV 6,8665 99.7 
SC_DENSITY 68,663 99.7 
SCD_STDEV 68,663 99.7 
SC_CNT 68,824 100.0 
SCI 68,663 99.7 
SCI_STDEV 68,663 99.7 
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Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

FC_DIFF 31,168 45.2 
SC_DIFF 31,168 45.2 
CRACKING_FAMILY 68,824 100.0 
COLLECT_YEAR 68,824 100.0 
FCI_ADJ 68,824 100.0 
SCI_ADJ 68,824 100.0 

For QA/QC-type information, the project team obtained the following data files: 

• BinderData. 

• ConstructionHistory. 

• MixDesignAggSourceXXX and MixDesignXXX. (Filenames have been modified to not 
disclose State 3 DOT identity.) 

• TestDataQA and TestDataQC. 

Table 57 presents a summary of data availability for the BinderData table. Detailed information 
such as Binder PG grade, DSR G*, and phase angle were available in this data table in 
significant quantities (greater than 90 percent of all records). Project/contract identification 
numbers for linking the QA/QC binder tests records to PMS and other datasets were also 
available. 

The ConstructionHistory data table provided information for each unique PMS section regarding 
historical construction/maintenance activities (i.e., CONSTRUCTION_TYPE and 
ACTION_YEAR). Location information, such as ROUTE, RNUM, DIRECTION, BMP, and 
EMP, along with contract information (FUND, CONTRACT, and FMIS), were also available. In 
total, detailed ConstructionHistory data were available for 36,200 unique PMS sections. 

Table 57. Summary of data availability for the State 3 DOT QA/QC data table 
BinderData.xlsx. 

Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

ID 3,993 100.0 
MaterialType 3,985 99.8 
SampleIDNumber 3,986 99.8 
SampleDate 3,972 99.5 
SampleRecDate 690 17.3 
ProjectSerialNumber 630 15.8 
HMAPlantID 3,696 92.6 
ContractNumber 3,961 99.2 
FMIS — 0.0 
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Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

PGGrade 3,985 99.8 
SourceOfSupply 321 8.0 
Supplier 3,942 98.7 
TankNumber 3,568 89.4 
LotNumber 3,766 94.3 
Terminal 3,492 87.5 
InLineBlended 3,993 100.0 
SampleType 3,816 95.6 
TechnicianName 2,635 66.0 
SampleStarted 3,673 92.0 
SampleCompleted 3,328 83.3 
MixTempMin 3,829 95.9 
MixTempMax 3,829 95.9 
CompactionTempMin 3,829 95.9 
CompactionTempMax 3,828 95.9 
RotationalViscosity 3,796 95.1 
SpindleSize — 0.0 
DSRTempORIG 3,839 96.1 
DSRGStarORIG 3,840 96.2 
DSRPhaseORIG 3,737 93.6 
DSRTempRTFO 3,769 94.4 
DSRGStarRTFO 3,771 94.4 
DSRPhaseRTFO 3,736 93.6 
MassChange 3,838 96.1 
MassLossOrGain 3,661 91.7 
DSRTempPAV 3,836 96.1 
DSRGStarPAV 3,835 96.0 
DSRPhasePAV 3,732 93.5 
BBRTemp1 3,836 96.1 
BBRStiffness1 3,831 95.9 
BBRmvalue1 3,835 96.0 
BBRTemp2 3,661 91.7 
BBRStiffness2 3,661 91.7 
BBRmvalue2 3,661 91.7 
BBRTemp3 3,661 91.7 
BBRStiffness3 3,661 91.7 
BBRmvalue3 3,661 91.7 
MSCR_1 — 0.0 
MSCR_2 — 0.0 
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Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

MSCR_3 — 0.0 
MSCR_4 — 0.0 
DTTemp1 3,660 91.7 
DTStrengthAvg1 3,661 91.7 
DTStrainAvg1 3,661 91.7 
DTTemp2 3,661 91.7 
DTStrengthAvg2 3,661 91.7 
DTStrainAvg2 3,661 91.7 
CritCrackTemp 3,661 91.7 
Remarks 1,405 35.2 
Cost 3,713 93.0 
Tests 3,847 96.3 
PASSFAILRV — 0.0 
PASSFAILDSRO — 0.0 
PASSFAILDSRR — 0.0 
PASSFAILMASS — 0.0 
PASSFAILDSRP — 0.0 
PASSFAILBBRS — 0.0 
PASSFAILBBRM — 0.0 
MeetsSpec 3,993 100.0 
DoesNotMeetSpec 3,993 100.0 
ProjectDetail 54 1.4 
SampleTakenFrom 604 15.1 
Truck. 108 2.7 
TruckTag. 121 3.0 
SampleRemarks 314 7.9 
TestNotes 332 8.3 
Visc_Test_Temperature 621 15.6 
Visc_SHA 612 15.3 
Visc_Supplier 256 6.4 
Residue 633 15.9 
Residue_Supplier 274 6.9 
Sieve 518 13.0 
Sieve_Supplier 264 6.6 
SampleMeets 3,993 100.0 
SampleDoesNotMeet 3,993 100.0 
Other 3,993 100.0 
OtherComment 154 3.9 
SignedDate 117 2.9 
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Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

SignedBy 117 2.9 
M332_DSRTempORIG 12 0.3 
M332_DSRGStarORIG 12 0.3 
M332_DSRPhaseORIG — 0.0 
M332_DSRTempPAV 84 2.1 
M332_DSRGStarPAV 84 2.1 
M332_DSRPhasePAV — 0.0 
M332_MSCR_Temp 91 2.3 
M332_MSCR_R01 91 2.3 
M332_MSCR_R32 91 2.3 
M332_MSCR_Rdiff 91 2.3 
M332_MSCR_Jnr01 91 2.3 
M332_MSCR_Jnr32 91 2.3 
M332_MSCR_PDR_JnrDiff 90 2.3 

—No data. 

Data table MixDesignAggSourceXXX contained 7,926 records. Key data items provided include 
the name of the plant where the aggregate was produced or used, PRODUCTID, and 
PRODUCTNUMBER, along with the original aggregate source (name of supplier) and location 
(of quarry). Material type (e.g., coarse, sand) and size (e.g., number 9) were also provided. As 
shown in table 58, approximately 23 percent of the 7,926 records had the key information for the 
key data items. 
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Table 58. Summary of data availability for the State 3 DOT QA/QC data table 
MixDesignAggSourceXXX.xlsx.  

Data Item 
Total Number of 

Records 
Records with Data 
Available (Percent) 

Plant 7,926 100.0 
PRODUCTID 1,830 23.1 
PRODUCTNUMBER 1,830 23.1 
Source 1,830 23.1 
Location 1,830 23.1 
Size2 1,830 23.1 
COMP_PRODUCTID 1,830 23.1 
Size — 0.0 
PERCENTAGE 338 4.3 
Comp_Mat_Type_ID 1,789 22.6 
COMP_MAT_TYPE 1,829 23.1 
EXPIRATIONDATE 268 3.4 
PlantRef 270 3.4 
DESIGNFORMATREF — 0.0 

—No data. 

Data table MixDesignXXX, a summary of which is provided in table 59, contained 
1,830 records. Key data items provided were HMA mix type and properties such as gradation, 
percent binder, fine/coarse aggregate angularity, traffic (ESAL), aggregate specific gravity, air 
voids, VMA, and VFA. State 3 DOT provided additional, more detailed lab test data such as the 
tensile strength ratio (TSR). In general, over 80 percent of the records had some information 
about the key data items available. The data tables TestDataQA and TestDataQC contained over 
600,000 records of HMA QA/QC test data. Data items of relevance included gradation, density, 
VFA, VMA, VTM, and HMA core thickness. The research team referenced the information 
presented in these tables using the data items ProjectID and job mix formula ID (JMFID). 
Information was available for 5,600 unique ProjectID and JMFID records. 

Table 59. Summary of data availability for the State 3 DOT QA/QC data table 
MixDesignXXX.xlsx. 

Data Item 
Total Number of 

Records 
Records with Data Available 

(Percent) 
PRODUCTID 1,830 100.0 
Mix 1,830 100.0 
PLANTREF 1,830 100.0 
Plant 1,830 100.0 
MixMeth 1,830 100.0 
MixType 1,830 100.0 
Band 1,830 100.0 
EXPIRATIONDATE 0 0.0 
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Data Item 
Total Number of 

Records 
Records with Data Available 

(Percent) 
PRODCOMMENTS 338 18.5 
STAPPROVED 1,789 97.8 
ESTSTARTDATE 1,829 99.9 
ACTSTARTDATE 268 14.6 
ACTCOMPDATE 270 14.8 
TSKCOMMENT 496 27.1 
ASSIGNEDTO 269 14.7 
Percent passing 2 inches through 
No. 200 sieve sizes 1,806 90–98.7 

ACProducer 1,830 100.0 
ACType 1,830 100.0 
ACPercent 1,828 99.9 
Coarse Agg Ang 1,606 87.8 
Date Verified 415 22.7 
ESAL 1,626 88.9 
FE 1,588 86.8 
Fine Agg Ang 1,618 88.4 
Gb 1,773 96.9 
Gmb 1,801 98.4 
Gmb (design) 1,626 88.9 
Gmm 1,801 98.4 
VA 1,794 98.0 
VMA 1,786 97.6 
VFA 1,784 97.5 
Gse 1,769 96.7 
Gmm @ N (Max) 738 40.3 
Gsb 1,789 97.8 
Is Final 1,730 94.5 
Mix Method 1,619 88.5 
Mix Temp 1,798 98.3 
Mix Type 1,398 76.4 
Mold Temp 1,798 98.3 
Region 1,822 99.6 
Sand Eq 1,617 88.4 
Sequence 736 40.2 
TSR 1,590 86.9 
PBA 1,756 96.0 
PBE 1,756 96.0 
D/B Ratio 1,804 98.6 
TraffLevel 1,626 88.9 
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Data Item 
Total Number of 

Records 
Records with Data Available 

(Percent) 
NIni 1,627 88.9 
NDes 1,627 88.9 
NMax 1,627 88.9 

EST = estimated; ACT = actual; FE = flat and elongated; Gb = asphalt specific gravity; PBA = absorbed asphalt 
binder of aggregate; PBE = effective asphalt content; D/B = dust-to-effective binder ratio; NIni = initial traffic. 

State 3 DOT PMS and QA/QC Test Data Review 

The research team reviewed the assembled PMS and QA/QC data to assess accuracy and 
reasonableness. Data accuracy was assessed by developing plots of trends in performance 
measures (e.g., IRI versus data collection date) and histograms showing the distribution of 
QA/QC test data. Since only 5 yr of distress data were available, the plots are not presented in 
this section. However, the measured values were considered to be mostly reasonable. 

Figure 93 through figure 103 present data distributions of key QA test results obtained from the 
State 3 DOT Binder Test, MixDesignXXX, and QA/QC test datasets. The data assembled were 
reviewed and found to be accurate and reasonable. The following outcomes were generally 
observed: 

• There were very few projects with emulsions compared with binders. 

• PG 64-22 and PG 76-22 are the two most common binder types. A relatively small 
number of projects with PG 64-28 and PG 58-28 were also included. However, it was 
later found that corresponding performance data were limited for these projects. 

• Approximately 60 percent of the test data were obtained from the QC testing program. 

• QA/QC datasets included significantly more RAP mixes than Neat mixes. 

• G* and phase angle test values appeared reasonable. 

• HMA core thickness ranged from 1 to 5 inches, which implies thin HMA pavements 
were very common. 

• HMA mix properties density, VMA, VFA, and so on, appear to be reasonable. 
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Source: FHWA. 

Figure 93. Graph. Histogram showing distribution of AC binder type obtained from the 
State 3 DOT QA test data tables. 

 
Source: FHWA. 

Figure 94. Graph. Histogram showing distribution of binder grade obtained from the 
State3 DOT QA test data tables. 
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Source: FHWA. 

Figure 95. Graph. Histogram showing distribution of AC binder sampling type obtained 
from the State 3 DOT QA test data tables. 

 
Source: FHWA. 

Figure 96. Graph. Histogram showing distribution of HMA mix type obtained from the 
State 3 DOT QA test data tables. 
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Source: FHWA. 

Figure 97. Graph. Histogram showing distribution of AC binder G* (original binder) 
obtained from the State 3 DOT QA test data tables. 

 
Source: FHWA. 

Figure 98. Graph. Histogram showing distribution of AC binder phase angle (original 
binder) obtained from the State 3 DOT QA test data tables. 
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Source: FHWA. 

Figure 99. Graph. Histogram showing distribution of HMA thickness (from field extracted 
cores) obtained from the State 3 DOT QA test data tables. 

 
Source: FHWA. 

Figure 100. Graph. Histogram showing distribution of HMA mix maximum specific gravity 
obtained from the State 3 DOT QA test data tables. 
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Source: FHWA. 

Figure 101. Graph. Histogram showing distribution of HMA bulk specific gravity obtained 
from the State 3 DOT QA test data tables. 

 
Source: FHWA. 

Figure 102. Graph. Histogram showing distribution of HMA VMA obtained from the 
State 3 DOT QA test data tables. 
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Source: FHWA. 

Figure 103. Graph. Histogram showing distribution of HMA VFA obtained from the 
State 3 DOT QA test data tables. 

State 4 DOT 

State 4 DOT IC and QA/QC and Test Data Assembly and Review 

From all three projects, over 16 million IC readings were collected. The extent of IC data 
collected and assembled is summarized in table 60. Table 61 presents a summary of field core 
density measurements for all three projects. Figure 104 and figure 105 present examples of IC 
temperature data for short segments of the US-KK and I-LLL projects, respectively, i.e., this plot 
represents a subset of the data used in the analyses. These plots show the distribution of 
temperature across the mat for different passes. The lower temperature band was measured on 
the shoulder where no paving was performed. Figure 105 also shows the start station of the 
project. 
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Table 60. Summary of IC data collected and assembled from the three projects in State 4. 

Variable Minimum Value Average Value Maximum Value 
Easting (ft) 7,391,489 7,490,789 7,659,283 
Northing (ft) 332,104 428,596 630,300 
Elevation (ft) 110 473 865 
Last Amp (mm) 0 0.61 2.99 
Last CMV 0.2 35.39 200 
Last frequency (Hz) 17.9 58.46 70.4 
Last RMV 0 10.62 200 
Last radio Ltncy 0 0 0 
Last temperature (℉) 0 87.19 234.5 
Lift number 1 1 1 
Pass number 1 6 62 
Speed (mph) 0 5.05 279.5 
Target pass count 2 2.9 5 
Target thickness (ft) 0.66 0.66 0.66 

Amp = amplitude; Ltncy = latency. 

Table 61. Summary of field density from the three projects in State 4. 

Project Variables Minimum Value Average Value Maximum Value 

I-LLL 
Easting (ft) 7,622,618 7,639,842 7,658,722 
Northing (ft) 620,067 626,196 630,289 
HMA density 90.1 93.96 96.9 

I-MM 
Easting (ft) 7,535,556 7,537,527 7,541,522 
Northing (ft) 369,577 384,330 413,155 
HMA density 91.5 94.22 97 

US-KK 
Easting (ft) 7,392,021 7,421,715 7,450,288 
Northing (ft) 332,194 351,729 358,685 
HMA density 91.6 96.37 97 



148 

 
Source: FHWA. 

Figure 104. Graph. Heatmap showing field-measured IR HMA temperature from US-KK. 

 
Source: FHWA. 

Figure 105. Graph. Heatmap showing field-measured IR HMA temperature from I-LLL. 
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CHAPTER 5. DATA INTEGRATION METHODOLOGIES 

DATA FORMATS OF DATA USED IN ANALYSES 

Utilizing traditional QA/QC test data and outputs from new innovative pavement testing 
technologies as leading indicators of future pavement performance would be feasible only when 
integrating such data with construction history information, traffic, climate, and so on, along 
with existing DOT PMS. Data integration is described as a process comprising several technical, 
business, and coding tasks, leading to combining disparate data sources into a single dataset. 

A review of DOT QA/QC test and PMS data collection and storage practices indicates myriad 
referencing systems, data formats, and aggregation levels being used by different units within the 
agency. The files are stored on various media, including centralized servers, desktop computers, 
paper files/reports, and DVDs. Typically, data are stored using a mix of agency in-house, 
customized, and commercial off-the-shelf (COTS) platforms; see table 62 and table 63 for 
examples. With the current state of the practice, DOTs have resorted to using a wide range of 
processes and protocols to facilitate data integration. The processes typically comprise: 

• Identification of PMS, QA/QC, construction, traffic, and climate data items of interest. 

• Identification of PMS, QA/QC, construction, traffic, climate data storage formats, 
aggregation methods, and referencing systems. 

• Development of wrappers, queries, and codes for extracting datasets of interest. 

• Development of wrappers, queries, and codes for integrating datasets of interest. This 
process typically requires DOTs to integrate the selected datasets incrementally as 
referencing systems across datasets vary considerably. 

DOTs used various types of wrappers constructed around these data sources to extract data and 
update information. The wrappers are programming codes/executables, SQL codes, and scripts 
that are written in C#, SAS, and Visual Basic using software such as Microsoft Access, Oracle, 
SAS, and other applications. Wrappers can be as simple as an SQL script that links records in 
two datasets using common referencing systems (route number and MP) to more complex Visual 
Basic, SAS, and C# codes that combine logic and detailed programming to integrate databases. 
Also, the application of COTS software may be needed to covert hardcopies/PDF files into 
electronic data tables before integration with other datasets. 

Specific to this project, PMS, QA/QC, and other required data used analyses that were obtained 
in a variety of formats, as shown in table 64. Effectively integrating the various data sources and 
formats required the use of several software and wrapper, queries, and coding. The level of detail 
of wrapper, queries, and coding very much depended on both the data formats and the 
referencing systems used to link records within the databases. The following sections present 
details of the procedures used for integrating the QA test and PMS databases obtained for this 
study. 
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Table 62. Examples of databases being used by different units within the agency. 

Data Categories 

Electronic 
Spreadsheets 

Oracle 

Electronic 
Spreadsheets 

SAS 

Electronic 
Spreadsheets 

Microsoft 
Access, 

Excel, CSV, 
TXT 

Electronic 
Documents 

Hardcopies 
(Paper) 

PMS (condition 
information)    — — 

Construction 
history 
(maintenance and 
rehabilitation 
records) 

     

QA/QC test data — —    
Climate — —    
Traffic      

—No data. 

Table 63. Examples of referencing systems and aggregation levels being used by different 
units within the agency. 

Data Categories 
Per Pavement 

Section (0.1–1 mi) 

Per Project or 
Lots/Sublots 

within Project 
Per Supplier 

or Source 
PMS (condition information)  — — 
Construction history (maintenance 
and rehabilitation records)   — 

QA/QC test data —   
Climate — — — 
Traffic   — 

—No data. 

Table 64. Summary of the data formats for the PMS/QA data used in this project. 

Data Format State 1 State 2 State 3 State 4 
Paper (hardcopy)    — 
PDF*    — 
Microsoft Excel 
(XLS, CSV) 

    

Microsoft Access — —   
—No data. 
*These data can be digitized by the agency with little to no effort. 
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METHODOLOGIES FOR DATA INTEGRATION 

Integrating the assembled datasets from the State 1, State 2, State 3, and State 4 DOTs involved 
the following: 

1. Identifying relevant referencing systems (note: this procedure varied with datasets). 

2. Developing protocols and flowcharts for linking the referencing systems identified. 

3. Developing wrappers, queries, and codes in the most appropriate software 
environment/platforms to perform integration actions. 

4. Running wrappers, queries, and codes as needed and incrementally to effect actual 
dataset integration. 

5. Assembling integrated datasets and assessing accuracy/reasonableness of data items. 

A detailed step-by-step description of the data integration process is as follows: 

1. Identify relevant referencing systems of datasets to be integrated. 

a. For PMS-type pavement condition and inventory datasets, the referencing system of 
interest was HWY/Route Type/Number and BEGIN/END Milepost, because for 
State 1, State 2, and State 3 DOTs, condition data were aggregated at the PMS section 
level (i.e., 0.1- to 1-mi increments of highway pavement), which was defined using 
the referencing systems described. It must be noted that, although State 2 DOT 
provided both route type/number and MP and GPS longitude/latitude as referencing 
systems in their PMS, the use of GPS was not applied in this analysis because no 
other databases used GPS as a referencing system. 

b. For the other data types (construction, rehabilitation, and maintenance history, 
materials QA test data, nontraditional testing from new technologies, and so on), 
three types of referencing systems were commonly used across the three DOTs: 

i. Route type/number and MP. 

ii. Accounting number, typically the agencies’ SUBAC subaccount number, FMIS, 
or Federal project number. 

iii. DOT project/tracking (TRACS) number. 

The SUBAC and TRACS were key in retrieving information from datasets not typically 
maintained by the agency’s pavement or traffic engineering units. 

2. Develop procedures or flowcharts to format and normalize referencing systems. Although 
datasets may be using a common form of referencing systems (e.g., ROUTE 
TYPE/NUMBER and Milepost), the definitions of route type or MP may differ across 
datasets. For example, across datasets or sometimes within a given dataset, the highway 
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route type may be defined as I or IH, with both meaning interstate highways. Also, while 
a PMS system may be aggregating and reporting pavement condition for 0.1-mi sections, 
a construction database may report QA test data over a 5-mi project using a combination 
of SUBAC/TRACS number, ROUTE TYPE/NUMBER, BMP/EMP (which is greater 
than 0.1 mi), and SAMPLING or LOT/SUBLOT locations, defined mostly by chainage 
within the project. There was no need to develop wrapper, queries, or codes to convert 
the combination of SAMPLING or LOT/SUBLOT locations to actual MILEPOST or 
GPS (longitude/latitude) and redefine aggregation across datasets. 

3. Convert the logic in the previously described developed procedures/flowcharts into 
software codes, wrappers, and executables as needed. The research team developed 
codes, wrappers, and queries based on the outcomes of the developed procedures and 
flowcharts. Coding was done using a small sample of data available and was tested 
thoroughly to ensure that it worked for all situations. This step was iterative, as several 
checks and modifications were necessary when developing required codes and 
executables that produced integrated datasets with minimum error. 

4. Design and develop an integrated database. 

a. Define the objective of the integrated dataset (e.g., develop a database with the 
capability to store information and data items required to investigate the impact of 
HMA QA and QC test data for fatigue cracking). A dataset for this type of 
investigating must, as a minimum, contain the following: 

i. PMS section definition. 

1) Highway functional class. 
2) Pavement type. 
3) Pavement location (HWY, ROUTE TYPE/#, BEG/END MP, and so on). 

ii. Construction history. 

1) Last major construction event. 

a) M&R. 
b) New construction. 
c) Year. 

2) Previous major construction event. 

a) Type, year, and thickness. 

iii. Condition data. 

1) Fatigue cracking. 
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a) Extent. 
b) Severity. 
c) Collection date and year. 

2) Age (collection date to construction date). 

iv. QA test data from the last and previous major construction and maintenance 
activities: 

1) HMA mix type. 
2) Binder type and properties. 
3) Aggregate sources. 
4) Field and lab volumetric properties. 
5) Field and lab gradation. 
6) Layer thickness. 
7) Others. 

v. Historical traffic (ESALs, AADT, percent trucks, number of lanes, and so on). 

b. Design a database to include all data items described in a logical and 
easy-to-understand manner. Note that historical cracking performance data 
corresponding to various stages of the pavement history (defined by age or traffic 
applications) must be available for analysis. 

5. Run wrappers, codes, and queries as needed to assemble data into the integrated datasets 
described in the integrated database. 

6. Check the assembled data for reasonableness and accuracy. Identify and correct 
anomalies as needed. 

7. Finalize the integrated dataset. 

The following sections describe in detail the project database development procedures used in 
this study to develop the integrated datasets required for analysis. 

QA Test and PMS Data Integration for State 1 

The research team integrated the State 1 DOT QA/QC test data and PMS/performance datasets 
using key PMS data ROUTE TYPE/MILEPOST and QA test data TRACS/PROJECT NUMBER 
referencing systems. The steps used for data integration are described as follows: 

1. Identified datasets of interest. 

a. Datasets of interest were described in detail in chapter 4. The information relevant for 
this discussion includes general content and referencing systems that are described as 
follows: 



154 

i. State 1 DOT_PERF_DATA: ROUTE TYPE/MILEPOST. 
ii. STATE 1_RUTTING: ROUTE TYPE/MILEPOST. 

iii. STATE 1_CRACKING: ROUTE TYPE/MILEPOST. 
iv. Dense Graded Asphaltic Concrete: TRACS NUMBER. 
v. Soil Aggregate Tabulation (Aggregate Base): TRACS NUMBER. 

vi. Soil Aggregate Tabulation (Subgrade): TRACS NUMBER. 

b. Information presented in step 1a shows that the PMS-type datasets had a common 
referencing system, ROUTE TYPE/MILEPOST, while the QA-type dataset 
referencing system was TRACS NUMBER. Thus, there was a need to develop means 
to link these two referencing systems. This step was done by using the State 1 DOT 
business office JOB SERVICE datasets, which provide information about both 
TRACS NUMBER and ROUTE TYPE/MILEPOST for State 1 DOT highway 
projects (table 65). 

2. Combined State 1 DOT PMS datasets. 

a. All three State 1 DOT PMS datasets—STATE 1DOT_PERF_DATA, STATE 
1_CRACKING, and STATE 1_RUTTING—use the combination of ROUTE TYPE, 
RTE (i.e., ROUTE NUMBER), DIR (DIRECTION), AND MP (MILEPOST) to 
define PMS sections. The typical PMS section was 1 mi long, and thus performance 
data are aggregated over the 1-mi sections. For rutting, however, additional data are 
provided for offsets within the 1-mi PMS sections. Thus, all measured rutting data 
within a predefined PMS section were averaged and then reported the average rutting 
value for the given 1-mi PMS section. 

b. STATE 1DOT_PERF_DATA, STATE 1_CRACKING, and STATE 1_RUTTING 
datasets are merged by linking the unique PMS section identifiers ROUTE TYPE, 
RTE, DIR, MP, and year for which the data were collected. The research team wrote 
code and a query in Microsoft Access to perform this task, as shown in figure 106. 

3. Combined State 1 DOT QA/QC datasets. The QA datasets were merged using their 
unique TRACS NUMBER (figure 107). 

4. Merged PMS and QA datasets. This action was done by using the STATE 1 DOT JOB 
SERVICES datasets as follows: 

a. Link PMS and JOB SERVICES datasets using the ROUTE TYPE, RTE, DIR, MP 
information available in both data tables. 

b. Link combination of PMS and JOB SERVICES QA test datasets using the TRACS 
NUMBER information available in both datasets. 

c. Merger using code/queries developed using Microsoft Access. Examples are 
presented in figure 107 and figure 108. 
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Table 65. Summary example of STATE 1 DOT JOB SERVICES dataset. 

Route Begin MP 
Project 

Length (mi) TRACS Number Job Number 
I-8 147.0 31.0 N/A 1012 
I-8 19.8 0.2 H5453S1D 1088 
I-8 29 0.1 H5240S1D 1089 
I-8 117 3.3 H8000S1D 1146 
I-8 13.7 7.8 H8158Y1D 1184 
I-8 14.25 0.5 H8158R1D 1184R1 
I-8 14.2 0.5 H8158R1D 1184R2 
I-8 22.15 1.0 H869701D 1230 
I-8 116.9 0.8 H6407S1D 3750 
I-8 7.6 0.5 H810201D 3863 
I-8 7.6 1.0 H810201D 3863R1 
B-8 0 0.5 H7999S1D 1141 
B-8 117 3.3 H8000Y1D 1146 
I-8 122.9 0.2 H640701R CS005 

 
Source: FHWA. 

Figure 106. Diagram. Microsoft Access code for merging STATE 1 DOT_PERF_DATA 
and STATE 1_RUTTING/STATE 1_RUTTING datasets by ROUTE 

TYPE/RTE/DIR/MILEPOST/YR. 
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Source: FHWA. 

Figure 107. Diagram. Microsoft Access code for merging QA data tables of dense graded 
asphaltic concrete, soil aggregate tabulation (aggregate base), and soil aggregate tabulation 

(subgrade) by TRACS number. 
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Source: FHWA. 

Figure 108. Diagram. Microsoft Access code for merging all PMS, performance, and QA test data for assembling the project 
database. 
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The preceding steps were used to assemble all needed information from the State 1 DOT PMS 
and QA/QC datasets required for performing the analysis under this study. Successful 
implementation of these steps indicated that it is possible to obtain and integrate required data 
using current State 1 DOT PMS and QA/QC database formats, aggregation, and reporting 
procedures to achieve study goals and objectives. Examples of detailed information assemble 
through integration the State 1 DOT datasets are presented in table 66 through table 69. 

Table 66 highlights, for a given project, aggregate base sampling locations with sample retrieval 
times. This type of detailed information is key for determining exactly which batch of aggregate 
base material was placed at the given location (linking with engineer’s notes and supplier 
records) and to which PMS section to link individual sample test results/data. 

Table 67 shows similar information for subgrade soils. Linking the location information in 
table 66 and table 67 makes it possible to link the aggregate base and subgrade soil QA/QC test 
data for a given PMS sections, which in turn can be matched with the HMA QA/QC data for the 
same PMS section. Figure 109 presented a plot of station versus percent passing the No. 200 
sieve for aggregate base and subgrade soils using the merged dataset presented in table 68 and 
table 69.
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Table 66. QA aggregate base test data for State 1 DOT TRACS number H468101C. 

TRACS 
No. 

Material 
Code 

Lot of 
Suffix 

Sample Date 
and Time Sample Location Lift No. 

Roadway 
ID 

Fed Project 
No. 

H468101C AB — 6/26/2003 
1:15 

WINDROW-WB. INTERIM 
RAMP 0 WB AC*008A-

A(014)B 
H468101C AB — 6/26/2003 

6:00 
WINDROW-WB. INTERIM 
RAMP 1 WB AC*008A-

A(014)B 
H468101C AB — 6/26/2003 

6:00 
WINDROW-WB. INTERIM 
RAMP 1 WB AC*008A-

A(014)B 
H468101C AB — 6/26/2003 

6:45 
UNDER EXISTING PAVEMENT 
ON I-8 — EB AC*008A-

A(014)B 
H468101C AB — 6/27/2003 

9:00 
N. FRONTAGE RD. 2’ LT OF CL 1 WB AC*008A-

A(014)B 
H468101C AB — 6/27/2003 

13:15 
N. FRONTAGE RD. 10’ RT OF 
CL 1 EB AC*008A-

A(014)B 
H468101C AB 0A 7/1/2003 

8:30 
INTERIM RAMP A 1 WB AC*008A-

A(014)B 
H468101C AB — 7/2/2003 

9:00 
RAMP C; RT OF CL 1 RC AC*008A-

A(014)B 
H468101C AB — 7/2/2003 

9:00 
RAMP C; RT OF CL 1 RC AC*008A-

A(014)B 
H468101C AB — 7/8/2003 

8:00 
N. FRONTAGE RD.; @ CL 1 EB AC*008A-

A(014)B 
H468101C AB — 7/24/2003 

9:15 
6’ RT OF CL 1 RC AC*008A-

A(014)B 
H468101C AB — 7/24/2003 

9:20 
W/R RT OF CL 1 RC AC*008A-

A(014)B 
H468101C AB 0A 7/25/2003 

9:15 
W/R RT OF CL 1 RC AC*008A-

A(014)B 
H468101C AB — 9/2/2003 

6:45 
10’ LT OF CL 1 NB AC*008A-

A(014)B 
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TRACS 
No. 

Material 
Code 

Lot of 
Suffix 

Sample Date 
and Time Sample Location Lift No. 

Roadway 
ID 

Fed Project 
No. 

H468101C AB — 9/11/2003 
13:00 

RAMP “D” 1 EB AC*008A-
A(014)B 

H468101C AB — 9/12/2003 
10:50 

RAMP “B” 1 NB AC*008A-
A(014)B 

H468101C AB — 9/12/2003 
10:50 

RAMP “B” 1 NB AC*008A-
A(014)B 

H468101C AB 0A 9/17/2003 
11:00 

RAMP “D” 1 EB AC*008A-
A(014)B 

H468101C AB — 9/17/2003 
11:00 

GILA RIDGE RD. — EB AC*008A-
A(014)B 

H468101C AB — 9/17/2003 
11:00 

GILA RIDGE RD. — EB AC*008A-
A(014)B 

H468101C AB 0A 9/18/2003 
11:30 

AVE. 3 E; S. OF BRIDGES 1 NB AC*008A-
A(014)B 

H468101C AB — 9/26/2003 
10:45 

AVE 3E, S. OF GILA RIDGE — SB AC*008A-
A(014)B 

H468101C AB — 9/29/2003 
12:00 

GILA RIDGE — SB AC*008A-
A(014)B 

H468101C AB — 10/9/2003 
9:30 

MAINLINE — WB AC*008A-
A(014)B 

H468101C AB — 10/10/2003 
12:30 

MAINLINE, EAST OF BRIDGE — WB AC*008A-
A(014)B 

H468101C AB — 10/10/2003 
12:30 

MAINLINE, EAST OF BRIDGE — WB AC*008A-
A(014)B 

H468101C AB 0A 10/13/2003 
8:00 

MAINLINE — WB AC*008A-
A(014)B 

H468101C AB — 10/21/2003 
8:15 

RAMP A — WB AC*008A-
A(014)B 

H468101C AB — 1/8/2004 
14:20 

INTERIM RAMP A 1 WB AC*008A-
A(014)B 
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TRACS 
No. 

Material 
Code 

Lot of 
Suffix 

Sample Date 
and Time Sample Location Lift No. 

Roadway 
ID 

Fed Project 
No. 

H468101C AB — 1/19/2004 
8:30 

WINDROW @ CL 1 EB AC*008A-
A(014)B 

H468101C AB — 1/27/2004 
13:00 

RDWY, (I-8 e.b.) 15’ LT. OF CL 2 EB AC*008A-
A(014)B 

H468101C AB — 3/18/2004 
9:15 

Windrow Ramp D — EB AC*008A-
A(014)B 

H468101C AB — 3/18/2004 
9:15 

Windrow Ramp D — EB AC*008A-
A(014)B 

H468101C AB — 4/21/2004 
13:00 

15’ LT. OF AVE 3E C.L 1 NB AC*008A-
A(014)B 

—No data. 
NB = northbound; SB = southbound; EB = eastbound; WB = westbound. 

Table 67. QA subgrade soil test data for State 1 DOT TRACS Number H468101C. 
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H468101C SG 03-
330 1 Acceptance 8230 6/16/2006 

11:00 

IN PLACE-
INTERIM 
RAMP 

— WB 27 0 NATIVE 
ON SITE 

AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
331 2 Acceptance 8230 6/16/2003 

11:15 

IN PLACE 
INTERIM 
RAMP 

— WB 42 0 NATIVE 
ON SITE 

AC*008A
-A(014)B 

STATE 1 
248ALT1 

H468101C SG 03-
337 3 Acceptance 8230 6/24/2003 

7:45 

FRONTAGE 
RD LT OF 
CL 

— WB 19 0 NATIVE 
ON SITE 

AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
338 4 Acceptance 8230 6/24/2003 

8:00 

FRONTAGE 
RD RT OF 
CL 

— WB 11 0 NATIVE 
ON SITE 

AC*008A
-A(014)B 

STATE 1 
248ALT1 
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H468101C SG 03-
393 4 Acceptance 8230 7/29/2003 

13:30 I-8 #2 LN. — WB 19 0 — AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
409 4 Acceptance 8230 8/12/2003 

13:00 RAMP B — — 41 0 
STOCK-
PILE ON 
SITE 

AC*008A
-A(014)B 

STATE 1 
248ALT1 

H468101C SG 03-
420 5 Acceptance 8230 8/21/2003 

11:30 RAMP D 2 EB 14 0 ONSITE AC*008A
-A(014)B 

STATE 1 
248ALT1 

H468101C SG 03-
339 5 Acceptance 8230 6/24/2003 

8:15 

INTERIM 
RAMP, RT 
OF CL 

— WB 45 0 NATIVE AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
439 9 Acceptance 8230 9/12/2003 

10:00 
GILA 
RIDGE RD. — EB 75 0 ONSITE AC*008A

-A(014)B 
STATE 1 
248ALT1 

H468101C SG 03-
442 12 Acceptance 8230 9/16/2003 

15:00 

AVE. 3E; S. 
OF 
BRIDGES 

— NB 44 0 ONSITE AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
461 13 Acceptance 8230 9/25/2003 

9:00 
I-8 MAIN 
LINE 5 WB 240 — NATIVE AC*008A

-A(014)B 
STATE 1 
201-P12 

H468101C SG 03-
470 14 Acceptance 8230 10/2/2003 

8:30 
I-8 MAIN 
LINE — WB 20 0 ONSITE AC*008A

-A(014)B 
STATE 1 
248ALT1 

H468101C SG 03-
485 15 Acceptance 8230 10/16/2003 

8:00 RAMP A 3 WB 26 0 ONSITE AC*008A
-A(014)B 

STATE 1 
248ALT1 

H468101C SG 03-
489 16 Acceptance 8230 10/17/2003 

12:30 
RAMP A; RT 
& LT OF CL — WB 27 0 BASIN A 

(NATIVE) 
AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
0476 2 Correlation 9956 6/16/2003 

12:30 

INPLACE 
INTERIM 
RAMP 

— WB 42 0 NATIVE 
ONSITE 

AC*008A
-A(014)B 

STATE 1 
201-P12 
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H468101C SG 03-
0491 5 Correlation 9956 6/24/2003 

11:15 

INTERIM 
RAMP, RT 
OF CL 

— WB 45 0 NATIVE AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
0869 5 Correlation 9956 8/21/2003 

11:30 RAMP D 2 EB 14 0 ON SITE AC*008A
-A(014)B 

STATE 1 
201-P12 

H468101C SG 03-
1003 15 Correlation 9956 10/16/2003 

8:00 RAMP A 3 WB 26 0 ON SITE AC*008A
-A(014)B 

STATE 1 
201-P12 

—No data. 

Table 68. Merged QA aggregate base and subgrade soil test data for State 1 DOT TRACS number H468101C. 

TRACS 
No. 

Material 
Code Sample Location 

Roadway 
ID 

Sample 
Station 

Sample 
Offset 

Original 
Source 

Subg_pct 
Pass 40 

Subg_pct 
Pass 200 

H468101C SG AVE. 3E; S. OF 
BRIDGES 

NB 44 0 ON SITE 75 8.3 

H468101C SG FRONTAGE RD LT 
OF CL 

WB 19 0 NATIVE ON 
SITE 

89 7.8 

H468101C SG FRONTAGE RD RT 
OF CL 

WB 11 0 NATIVE ON 
SITE 

98 10 

H468101C SG GILA RIDGE RD. EB 75 0 ON SITE 80 18.9 
H468101C SG — — — — —   
H468101C SG I-8 #2 LN. WB 19 0 NATIVE 56 8.5 
H468101C SG I-8 MAINLINE WB 24 — ONSITE 74 9.4 

H468101C SG I-8 MAINLINE WB 20 0 — 78 11.6 
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TRACS 
No. 

Material 
Code Sample Location 

Roadway 
ID 

Sample 
Station 

Sample 
Offset 

Original 
Source 

Subg_pct 
Pass 40 

Subg_pct 
Pass 200 

H468101C SG — — — — NATIVE ON 
SITE 

— — 

H468101C SG IN PLACE 
INTERIM RAMP 

WB 27 0 NATIVE ON 
SITE 

66 5.6 

H468101C SG IN PLACE 
INTERUM RAMP 

WB 42 0 NATIVE ON 
SITE 

79 6.3 

H468101C SG IN PLACE 
INTERIM RAMP 

WB 42 0 NATIVE ON 
SITE 

76 6.7 

H468101C SG INTERIM RAMP, 
RT OF CL 

WB 45 0 NATIVE 88 10.4 

H468101C SG INTERIM RAMP, 
RT OF CL 

WB 45 0 NATIVE 88 10.9 

H468101C SG RAMP A WB 26 0 ONSITE 77 11.5 
H468101C SG RAMP A WB 26 0 ONSITE 78 12 

H468101C SG RAMP A; RT & LT 
OF CL 

WB 27 — BASIN A 
(NATIVE) 

93 35.5 

H468101C SG RAMP B — 41 0 STOCKPILE 
ONSITE 

83 5.1 

H468101C — RAMP B — 41 0 STOCKPILE 
ONSITE 

83 5.1 

H468101C — RAMP D EB 14 0 OSNITE 83 2.4 
H468101C — RAMP D EB 14 0 ONSITE 83 2.4 

—No data. 
Subg_pct Pass = Subgrade percent passing sieve. 
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Table 69. Merged QA aggregate base and subgrade soil test data for Federal project 
number AC*008-A (014) B. 

Sample Location 
Lift 
No. 

Roadway 
ID 

Federal 
Project No. 

Pct 
Pass 
40 

Pct 
Pass 
200 

Sample 
Date and 

Time 
AVE 3E; S. OF 
BRIDGES 

1 NB AC*008A-
A(014)B 

29 5.5 9/18/2003 
11:30 

N. FRONTAGE RD. 
2’ LT OF CL 

1 WB AC*008A-
A(014)B 

30 3.1 6/27/2003 
9:00 

N. FRANTAGE RD. 
10’ RT OF CL 

1 EB AC*008A-
A(014)B 

35 4.1 6/27/2003 
13:15 

GILA RIDGE RD. — EB AC*008A-
A(014)B 

33 5.5 9/17/2003 
11:00 

GILA RIDGE RD. — EB AC*008A-
A(014)B 

34 6.1 9/17/2003 
11:00 

I-8 MAINLINE — WB AC*008A-
A(014)B 

27 4.4 10/9/2003 
9:30 

I-8 MAINLINE, EAST 
OF BRIDGE 

— WB AC*008A-
A(014)B 

33 5.2 10/10/2003 
12:30 

I-8 MAINLINE, EAST 
OF BRIDGE 

— WB AC*008A-
A(014)B 

35 5.6 10/10/2003 
12:30 

I-8 MAINLINE — WB AC*008A-
A(014)B 

30 4.7 10/13/2003 
8:00 

INTERIM RAMP A 1 WB AC*008A-
A(014)B 

29 4.1 1/8/2004 
14:20 

WINDOW-WB. 
INTERIM RAMP 

0 WB AC*008A-
A(014)B 

32 3.1 6/26/2003 
1:15 

WINDOW-WB. 
INTERIM RAMP 

1 WB AC*008A-
A(014)B 

28 3.1 6/26/2003 
6:00 

WINDOW-WB. 
INTERIM RAMP 

1 WB AC*008A-
A(014)B 

29 3.6 6/26/2003 
6:00 

RAMP A — WB AC*008A-
A(014)B 

31 4.7 10/21/2003 
8:15 

RAMP “B” 1 NB AC*008A-
A(014)B 

36 4.8 9/12/2003 
10:50 

RAMP “B” 1 NB AC*008A-
A(014)B 

35 5.2 9/12/2003 
10:50 

RAMP “D” 1 EB AC*008A-
A(014)B 

19 4.9 9/11/2003 
13:00 

RAMP “D” 1 EB AC*008A-
A(014)B 

33 5.5 9/17/2003 
11:00 

—No data. 
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Source: FHWA. 

Figure 109. Graph. Plot of station versus percent passing the No. 200 sieve for aggregate 
base and subgrade soils using the merged dataset presented in table 68 and table 69. 

QA Test and PMS Data Integration for State 2 

Data integration of the State 2 DOT PMS, QA test, and other nontraditional datasets was done 
using key inventory/location data items HWY, DIR, BMP, and EMP; QA test data tables 
SUBAC/PROJECT NUMBER; and SAMPLING/LOT location information. Data integration 
was done as follows: 

1. Identified datasets of interest: 

a. Datasets of interest are described in detail in chapter 4. The relevant information for 
this discussion includes general content and referencing systems that are described as 
follows: 

i. ConditionXX.csv (XX ranges from 98 through 15 for 1998 to 2015, 
respectively): HWY, DIR, BMP, and EMP. 

ii. Construction history database, maintenance data tables: SUBAC NUMBER. 

iii. State 2 DOT PDF files containing QA test data/records: SUBAC NUMBER. 
The PDF files contain descriptions of project location (e.g., HWY, DIR, and 
BMP). However, these were organized in a consistent manner. 

iv. Excel spreadsheets with RWD deflection and MIT-Scan data from contractors: 
HWY, DIR, and BMP. 
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b. Information presented in step 1a shows that the PMS-type datasets and the 
contractors’ new technology datasets had a common referencing system for HWY, 
DIR, BMP, and EMP, whereas the QA- and QC-type dataset referencing system 
included SUBAC NUMBER and some description of project/sample location. The 
maintenance dataset in the construction history database, however, contained both 
SUBAC number and project HWY, DIR, BMP, and EMP information. 

c. Since the maintenance dataset of the construction history database provides both 
referencing systems, it was adopted as the central link from which all the other 
datasets could be merged, as described in steps 2 through 5. 

2. Defined unique State 2 DOT PMS sections, which are defined in the State 2 DOT PMS 
datasets using a combination of HWY, DIR, BMP, and EMP. For State 2 DOT PMS, 
pavement performance data are aggregated and reported as the average or representative 
value for a given 0.1-mi PMS pavement section. 

3. Established a comprehensive PMS dataset by performing a vertical integration of the 
PMS data tables, since State 2 DOT provided individual Microsoft Excel datasets with 
annual (1998 through 2015) summaries of condition data. This step was done by 
appending or adding the records and observations from one PMS dataset to the end of 
another PMS dataset. This function was done in Microsoft Access; the outcome was the 
creation of a master State 2 DOT PMS database containing condition data from 1998 
through 2015. 

4. Developed codes/queries for integrating PMS and maintenance dataset of the 
construction history database. This step was done by linking HWY, DIR, and BMP in 
each dataset. A key outcome of this step was to link the two referencing systems: HWY, 
DIR, and BMP; and State 2 DOT SUBAC number. The SUBAC number is the key 
referencing data item that was used to link QA and QC data to PMS. 

5. Merged the State 2 DOT PMS DATA and the maintenance dataset of the construction 
history database with individual project QA and QC test data. For State 2 DOT, the QA 
and QC data were provided as electronic documents, mostly in PDF format. The 
information in these documents was referenced and identified by SUBAC number. The 
merger was done as follows: 

a. Converted electronic document information in PDF format to Microsoft Excel 
electronic databases (e.g., XLS, CSV, or TXT data formats). Adobe® Acrobat® 
version 9.0 and after can directly convert data tables into Excel format. This 
action, however, must be done manually, one table at a time. 

b. Merged the converted electronic document PDF file with the master PMS 
maintenance dataset of the construction history database when the conversion was 
complete, using the SUBAC number and sample location information (ROUTE 
TYPE/NUMBER, MILEPOST, CHAINAGE, and so on). 

The preceding steps are shown graphically in figure 110. Running the Microsoft Access query 
displayed in figure 110 produced a merged dataset with State 2 DOT PMS, maintenance dataset 
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of the construction history database SUBAC number, and project-specific QA and QC test data. 
Note the SQL and VB coding developed to effect this merger is not shown in figure 110. The 
research team added other data (i.e., MIT-SCAN and RWD deflection) to the project data by 
linking HWY, DIR, BMP, and EMP to the respective datasets. 

 
Source: FHWA. 

Figure 110. Diagram. Microsoft Access code for merging State 2 DOT PMS, construction 
history database SUBAC number, and project-specific QA test datasets. 

QA Test and PMS Data Integration for State 3 

The research team integrated data of the State 3 DOT PMS and QA and QC test datasets using 
key inventory and location data items ROUTE, RNUM, RSUFF, DIRECTION, BMP, EMP, and 
LANE_NUMBER; QA test data tables CONTRACTNUMBER, PROJECTID, JMFID, and 
LOT#; and SUBLOT# location information. Data integration was done as follows: 

1. Identified datasets of interest: 

a. Datasets of interest are described in detail in chapter 4. The relevant information for 
this discussion is general content and reference systems that are described as follows: 

i. Cracking: ROUTE, RNUM, RSUFF, DIRECTION, BMP, EMP, and 
LANE_NUMBER. 
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ii. Rutting: ROUTE, RNUM, RSUFF, DIRECTION, BMP, EMP, and 
LANE_NUMBER. 

iii. Friction: ROUTE, RNUM, RSUFF, DIRECTION, BMP, EMP, and 
LANE_NUMBER. 

iv. BinderData: CONTRACT_NUMBER. 

v. MixDesignAggSourceMM: CONTRACT_NUMBER. 

vi. MixDesignXXX: CONTRACT_NUMBER. 

vii. TestDataQA/QC: CONTRACT_NUMBER, PROJECTID, JMFID, LOT#, AND 
SUBLOT#. 

b. Information presented in step 1a shows that the PMS-type datasets had a common 
referencing system—ROUTE, RNUM, RSUFF, DIRECTION, BMP, EMP, and 
LANE_NUMBER—while the QA-type dataset referencing systems was a 
combination of CONTRACT_NUMBER, PROJECTID, JMFID, LOT#, and 
SUBLOT#. 

c. State 3 DOT Soils and Aggregate Technology Division routinely publishes the Office 
of Materials Technology Aggregate Bulletin Test Data, which contains information 
pertaining to the qualified list of aggregate producers and fine/coarse aggregate 
physical test data such as: 

i. Specific gravity and absorption. 
ii. Soundness. 

iii. Los Angeles (LA) abrasion. 
iv. ASR. 
v. British pendulum test. 

vi. Dynamic friction test. 
vii. Petrography for noncarbonate aggregate. 

viii. Acid insoluble residue for carbonate aggregate. 

Referencing for these data is defined by AGGREGATE SOURCE, TYPE, and 
CATEGORY. 

d. State 3 DOT Office of Construction (Contract Payment Section) assigns a FMIS 
charge number to all contract categories to ensure proper billing. The FMIS 
information includes general information about project location. The information 
available online provided details on the county, location, description of the highway 
and number of lanes, length and the phasing of construction, scope of the construction 
project, and details of the specific items being studies under the project, if applicable. 

e. Table 70 presents sample route and contract data for State 3. 

2. Integrated the datasets with the referencing systems described is done as follows: 
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a. Defined unique State 3 DOT PMS sections. These sections were defined in the 
State 3 DOT PMS datasets using a combination of RNUM, RSUFF, DIRECTION, 
BMP, EMP, and LANE_NUMBER. For State 3 DOT PMS, pavement performance 
data were aggregated and reported as the average or representative value for a given 
1-mi PMS pavement section. 

b. Established a comprehensive PMS dataset by performing a horizontal integration of 
these PMS datasets linking the key referencing data items described in step 2a, since 
State 3 DOT provides individual Microsoft Excel datasets with annual summaries of 
cracking, rutting, and friction condition data. Merge the PMS datasets using 
Microsoft Access. 

c. Merged the combined PMS dataset with the State 3 DOT contract information 
dataset. This merger created a link between PMS data and project contract-type 
referencing data items (CONTRACT NUMBER, FMIS, and so on). 

d. Performed horizontal integration between the PMS and contract dataset and the QA 
test data tables using relevant set of CONTRACT NUMBER, FMIS, and other 
information. Note that the data table MixDesignAggSourceXXX provides 
information about aggregate sources. 

e. Used the aggregate source information provided in MixDesignAggSourceXXX to 
perform a horizontal merger with the State 3 DOT Materials Technology Aggregate 
Bulletin Test Data tables. Note the PDF tables containing this information was 
digitized prior to merger and horizontal integration. 

The research team developed several codes and queries to make the mergers described possible. 
These were similar to those shown for State 1 and State 2 and thus will not be repeated. 
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Table 70. Example of State 3 DOT route and contract data. 

Route RNUM RSUFF DIR BMP EMP 
Contract 

No. Contract FMIS 
IS 68 —  E 2.53 3.21 AL3265177 AL3265177 AL326B51 
IS 68 — E 3.85 4.04 GA6565177 GA6565177 GA656B51 
IS 68 — E 7.24 7.62 XY1115168 XY1115168 GA382K55 
IS 68 — E 19.8 20.15 XX0015177 XX0015177 AL877B59 
IS 68 — E 22.1 22.9 AL3125177 AL3125177 AL312B51 
IS 68 — W 0.3 0.68 XY1115168 XY1115168 GA382K55 
IS 68 — W 3.28 3.351 AL3265177 AL3265177 AL326B51 
IS 68 — W 3.85 4.04 GA6565177 GA6565177 GA656B51 
IS 68 — W 4.76 7.42 AW201B51 AW201B51 AW201B51 
IS 68 — W 5.176 5.35 GA6565177 GA6565177 GA656B51 
IS 68 — W 8.9 9.25 XY1015168 XY1015168 AL453A54 
IS 68 — W 22.1 22.9 AL3125177 AL3125177 AL312B51 
IS 68 — W 37.26 37.47 XY1015168 XY1015168 AL433K5A 
IS 70 — E 1.8 2.25 FR5775176 FR5775176 FR577B51 
IS 70 — E 24.85 25.2 AW221B51 AW221B51 AW221B51 
IS 70 — W 0 1.2 FR297B51 FR297B51 FR297B51 

—No data. 

IC and QA Data Integration for State 4 

Information in the IC and density data files was merged using the position referencing northing 
and easting. Note that for a given northing and easting position, density measurements were 
obtained from field QA, and several IC measures from difference roller passes were available for 
each location on the project. Thus, for data integration, IC measurements closest within 1 ft of 
the extracted field AC core were deemed as most representative. On average, up to six IC passes 
were reported for each core location. An example subset of the data assembled is presented in 
table 71. 
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Table 71. Example of IC and QA merged dataset for State 4. 

Project Machine 
Vibe 
State 

Pass 
No. Northing Easting 

Distance (ft) 
(Core to IC 

Reading) 
Last Amp 

(mm) 
Last 
CMV 

Last 
Frequency 

(Hz) 
Last 
RMV 

Density 
Value 

I-LLL 15-57-10 On 

5 

628589.3 7622627 

0.61479 0.75 50.5 62.1 6.1 95 
7 0.57058 0.73 19.8 62.5 2.3 95 
8 0.57058 0.75 50.5 62.1 6.1 95 
10 0.57058 0.72 6.1 62.1 4.9 95 
12 0.57058 0.69 36.2 62.5 4.9 95 

I-MM NM74896 On 

5 

369578 7535556 

0.45414 0.48 26.4 63.7 5.1 95.5 
6 0.45414 0.44 21.2 63.7 8 95.5 
7 0.66446 0.48 26.4 63.7 5.1 95.5 
8 0.45414 0.45 21.2 64.1 2.4 95.5 
10 0.45414 0.51 46.9 63.7 4.9 95.5 
11 0.45414 0.45 36 63.3 4.9 95.5 
12 0.66446 0.48 20.8 64.9 1.9 95.5 
13 0.66446 0.45 44.6 63.7 7.3 95.5 
14 0.45414 0.49 41.5 64.1 3.1 95.5 
16 0.66446 0.5 45.7 63.7 7.3 95.5 
17 0.66446 0.45 28.4 63.7 6.1 95.5 
20 0.66446 0.52 38.7 63.7 3 95.5 
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Project Machine 
Vibe 
State 

Pass 
No. Northing Easting 

Distance (ft) 
(Core to IC 

Reading) 
Last Amp 

(mm) 
Last 
CMV 

Last 
Frequency 

(Hz) 
Last 
RMV 

Density 
Value 

US-KK NM74896 On 

1 

370213.6 7535661 

0.85207 0.45 11.5 63.3 6.5 96.3 
2 0.29518 0.44 13.2 63.3 0.7 96.3 
3 0.29518 0.44 24.1 63.3 9.8 96.3 
5 0.85207 0.43 12.4 63.3 2.3 96.3 
6 0.29518 0.43 12.4 63.3 2.3 96.3 
7 0.29518 0.4 23.8 63.3 4.6 96.3 
8 0.85207 0.41 20.3 63.3 2.9 96.3 
9 0.29518 0.42 25.7 63.7 2.4 96.3 
11 0.85207 0.52 31.7 63.7 8 96.3 
12 0.29518 0.52 31.7 63.7 8 96.3 
13 0.85207 0.48 33.1 62.1 1.9 96.3 
14 0.29518 0.48 31.6 61.3 2.2 96.3 
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The integrated dataset was reviewed for anomalies and errors and cleansed as needed. Examples 
of anomalies and error included: 

• Distance between cores and IC roller passes. Distances greater than 1.0 ft were not 
included in the analysis. The value of 1.0 was determined from multiple trials to examine 
correlations discussed in the next chapter. 

• IC reported HMA placement temperatures. Temperatures ranged from 0℉ to 230℉. For 
analysis, HMA placement temperatures less than 175℉ were excluded as compaction at 
such temperatures was considered to be erroneous or anomalous. 

• Erroneous values for IC outputs. Zero values for key IC outputs such as Last Amp, Last 
CMV, Last Frequency, and Last RMV. 

• Target pass number ranged from 1 to 6. Actual pass number ranged from 1 to 62. The 
significantly high pass numbers (e.g., greater than 10) were investigated to determine 
whether they were anomalies or errors. In general, locations reporting significantly high 
pass numbers were removed from the assembled dataset. 

SUMMARY 

This chapter presented a detailed description of data integration procedures, methodologies, and 
tools used in combining data and information from disparate datasets. As stated, there is very 
little commonality in designs of the datasets used by DOTs for storing PMS, QA and QC, 
construction history, and other data types. Thus, there is a need for many different codes and 
queries for data integration. Also, there is still some element of manual integration required for 
older data because not all data are available in electronic format or are easy to integrate with file 
formats (XLS, CSV, TXT, DAT, and so on). Data from newer construction projects are more 
likely to be existing in an electronic format. 

The information presented in this chapter shows that data merger and integration are possible, 
although the details of the methodologies and tools required will remain DOT specific and data 
format dependent. Data integration was a significant step in this project. Standardization of DOT 
data collection and storage practices will, in the long term, provide the opportunity for 
performing the tasks described in a more efficient, timely, and cost-effective manner. 
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CHAPTER 6. PREDICTION MODEL DEVELOPMENT AND USE CASES 

UTILIZING QA TEST DATA AS LEADING INDICATORS OF PAVEMENT 
PERFORMANCE 

A primary goal of this research was to assess the feasibility of DOTs utilizing pavement 
construction QA data as leading indicators of future pavement condition and performance. 
Condition and performance in this context were characterized based on a combination of 
performance measures published under the national performance management measures ruling as 
summarized in table 72.(2) A leading indicator, for the purposes of this study, is described as a 
measurable pavement QA measure (including thickness, strength, air voids, or density) whose 
value or change in value does significantly impact and determine the path or trend taken by a 
given performance measure. 

Table 72. Metrics used in national performance management measures ruling. 

Surface Type Metric 
All pavements IRI (inches/mi) 
Asphalt pavement and jointed concrete pavement Cracking (percent) 
Asphalt pavement Rutting (inches) 
Jointed concrete pavement Faulting 
CRCP Cracking (percent) 

Effectively assessing the feasibility of utilizing QA data as a leading indicator of highway 
pavement performance required developing and implementing a robust data analysis plan. The 
plan was to identify preliminary/basic trends in relationships between distress/IRI and QA data 
items and then establish where the trends are reasonable and significant. 

This chapter describes the procedures and outcomes of statistical analysis to identify QA data 
items that significantly impact future performance; these data could potentially be utilized within 
a PMS framework as leading indicators for future performance. Data were used from four States, 
as described in chapter 4 and chapter 5. A summary of the analyses performed using data from 
these States is presented in table 31 for HMA pavement and in table 32 for PCC pavements. As 
indicated in these tables, the QA parameters included both traditional QA parameters as well as 
derived parameters that are indicators of performance. 

This chapter also presents case studies demonstrating how the correlations developed can be 
implemented in a State PMS. The case studies presented in this report are the following: 

• State 1: This case study highlights how performance predictions can be enhanced using 
additional data, such as those with traffic and climate information, which are known to 
impact performance. The basic QA-PMS-based correlations can be enhanced by 
incorporating traffic and climate data parameters in the prediction models. 

• State 2: This case study highlights how data from innovative QA technologies can be 
potentially used to estimate long-term performance trends. Measurements and outputs 
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from new innovative technologies, such as RWD and MIT-Scan, were correlated to 
performance at a project level. 

• State 3: This case study attempts to show an example of how performance predictions 
using QA data can be implemented into an agency PMS, which is the true application of 
the findings from this project. 

• State 4: This case study attempts to show the correlation between IC and QA data to 
demonstrate an indirect correlation of data collected from newer construction 
technologies to performance. 

Case studies for State 1 and State 3 were performed at the network, and the case studies for 
State 2 and State 4 were performed at the project level. A summary of the analyses included is 
shown in table 73. 

Table 73. Summary of analyses types, performance prediction models, and case studies. 

State 

Performance 
Indicator: 

Rutting 

Performance 
Indicator: 
Faulting 

Performance 
Indicator: 
Cracking 

Performance 
Indicator: 

IRI Case Study 

State 1 

F, N, Q, A 
F, N, Q, V 
F, N, Q, D, A 
F, N, Q, D, V 
F, N, Q, D, 
A, T, C# 

— F, N, Q, A 
F, N, Q, V 
F, N, Q, D, A 
F, N, Q, D, V 
F, N, Q, D, A, 
T, C#  

— Benefit of adding 
traffic and climate 
data. 

State 2 

F, N, Q, A 
F, P, Q, RW, 
A# 

R, N, Q, A 
R, P, Q, M, 
A# 

F, N, Q, A 
R, N, Q, A 
F, P, Q, RW, 
A# 

F, N, Q, A 
R, N, Q, A 

Data from 
nontraditional 
QA/network-level 
tests correlated to 
performance. 

State 3+ 

F, N, Q, A 
F, N, Q, D, A 
F, N, Q, A 

— F, N, Q, A 
F, N, Q, D, A 
F, N, Q, A 

— Implementation of 
improved prediction 
model in the DOT’s 
PMS. 

State 4 

F, P, Q, IC, 
A# 

— F, P, Q, IC, 
A# 

— Demonstration of 
methods to 
“indirectly” link 
modern technologies 
to performance. 

—No data. 
#In-case study. 
+State has functional and structural cracking in pavement management database. 
Pavement type: F = flexible, R = rigid; analysis level: N = network level, P = project level; data types: 
Q = traditional QA data, D = QA derived parameters, M = MIT-Scan, RW = RWD, IC = IC data, T = traffic, 
C = climate. Data used: A = averages; V = COV/variability. 
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OVERVIEW OF DATA ANALYSIS METHODOLOGY 

This section presents statistical analysis done to assess feasibility of using QA test data as 
leading indicators for pavement performance. Analysis was done at three levels of intensity: 
identification of preliminary correlations between distress, IRI, and QA test data; formation of 
basic models relating distress, IRI, and QA test data using automated techniques; and final model 
formulation and assessment of the model’s independent QA test data variables’ significance and 
sensitivity to distress and IRI. The analysis methodology is as follows: 

1. Review assembled integrated PMS and QA test databases for accuracy and 
reasonableness and estimate computed parameters that can be derived from QA test data 
(e.g., HMA dynamic modulus, SA1, resistivity, aggregate/soil D60, CBR, Mr). Estimate 
computed parameters only when key inputs for estimation are available. 

2. Use time-series PMS distress (cracking, rutting, faulting, IRI) data to develop simple 
linear regression models for forecasting future distress and IRI. 

3. Estimate for each PMS section baseline distress IRI. For this analysis, baseline 
distress/IRI was defined as distress and IRI measured or forecasted after 10 or 15 yr in 
service. The choice of 10 or 15 yr was based on the amount of historical data available 
(i.e., when less than 6 yr, a baseline age of 10 yr was selected; otherwise, 15 yr was 
selected). 

4. Perform statistical analysis. 

a. Identify preliminary correlations between distress and IRI and QA test data. This step 
comprised computing Pearson’s correlation statistic, r, to characterize correlation 
between QA data items and distress and IRI. Pearson’s correlation statistic is a 
parametric measure that measures the strength and direction of a linear relationship 
between two variables. For an exact linear relationship between two variables, a 
positive relationship exists if the correlation is 1; a negative relationship exists if the 
correlation is −1. If there is no linear predictability between the two variables, the 
correlation is 0. Thus, the value of computed r was an indicator of potential QA test 
data influencing future pavement performance. An indication of strong correlation 
between distress and IRI and QA test data items, however, does not imply causality 
because, in some cases, an underlying causal relationship might not exist. Also, 
obtaining an r of 0 may simply imply the nature of the relationship between two 
variables is not linear. A test of the hypothesis Prob > |r| under H0: r = 0 was 
performed to determine probability r = 0. For this study, a p-value less than 0.15 was 
considered an indication of r ≠ 0. The outcomes of the correlation analysis were used 
as the bases for characterizing correlations between distress or IRI and QA test data 
as strong, fair, or weak, based on the criteria presented in table 74. 

b. Form basic models relating distress/IRI and QA test data using automated techniques. 
Using the QA test data items identified in step 4a and elsewhere, conduct automated 
stepwise regression analysis to establish feasible basic regression models. Note that 
stepwise regression analysis is an automated procedure for establishing potential 
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regression models. The following parameters were considered in selecting feasible 
QA data items: 

i. Selection method: stepwise. 

ii. Selection criterion: significance level of independent variables (QA data items). 

1) Entry significance level (SLE): 0.15. 
2) Stay significance level (SLS): 0.15. 

iii. Stop criterion: minimal predicted residual error sum of squares (PRESS) statistic 
value. 

iv. Choose criterion: Mallows’ Cp (optimum number of independent variables). 

c. Formulate final model and assess model’s independent QA test data variables’ 
significance and sensitivity to distress and IRI. Perform analysis of variance 
(ANOVA) to confirm or modify the preliminary models developed in step 4b. The 
outcome is a selection of a more robust model that identifies QA data items that 
significantly influences distress and IRI and is reasonably sensitive to distress and 
IRI. For example, increasing QA data item value results in a reasonable increase or 
decrease in distress and IRI. The final model is selected based on several factors, 
including diagnostic statistics, R2, root mean square error (RMSE), correlation 
coefficient, variance inflation factor (VIF), and p-value, and evaluation of the models’ 
reasonableness. 

Table 74. Criteria for characterizing Pearson’s correlation estimates. 

Pearson’s Correlation Coefficient 
Significant Test (r = 0) 

p-value Characterization 
|r| > 0.2 p-value < 0.05 Strong 
0.1 < |r| < 0.2 0.1 > p-value > 0.05 Fair 
|r| < 0.1 p-value > 0.1 Weak 

The research team examined and evaluated the final models’ reasonableness by comparing trends 
and sensitivities of changes in QA data item values with corresponding changes in distress and 
IRI trends reported in published literature from past studies. For example, sensitivity analysis 
conducted under many studies using the AASHTOWare Pavement ME has shown that increasing 
HMA air voids does increase HMA rutting, while decreasing PCC compressive strength results 
in increased cracking. See table 26 and table 27 for a comprehensive summary of expected trends 
and sensitivities for flexible and rigid pavements, respectively. 

STATISTICAL ANALYSIS FOR STATE 1 

Data analysis was done using the integrated State 1 DOT PMS and QA test database described in 
chapter 4 and chapter 5, as well as the analysis methodologies previously described in this 
chapter. The results are described in the following sections. 
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State 1 DOT Correlation Analysis 

This section presents the analysis conducted to characterize correlations of cracking and rutting 
to HMA QA test data. Table 75 through table 77 presents the outcome of Pearson’s correlation 
analysis to determine the impact of HMA QA test data variables on HMA fatigue cracking and 
rutting. The strength of correlation assessment is based on Pearson’s correlation coefficient and 
p-value (test of significance) for the given data items. The results, shown in table 76 and 
table 77, show gradation (specifically, the percent passing ¾-inch, ½-inch sieve, 3/8-inch, 
No. 100, and No. 200 sieve sizes), along with asphalt binder content, VMA, and VFA as the QA 
data items that had a strong impact on fatigue cracking. For rutting, the strongest correlations 
were between computed dynamic E modulus and percent passing No. 100 and No. 200 sieve 
sizes. 

Note that dynamic E modulus estimates were not measured directly from the lab or reverse 
calculated but rather estimated using QA test data (gradations and air voids) and the Witczak 
model. Key inputs, such as binder type, were assumed. The E* included in this analysis was like 
the level 3 type estimates utilized in the AASHTOWare Pavement ME. 

The information presented in table 75 through table 77 was reasonable. For cracking, HMA 
gradation does significantly impact strength, modulus, voids, and durability. Thus, a strong 
correlation between cracking and HMA gradation is as expected. Also, AC binder content does 
significantly impact HMA air voids, VFA, strength, and modulus, and thus cracking. Therefore, 
a strong correlation between cracking and VFA seems reasonable. For rutting, strong correlations 
between QA data items HMA fines (percent passing No. 100 and No. 200 sieve sizes) and E* 
was observed. Increasing fines in HMA does lead to mix instability, thus increasing plastic strain 
and rutting potential. Also, E* highly influences the amount of elastic and plastic strain 
developed when HMA is subjected to traffic loading and thus rutting (accumulation of plastic 
strain). The relationship may be nonlinear or interactive with other data items. 
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Table 75. STATE 1 HMA QA data basic statistics. 

QA Variables 
No. Data 

Points Mean 
Standard 
Deviation Minimum Maximum 

Percent passing 1-inch sieve 72 99.9 0.4 97.8 100.0 
Percent passing ¾-inch sieve 72 96.6 3.2 87.3 100.0 
Percent passing ½-inch sieve 72 80.8 5.3 67.5 96.5 
Percent passing 3/8-inch sieve 72 69.7 5.2 55.6 78.9 
Percent passing ¼-inch sieve 72 57.6 6.1 41.0 68.8 
Percent passing No. 4 sieve 72 51.7 6.6 36.6 64.0 
Percent passing No. 8 sieve 72 37.8 6.1 21.1 48.2 
Percent passing No. 10 sieve 72 34.7 5.8 18.6 45.8 
Percent passing No. 16 sieve 72 26.4 5.0 12.8 37.7 
Percent passing No. 30 sieve 72 18.1 3.8 7.8 29.2 
Percent passing No. 40 sieve 72 14.2 2.9 6.3 24.0 
Percent passing No. 50 sieve 72 11.0 2.2 5.1 18.6 
Percent passing No. 100 sieve 72 6.5 1.3 3.8 9.5 
Percent passing No. 200 sieve 72 4.1 0.9 2.3 6.3 
Percent AC binder content 72 5.0 0.6 4.2 9.5 
HMA bulk density (pcf) 72 146.2 4.0 137.2 159.1 
HMA rice density (pcf) 72 153.9 4.0 145.5 166.6 
HMA lab air voids (percent) 72 5.0 0.7 3.2 6.6 
HMA VMA (percent) 63 14.8 1.4 12.6 23.3 
HMA VFA (percent) 63 66.1 4.3 56.7 75.6 
Coarse aggregate specific gravity 63 3.0 0.0 3.0 3.0 
Effective binder-to-dust ratio 63 1.0 0.1 0.0 1.3 
HMA in-place air voids (percent) 71 7.3 0.9 4.3 10.0 
Computed E* (psi) (millions) 71 5.6 0.66 4.6 7.6 
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Table 76. Pearson’s correlation tables for STATE 1 HMA PMS cracking. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
Percent passing 1-inch sieve 0.149 0.2605 Fair 
Percent passing ¾-inch sieve 0.330 0.0107 Strong 
Percent passing ½-inch sieve 0.379 0.0031 Strong 
Percent passing 3/8-inch sieve 0.237 0.0705 Strong 
Percent passing ¼-inch sieve 0.055 0.6800 Weak 
Percent passing No. 4 sieve 0.056 0.6744 Weak 
Percent passing No. 8 sieve 0.041 0.7564 Weak 
Percent passing No. 10 sieve 0.033 0.8062 Weak 
Percent passing No. 16 sieve 0.044 0.7404 Weak 
Percent passing No. 30 sieve 0.095 0.4733 Weak 
Percent passing No. 40 sieve 0.151 0.2536 Fair 
Percent passing No. 50 sieve 0.204 0.1204 Fair 
Percent passing No. 100 sieve 0.267 0.041 Strong 
Percent passing No. 200 sieve 0.288 0.0268 Strong 
Percent AC binder content 0.290 0.0261 Strong 
HMA bulk density (pcf) 0.011 0.9325 Weak 
HMA rice density (pcf) −0.028 0.8342 Weak 
HMA lab air voids (percent) −0.142 0.2829 Fair 
HMA VMA (percent) 0.262 0.0611 Strong 
HMA VFA (percent) 0.330 0.0168 Strong 
Coarse aggregate specific gravity −0.073 0.6052 Weak 
Effective binder-to-dust ratio −0.131 0.3558 Fair 
HMA in-place air voids (percent) 0.007 0.9587 Weak 
Computed E* (psi) (millions) 0.061 0.6488 Weak 
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Table 77. Pearson’s correlation tables for STATE 1 HMA PMS rutting. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
Percent passing 1-inch sieve 0.129 0.2984 Fair 
Percent passing ¾-inch sieve 0.215 0.0805 Weak 
Percent passing ½-inch sieve 0.175 0.1566 Fair 
Percent passing 3/8-inch sieve 0.094 0.4479 Weak 
Percent passing ¼-inch sieve −0.066 0.5976 Weak 
Percent passing No. 4 sieve −0.122 0.3272 Weak 
Percent passing No. 8 sieve −0.148 0.2324 Fair 
Percent passing No. 10 sieve −0.149 0.2302 Fair 
Percent passing No. 16 sieve −0.11814 0.341 Fair 
Percent passing No. 30 sieve −0.07432 0.55 Weak 
Percent passing No. 40 sieve −0.02419 0.846 Weak 
Percent passing No. 50 sieve 0.08812 0.4783 Weak 
Percent passing No. 100 sieve 0.34981 0.0037 Strong 
Percent passing No. 200 sieve 0.334 0.0057 Strong 
Percent AC binder content −0.0054 0.9649 Weak 
HMA bulk density (pcf) −0.0531 0.6694 Weak 
HMA rice density (pcf) −0.0374 0.7636 Weak 
HMA lab air voids (percent) 0.0681 0.5835 Weak 
HMA VMA (percent) 0.0316 0.8102 Weak 
HMA VFA (percent) −0.0721 0.5838 Weak 
Coarse aggregate specific gravity 0.0757 0.5651 Weak 
Effective binder-to-dust ratio 0.12748 0.3317 Fair 
HMA in-place air voids (percent) −0.0677 0.5888 Weak 
Computed E* (psi) (millions) 0.28603 0.0199 Strong 

State 1 DOT Stepwise Regression Analysis 

Average Cracking Versus State 1 DOT QA Data items 

The research team performed stepwise regression to develop basic model formations and to 
identify QA test data items that may be included in a finalized cracking prediction model. The 
basic model is presented in table 78.
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Table 78. Stepwise selection of basic cracking prediction models developed using State 1 DOT QA test data. 

Step Effect Entered 
Effect 

Removed 
Number 

Effects In Model R2 
Cp 

Statistic 
PRESS 
Statistic Pr > F** 

Coefficient 
Estimate** 

0 Intercept — 1 0.0000 13.4733 238.9724 1.0000 6.072716 

1 Percent passing 
⅜-inch sieve — 2 0.1127 8.6571 222.5405 0.0184 — 

2 HMA bulk 
density 

— 3 0.1737 6.9698 211.9421 0.0719 −0.254286 

3 Computed HMA 
E* 

— 4 0.2596 3.7716 198.4376 0.0270 0.000005259 

4 Percent passing 
No. 4 sieve 

— 5 0.3392 0.9626 182.0810 0.0262 0.387546 

5 Percent passing 
⅜-inch sieve — 4 0.3384 −0.9911 173.7097 0.8223 — 

6 HMA in-place air 
voids 

— 5 0.3821 −1.6315 177.5877 0.0848 1.373192 

7 Percent passing 
¾-inch sieve 

— 6 0.4384 −3.0411* 167.8665* 0.0437 −0.259129 
Stepwise selection summary: RMSE = 1.73053, R2 = 0.4384, N = 67. 
—No data. 
*Optimal value of criterion. 
**Values at step 7. 
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Information presented in table 78 shows the following: 

• HMA bulk density, computed HMA E*, percent passing No. 4 sieve, HMA in-place air 
voids, and percent passing ¾-inch sieve were significant data items included in the model 
(p-value less than 10 percent). 

• Increasing HMA bulk density and intermediate aggregate size fraction (percent passing 
¾-inch sieve size) resulted in a decrease in cracking. 

• Increasing as-placed HMA air voids and the number of fines in the HMA mix percent 
passing No. 4 sieve resulted in increased cracking. 

• Increasing computed HMA E* did increase cracking. This result was not as expected and 
may be due to lack of interaction variables, such as traffic and layer thicknesses, along 
with assumption of HMA binder type. 

Except for percent passing ¾-inch sieve, all other data items included in this preliminary model 
were classified as weak in table 75. The model R2 of 44 percent and RMSE of 1.7 was deemed 
reasonable. 

Average Rutting Versus State 1 DOT QA Data Items 

Table 79 presents the outcome of stepwise regression performed to develop basic model 
formations and to identify QA test data items that may be included in a finalized rutting 
prediction model. The results in table 79 show HMA bulk density, computed HMA E*, and 
HMA lab and in-place air voids as the QA data items that influenced average HMA rutting after 
15 yr in service. Criteria for selecting these data items were described in the previous section, 
Overview of Data Analysis Methodology. All three data items had a weak-to-strong correlation 
to average rutting, as shown in table 75. The relationship presented in table 79 shows that 
increasing HMA VMA or HMA in-place air voids resulted in an increase in rutting, which is as 
expected. However, the trend showing an increase in computed HMA E*, increasing rutting, was 
not in agreement with expected trends. This finding may be due to absence of other interacting 
factors such as traffic and layer thicknesses or assumptions made in estimating the parameter. 
The model’s R2 of 24 percent and RMSE of 0.065 inch were deemed reasonable. 
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Table 79. Stepwise selection summary for relationship between average rutting and State 1 
DOT QA test data items. 

Step 
Effect 

Entered 
Effect 

Removed 

No. 
Effects 

In 
Model 

R2 
Cp 

Statistic 
PRESS 
Statistic 

Pr > 
F** 

Coefficient 
Estimate** 

0 Intercept — 1 0.0000 22.17 0.3078 1.0000 −0.686590 

1 Computed 
HMA E* 

— 2 0.1335 13.93 0.2899 0.0056 0.025682 

2 HMA lab 
VMA 

— 3 0.2105 10.08 0.2781 0.0271 0.022777 

3 HMA lab 
air voids 

— 4 0.2461 9.37* 0.2764* 0.1230 5.642E-8 

Stepwise selection summary: RMSE = 0.06561, R2 = 0.2461, N = 67. 
—No data. 
*Optimal value of criterion. 
**Values at step 4. 

State 1 DOT Finalized Generalized Linear Model/ANOVA Regression Analysis 

Average Cracking Versus State 1 DOT QA Data Items 

Table 80 presents the outcome of generalized linear model (GLM) regression performed to 
finalize the average cracking and HMA QA test data items’ relationship and model. The results 
in table 80 confirm that the QA data items identified in table 79 (i.e., HMA bulk density, 
computed HMA E*, percent passing No. 4 sieve, HMA in-place air voids, and percent passing 
¾-inch sieve) are the QA data items that most influenced average HMA cracking. A review of 
the finalized model showed a reasonable R2 of 42 percent and RMSE of 1.7 percent, which 
implied that QA data items measured in the lab and field and then aggregated by project or PMS 
sections can be leading indicators of future pavement performance. 

Table 80. GLM summary for relationship between average cracking and State 1 DOT QA 
test data items. 

Parameter Estimate Pr > |t| 
Intercept 7.574451395 0.5593 
Percent passing ¾-inch sieve −0.281488073 0.0254 
Percent passing No. 4 sieve 0.350628747 <0.0001 
HMA bulk density −0.244028349 0.0008 
HMA in-place air voids 1.519550924 0.0018 
Computed HMA E* 0.000005222 <0.0001 

R2 = 0.421515, COV = 47.86, RMSE = 1.755694. 

Key trends observed from the model in table 80 are as follows: 

• The increase of fines in the HMA mix (i.e., increased percent passing the No. 4 sieve) 
does increase cracking, while increasing the amount of intermediate aggregate sizes 
(percent passing ¾-inch sieve size) does decrease cracking. 
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• The increase of field-measured HMA air voids does increase cracking. 

• The increase of E* does influence cracking development and progression. The trend 
shown by E* is, however, not as expected, as increasing E* generally does reduce 
cracking. It is, however, believed that the observed trend may be influenced by the 
absence of interacting factors, such as layer thickness, traffic, and base/subgrade support. 

• The model’s diagnostic statistics (R2 = 42 percent, COV = 47.8 percent, and RMSE = 
1.75 percent cracking) were deemed reasonable. 

Average Rutting Versus State 1 DOT QA Data Items 

Table 81 presents the finalized rutting prediction model based on the measured State 1 DOT 
HMA QA test data items. The results in table 81 confirm the trends observed in table 79—
increasing voids in the HMA mix does increase measured rutting. Additional QA data items 
were included in the finalized model as they were found to significantly impact rutting distress 
with little correlation with other QA data items included in the model (VIF less than 10). The 
additional variables indicated the following: 

• Increasing the proportion of intermediate aggregates (less than the ¾-inch sieve size) 
reduced rutting, which is as expected. However, increasing the number of fines in the 
HMA mix (percent passing No. 40 sieve) does increase the amount of rutting observed. 

• Increasing HMA asphalt binder content does increase observed rutting. Excessive 
amounts of binder in HMA can lead to deficiencies in mix stability, leading to increased 
plastic strain when subjected to traffic loading and thus rutting. 

Table 81. GLM summary for relationship between average rutting and State 1 DOT QA 
test data items. 

Variable Parameter Estimate Pr > |t| Variance Inflation 
Intercept −0.76223 0.0073 0 
HMA percent passing ¾-inch sieve −0.00801 0.0925 3.73795 
HMA percent passing No. 40 sieve 0.00849 0.0272 1.61257 
HMA percent asphalt binder 0.09536 0.0144 2.42105 
HMA lab air voids 0.03434 0.0261 1.35317 
HMA field-measured air voids 0.03716 0.0313 3.16334 
Computed HMA E* 1.060164E-7 0.0005 5.19951 

R2 = 0.2689, COV = 63.33, RMSE = 0.06363. 

The final model presented in table 81 appears to be mostly reasonable and does indicate that QA 
test data values collected in the field and lab can be used to predict future rutting performance. 
The model presented an R2 of 0.27 and RMSE of 0.063. The low R2 was deemed reasonable, 
considering that only QA data items were included. Figure 111 shows plots of predicted versus 
measured rutting, and figure 112 shows the residual (error) between measured and predicted 
rutting. Figure 113 through figure 118 shows plots of residual versus the model presented in the 
regressor variables. The plots show minimal or no bias. 
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Source: FHWA. 

Figure 111. Graph. Plots of predicted versus measured rutting in State 1. 

 
Source: FHWA. 

Figure 112. Graph. Residual (error) between measured and predicted rutting in State 1. 
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Source: FHWA. 

Figure 113. Chart. Plot of residual in State 1-predicted rutting versus percent passing 
¾ inch. 

 
Source: FHWA. 

Figure 114. Chart. Plot of residual in State 1-predicted rutting versus percent passing 
No. 40. 
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Source: FHWA. 

Figure 115. Chart. Plot of residual in State 1-predicted rutting versus binder content. 

 
Source: FHWA. 

Figure 116. Chart. Plot of residual in State 1-predicted rutting versus HMA air voids in the 
lab. 
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Source: FHWA. 

Figure 117. Chart. Plot of residual in State 1-predicted rutting versus in-place HMA air 
voids. 

 
Source: FHWA. 

Figure 118. Chart. Plot of residual in State 1-predicted rutting versus computed E*. 

Impact of Construction Variability on Cracking/Rutting 

Variability in QA test values within a PMS section or construction project is typically an 
indicator of consistency in construction. For PRS, pay factors for estimating contract fees are 
determined based on many factors, including variability along the given project (an indication of 
construction quality). Also, excessive variability in construction quality can lead to localized 
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early failures along the project, as several localized areas may exhibit significant deficiencies, 
including thickness, strength, modulus, and air voids. 

Thus, additional analysis was done using the State 1 DOT QA test data to determine whether, 
within projects (comprising several 1-mi PMS sections), variability in QA data items does 
impact variability in observed cracking and rutting. Variability was characterized as COV of 
measured cracking/rutting and COV of QA test data item along a given project. Analysis was 
limited to performing an ANOVA to determine the COV of QA data items that had a significant 
impact on COV of cracking/rutting. The results of the analysis for cracking and rutting are 
presented in table 82 and table 83, respectively. 

The results in table 82 shows that COV of HMA gradation, density, air voids, and VFA had a 
significant influence on COV of cracking. For rutting, the significant variables were COV of 
gradation, air voids, and E*. These QA test data items, therefore, could serve as a measure of 
overall construction quality and can be included in PMS as a leading indicator of early failures 
with a given project. 

Table 82. ANOVA results for relationship between COV of cracking and COV of State 1 
DOT QA test data items. 

Source Type Ⅲ SS Mean Square F Value Pr > F 
COV of HMA percent passing ¾-inch 
sieve 6,915.249 6,915.249 2.31 0.1355 

COV of HMA percent passing ½-inch 
sieve 13,477.919 13,477.919 4.51 0.0395 

COV of lab-measured HMA maximum 
density 26,435.744 26,435.744 8.85 0.0048 

COV of lab-measured HMA air voids  51,461.185 51,461.185 17.22 0.0002 
COV of lab-measured HMA VFA 45,390.820 45,390.820 15.19 0.0003 

R2 = 0.3948, COV = 59.54, RMSE = 54.663. 

Table 83. ANOVA results for relationship between COV of rutting and COV of State 1 
DOT QA test data items. 

Source Type Ⅲ SS Mean Square F Value Pr > F 
COV HMA percent passing No. 50 
sieve 

6,919.341 6,919.34 6.05 0.0174 

COV HMA coarse aggregate specific 
gravity 

2,712.017 2,712.01 2.37 0.1298 

COV of in-place HMA air voids 10,325.891 10,325.89 9.03 0.0041 
COV of computed E* 5,285.990 5,285.99 4.62 0.0364 

R2 = 0.259733, COV = 65.03, RMSE = 33.81. 

Use of Derived Parameters to Predict Performance 

Previous chapters of the report discussed that parameters “derived” as a function of mix 
volumetrics and binder properties tend to be strong indicators of performance. There is a 
potential for derived parameters such as the dynamic modulus (level 3 input for AASHTOWare 
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ME), effective air void content (correlated to the specific surface of the aggregate in mixture, Sa, 
and durability), and resistivity (correlated to rutting resistance) to be incorporated into PMS-type 
performance forecasting models. These parameters offer the benefit of combining mix design 
and binder properties to characterize overall HMA material property rather than relying on a 
single QA data item that may not fully capture the overall characteristic of the HMA material. 
Computed parameters thus should correlate better with performance. 

The project team explored the use of “derived” parameters for the development of performance 
prediction models. The data used in the statistical analyses presented in the preceding section 
were used to calculate derived parameters discussed in chapter 2; these parameters have proven 
correlation to performance. These parameters were resistivity, effective air void content, and 
specific surface of aggregate mixture. The results of the statistical analyses, which followed the 
same steps as those presented earlier in this section for conventional QA parameters, are 
presented in the following tables: 

• Table 84, for average cracking in State 1 DOT data. The derived parameter included in 
the model is effective air void content. The corresponding results for a model with 
conventional QA parameters are presented in table 80. 

• Table 85, for COV cracking in State 1 DOT data. The derived parameter included in the 
model is COV of effective air void content. The corresponding results for a model with 
conventional QA parameters are presented in table 81. 

• Table 86, for average rutting in State 1 DOT data. The derived parameter included in the 
model is effective air void content. The corresponding results for a model with 
conventional QA parameters are presented in table 82. 

• Table 87, for COV rutting in State 1 DOT data. The derived parameter included in the 
model is COV of specific surface of aggregate (SAI). The corresponding results for a 
model with conventional QA parameters are presented in table 83. 

Results presented in table 84 through table 87 were a means to assess the improvements that can 
be expected with the inclusion of the derived parameters, rather than the use of the conventional 
QA test results. Table 88 summarizes the R2 obtained for the prediction models based on the 
conventional QA parameters directly obtained from State QA databases and the derived 
parameters. It is clear, at least based on goodness of fit, that the models were improved in some 
cases or of similar predictive capacity, i.e., for average cracking, COV cracking, and average 
rutting. These results are encouraging for recommending the use of derived parameters as 
agencies consider integrating QA data for performance prediction. 
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Table 84. GLM summary (model coefficients) for relationship between average cracking 
and “derived” parameters from State 1 DOT QA test data items. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 47.49796215 11.44532672 4.15 0.0001 
Percent passing No. 200 0.88585615 0.31857024 2.78 0.0077 
Asphalt content −2.25062843 0.83891162 −2.68 0.0100 
Bulk density −0.24485616 0.06643955 −3.69 0.0006 
Effective air void content −0.58676683 0.24078475 −2.44 0.0186 

R2 = 0.414821, COV = 48.87, RMSE = 1.780556, N = 53. 

Table 85. GLM summary (model coefficients) for relationship between COV cracking and 
“derived” parameters from State 1 DOT QA test data items. 

Parameter Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 47.497962 11.44532672 4.15 0.0001 
COV percent passing 1½ inches 0.88585615 0.31857024 2.78 0.0077 
COV percent passing No. 4 −2.25062843 0.83891162 −2.68 0.0100 
COV rice density −0.24485616 0.06643955 −3.69 0.0006 
COV aggregate specific gravity −0.58676683 0.24078475 −2.44 0.0186 
COV effective air void content — — — — 

R2 = 0.587730, COV = 55.33669, RMSE = 51.13055, N = 36. 
—No data. 

Table 86. GLM summary (model coefficients) for relationship between average rutting and 
“derived” parameters from State 1 DOT QA test data items. 

Parameter Estimate 
Standard 

Error t Value Pr > |t| 
Intercept −0.40708 0.26291 −1.55 0.1275 
Average percent passing ¾-inch 
sieve 

−0.00758 0.00450 −1.68 0.0981 

Average percent asphalt content 0.08178 0.03480 2.35 0.0225 
Average air voids 0.02792 0.01417 1.97 0.0540 
Average in-place air voids 0.03880 0.01676 2.31 0.0245 
Average computed HMA E* 7.735148E-8 2.421006E-8 3.20 0.0024 
Average effective air void 
content 

−0.02361 0.00886 −2.66 0.0102 

R2 = 0.2940, COV = 62.99837, RMSE = 0.06364, N = 60. 
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Table 87. GLM summary (model coefficients) for relationship between COV rutting and 
“derived” parameters from State 1 DOT QA test data items. 

Parameter Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 54.45676 16.20627 3.36 0.0015 
COV effective aggregate 
specific gravity 

29.15084 18.32730 1.59 0.1183 

COV in-place voids 5.18733 1.58622 3.27 0.0020 
COV computed HMA E* −4.93920 2.22859 −2.22 0.0314 
COV specific surface of 
aggregate mixture 

−3.95614 1.33326 −2.97 0.0047 

R2 = 0.2898, COV = 63.03090, RMSE = 33.442404, N = 60. 

Table 88. Summary of goodness of fit using QA data and using derived parameters. 

State Model R2 for Models with 
Conventional QA Data 

R2 for Models with 
Derived Parameters 

State 1  Average cracking 42 42 
COV cracking 40 59 
Average rutting 27 46 
COV rutting 26 25 

Case Study 1: Use of QA Variables to Improve Performance Forecasting for PMS 

As shown in the preceding sections, several QA variables show a significant impact on future 
pavement cracking and rutting performance. A summary of the identified QA variables is 
presented in table 89 for cracking and rutting from the previous analyses. As the primary 
objective of this study was to identify and determine feasibility of incorporating QA variables 
that potentially impact future performance into PMS, this case study was performed to 
understand: 

• If the variables identified in table 89 can be incorporated in PMS-type models. 
• If, once incorporated, they improve the model’s predictive capacity. 

The outcomes of the analyses done to assess impact of QA variables on a PMS-type cracking 
forecasting model is summarized in this section. 
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Table 89. Summary of QA variable types that impact AC pavement cracking and rutting 
distresses.  

Parameter Cracking Rutting 
Intercept X — 
Percent passing ¾-inch sieve X X 
Percent passing No. 4 sieve X — 
Percent passing No. 40 sieve — X 
HMA bulk density X — 
HMA in-place air voids X X 
HMA lab air voids — X 
HMA percent asphalt binder — X 
Computed HMA E* X X 

—No data. 

Incorporation of QA Data Into PMS-Type Database 

For this example case study, data were obtained from multiple sources, namely: 

• State 1 DOT QA data tables. 
• State 1 DOT PMS cracking and rutting data tables. 
• FHWA HPMS data for State 1. 
• FHWA modern-era retrospective analysis for research applications climate data tables. 

By integrating the four data sources, a PMS grade dataset containing basic pavement 
type/structure data, traffic, rutting/cracking performance, and climate data was assembled for 
HMA pavement in State 1. Data from the four sources were integrated using a variety of tools 
and codes as they had considerably different linear referencing systems (LRS) (e.g., GPS, 
highway type and MP, project/contract numbers). The assembled data were reviewed for quality 
and reasonableness. Remedial action was taken to remove significant outliers and erroneous 
records. Mechanistic-type clusters such as SA1 and VTMeff were estimated using the raw QA 
data to obtain parameters that have been demonstrated through research to impact pavement 
performance and thus can be incorporated into the performance forecasting models. The 
assemble data included over 1,400 records. 

Cracking Forecasting Model 

PMS mostly rely on basic polynomial-type models/equations to forecast future distresses and 
condition. An example of such a model relating cracking to pavement age or cumulative truck 
traffic applications is shown in the equation presented in figure 119, while the equation in 
figure 120 presents a modified version, which includes QA and other data types. 

 
Figure 119. Equation. Typical model forms for cracking prediction model. 
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Figure 120. Equation. Modified version of PMS cracking prediction model form. 

Where: 
a0, an, ak, aj = regression coefficients. 
β0, β1 = regression coefficients. 
CRK = alligator fatigue cracking. 
AGE = pavement age in years. 
QA = QA variables. 
CLIM = climate-related variables. 
Others = other variables such as layer thickness. 

Under this case study, the assembled data were fit to the equation forms shown in figure 119 and 
figure 120. The outcomes are as presented in equations shown in figure 121 and figure 122. 

 
Figure 121. Equation. Cracking prediction model based on age. 

 
Figure 122. Equation. Cracking prediction model using age, QA data, and other 

parameters derived from QA data. 

Where: 
THK = HMA thickness. 
DENSITY = HMA density. 
VTMeff = AV + 1.87 − 1.53*SA1. 
AV = HMA as-placed air voids. 
SA1 = (PCT_N50 + PCT_N100 + PCT_N200)/5. 
SUBG = subgrade type (1 = coarse, 0 = fine). 
MAXTEMP = maximum ambient temperature. 

The model statistics for the equations in figure 121 and figure 122, presented in table 90, show 
the significant improvement to the performance prediction model by incorporating data from 
other QA databases, such as traffic and climate. This case study is intended to serve as an 
example of how this study can be implemented. 

Table 90. Model statistics for example PMS cracking prediction models using age and 
additional QA parameters. 

Model  N R2 COV 
RMSE 

(percent) 
Model using age (figure 121) 1,589 0.38 96.3 2.86 
Model using age and QA parameters (figure 122) 1,393 0.55 80.9 2.35 
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Assessment of Impact of QA Variables on Cracking Prediction 

The predictive capacity of the models in figure 121 and figure 122 is shown through the model’s 
diagnostic statistics presented in table 90. Including QA and other parameters resulted in a 
45 percent increase in R2, 17 percent decrease in COV, and 18 percent decrease in standard error 
of the estimate (SEE). 

Figure 123 shows a plot of measured and predicted cracking versus age for the model in 
figure 121 using only age as a variable, whereas figure 124 shows the same for the predictive 
model in figure 122 using age, climate, traffic, and QA variables. A review of the plots presented 
shows the superior predictive capacity of the model using age, QA, traffic, and climate 
parameters. It covers a wider range of measured cracking compared with predictions from age 
alone. Thus, both the diagnostic statistics and plots show a significant increase in the model’s 
predictive capacity with the inclusion of QA and other variables. This increase confirms the 
earlier analyses that shows that QA parameters do impact future pavement performance. It is also 
in agreement with past research that demonstrated the impact of pavement design parameters 
such as HMA thickness and site factors such as climate and subgrade type on performance. 

 
Source: FHWA. 

Figure 123. Graph. Plot of measured and predicted cracking versus age for model with age 
only. 
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Source: FHWA. 

Figure 124. Graph. Plot of measured and predicted cracking versus age for model using 
age and QA data. 

STATISTICAL ANALYSIS FOR STATE 2 

This section presents the results of analysis conducted to assess feasibility of utilizing State 2 
DOT QA test data as a leading indicator of pavement performance. Analysis was done using the 
integrated State 2 DOT PMS and QA test database described in chapter 4 and chapter 5 and 
analysis methodologies previously described in this chapter. Analysis used both network and 
project-specific data. The results are described in the following sections. 

State 2 DOT Correlation Analysis 

Summary of Correlations Between Rutting/IRI and HMA QA Test Data 

Table 91, table 92, and table 93 present the statistics and results of correlation analysis 
(Pearson’s correlation coefficient, r) to assess strength of relationships between rutting and 
State 2 DOT QA test data items. As shown in table 92 and table 93, asphalt binder content and 
HMA mix air voids exhibit strong correlations with both rutting and IRI. HMA density and 
VMA have a weak to fair correlation with both rutting and IRI. The results presented are as 
expected, as binder content has a significant impact on HMA material modulus/stability. HMA 
modulus/stability has significant influence on rutting development and progression. HMA air 
voids significantly impact initial consolidation of the HMA mix and thus plastic strain 
development. The HMA air voids also impact E*, as shown by the Witczak model, and thus 
rutting progression and smoothness loss. The impact of binder content and air voids on 
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smoothness loss is as expected, as HMA stability/modulus deficiencies influenced by these QA 
test data items does result in distress development in general, leading to loss of smoothness. 

Table 91. Summary statistics of State 2 HMA QA data items. 

QA Variables 
No. Data 

Points Mean 
Standard 
Deviation Minimum Maximum 

HMA binder content (top layer) 188 5.38 0.13 5.12 5.67 
HMA binder content (bottom 
layer) 188 5.41 0.14 5.18 5.80 

HMA density (top layer) 185 92.98 0.92 90.40 95.60 
HMA density (bottom layer) 188 93.10 1.08 89.90 95.60 
VMA (top layer) 188 14.51 0.42 13.70 15.60 
VMA (bottom layer) 188 14.89 0.36 13.60 15.40 
HMA air voids (top layer) 188 4.06 0.70 1.50 4.80 
HMA air voids (bottom layer) 183 4.07 0.70 1.50 4.80 

Table 92. Pearson’s correlation tables for State 2 HMA PMS rutting. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
HMA binder content (top layer) −0.3308 <0.0001 Strong 
HMA binder content (bottom layer) −0.3540 <0.0001 Strong 
HMA density (top layer) 0.0593 0.4226 Weak 
HMA density (bottom layer) −0.1435 0.0494 Fair 
VMA (top layer) 0.1462 0.0452 Fair 
VMA (bottom layer) 0.0582 0.4269 Weak 
HMA air voids (top layer) 0.2624 0.0003 Strong 
HMA air voids (bottom layer) 0.2801 0.0001 Strong 

Table 93. Pearson’s correlation tables for State 2 HMA PMS IRI. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
HMA binder content (top layer) −0.159 0.029 Fair 
HMA binder content (bottom layer) −0.2533 0.0005 Strong 
HMA density (top layer) 0.01388 0.8512 Weak 
HMA density (bottom layer) −0.06119 0.4042 Weak 
VMA (top layer) 0.08789 0.2304 Weak 
VMA (bottom layer) 0.14032 0.0548 Fair 
HMA air voids (top layer) 0.23458 0.0012 Strong 
HMA air voids (bottom layer) 0.23318 0.0015 Strong 

Summary of Correlations between Cracking/Faulting and PCC QA Test Data 

Table 94 through table 97 present the summary of data and outcome of correlation analysis for 
cracking and faulting, respectively. As presented in table 94 and table 95, the QA test data items 
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categorized as having strong correlations with cracking were PCC mix constituents (cementitious 
materials content [i.e., cement and fly ash], sand, and additives) and coarse aggregate 
absorptivity (correlates well with coarse aggregate and thus PCC strength and durability). PCC 
w/c ratio, compressive strength, and coarse aggregate content were among the data items with a 
fair correlation with cracking. The QA data items identified as having fair/strong correlation with 
cracking were deemed reasonable as they collectively influence PCC strength and modulus—the 
two key parameters that impact fatigue damage and cracking. Table 96 and table 97 show PCC 
mix constituents (PCC fly ash, coarse aggregate, water, additives, and cement content) along 
with PCC strength and coarse aggregate specific gravity, absorptivity, and LA abrasion as the 
QA data items with a strong correlation to faulting. The identified QA data elements were 
deemed as reasonable, as they affect PCC strength/modulus and joint aggregate interlock (which 
correlates well with coarse aggregate strength/durability characterized by absorptivity), the two 
parameters that significantly influence faulting development and progression. 



 

 201 

Table 94. Summary statistics of State 2 PCC QA data items used for JPCP transverse 
cracking. 

QA Variables 

No. 
Data 

Points Mean 
Standard 
Deviation Minimum Maximum 

PCC fly ash content 382 117 10 113 141 
PCC coarse aggregate content 382 1,342 336 940 1,630 
PCC sand content 382 1,256 84 1,080 1,326 
PCC cement content 382 682 10 678 706 
w/c ratio 382 0.37 0.02 0.35 0.39 
Additive (AEA) amount 382 6.2 3.5 2.5 11.5 
Additive (WRA) amount 340 21.2 3.7 14.0 30.0 
PCC water content 382 251 11 240 270 
PCC slump 382 2.7 0.5 1.8 3.0 
PCC air content 382 6.1 0.6 4.9 6.7 
PCC unit weight 382 144.4 1.0 143.6 146.4 
PCC yield strength 382 13.3 13.0 1.0 27.1 
PCC 28-d compressive 
strength 382 5,752 274 5,390 6,190 

Coarse aggregate specific 
gravity 382 2.7 0.1 2.7 2.8 

Coarse aggregate absorptivity  382 0.6 0.2 0.3 0.8 
Coarse aggregate LA abrasion 382 26.7 7.2 15.0 33.4 
Intermediate aggregate 
specific gravity 160 2.6 0.0 2.6 2.6 

Intermediate aggregate 
absorptivity  160 1.0 0.1 0.8 1.2 

Intermediate aggregate LA 
abrasion 160 41.2 1.9 38.0 43.0 

Fineness modulus 382 3.0 0.2 2.6 3.2 
Fine aggregate specific 
gravity 382 2.6 0.0 2.6 2.6 

Fine aggregate absorptivity  382 0.7 0.1 0.6 0.9 
Sand equivalent 382 94.0 0.9 93.0 97.0 

WRA = water-reducing admixture. 
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Table 95. Pearson’s correlation tables for State 2 JPCP transverse cracking. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
PCC fly ash content 0.2349 <0.0001 Strong 
PCC coarse aggregate content −0.1544 0.0025 Fair 
PCC sand content −0.2541 <0.0001 Strong 
PCC cement content 0.2349 <0.0001 Strong 
w/c ratio 0.1119 0.0288 Fair 
Additive (AEA) amount −0.0527 0.3046 Weak 
Additive (WRA) amount 0.3474 <0.0001 Strong 
PCC water content 0.1928 0.0002 Fair 
PCC slump 0.1375 0.0071 Fair 
PCC air content 0.0505 0.3251 Weak 
PCC unit weight — 0.007 Fair 
PCC yield strength −0.0926 0.0708 Weak 
PCC 28-d compressive strength 0.1947 0.0001 Fair 
Coarse aggregate specific gravity 0.1272 0.0128 Fair 
Coarse aggregate absorptivity  −0.2459 <0.0001 Strong 
Coarse aggregate LA abrasion −0.2038 <0.0001 Fair 
Intermediate aggregate specific gravity 0.2580 0.001 Fair 
Intermediate aggregate absorptivity  −0.1980 0.0121 Fair 
Intermediate aggregate LA abrasion 0.2733 0.0005 Strong 
Fineness modulus −0.0655 0.2014 Weak 
Fine aggregate specific gravity 0.1317 0.01 Fair 
Fine aggregate absorptivity  0.0789 0.1236 Weak 
Sand equivalent 0.1163 0.023 Fair 
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Table 96. Summary statistics of State 2 PCC QA data items used for JPCP transverse joint 
faulting. 

QA Variables 
No. Data 

Points Mean 
Standard 
Deviation Minimum Maximum 

PCC fly ash 
content 382 117 10.20 113 141 

PCC coarse 
aggregate content 382 1,342 335.78 940 1,630 

PCC sand content 382 1,256 84.19 1,080 1,326 
Additive (AEA) 
amount 382 6.2 3.46 2.5 11.5 

Additive (WRA) 
amount 340 21.2 3.66 14 30 

PCC water 
content 382 251.0 11.25 240 270 

PCC slump 382 2.7 0.51 1.75 3 
PCC air content 382 6.1 0.60 4.9 6.7 
PCC unit weight 382 144.4 0.95 143.6 146.4 
PCC yield 
strength 382 13.3 13.02 0.99 27.05 

PCC 7-d 
compressive 
strength 

382 4,370 299.78 3,920 5,370 

PCC 28-d 
compressive 
strength 

382 5,752 274.21 5,390 6,190 

PCC placement 
month 382 7 2.67 2 11 

Coarse aggregate 
specific gravity 382 2.74 0.07 2.665 2.83 

Coarse aggregate 
absorptivity  382 0.64 0.16 0.3 0.8 

Coarse aggregate 
LA abrasion 382 26.69 7.16 15 33.4 

Fineness modulus 382 2.96 0.22 2.64 3.18 
Fine aggregate 
specific gravity 382 2.61 0.01 2.6 2.62 

Fine aggregate 
absorptivity  382 0.72 0.12 0.6 0.9 

Sand equivalent 382 93.95 0.95 93 97 
PCC elastic 
modulus 382 4,321,854 103,288 4,184,747 4,484,564 

w/c ratio 382 0.37 0.016 0.35398 0.38938 
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Table 97. Pearson’s correlation tables for JPCP transverse joint faulting. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
PCC fly ash content −0.2095 <0.0001 Strong 
PCC coarse aggregate content 0.28847 <0.0001 Strong 
PCC sand content 0.32929 <0.0001 Strong 
Additive (AEA) amount −0.1372 0.0072 Fair 
Additive (WRA) amount −0.2534 <0.0001 Strong 
PCC water content −0.3453 <0.0001 Strong 
PCC slump 0.05704 0.2661 Weak 
PCC air content 0.21032 <0.0001 Strong 
PCC unit weight −0.1253 0.0142 Fair 
PCC yield strength 0.3116 <0.0001 Strong 
PCC 7-d compressive strength −0.1192 0.0198 Fair 
PCC 28-d compressive strength 0.11032 0.0311 Fair 
PCC placement month 0.05639 0.2716 Weak 
Coarse aggregate specific gravity −0.315 <0.0001 Strong 
Coarse aggregate absorptivity  0.3676 <0.0001 Strong 
Coarse aggregate LA abrasion 0.34132 <0.0001 Strong 
Fineness modulus 0.24387 <0.0001 Strong 
Fine aggregate specific gravity −0.1103 0.0311 Fair 
Fine aggregate absorptivity  −0.2674 <0.0001 Strong 
Sand equivalent −0.1494 0.0034 Fair 
PCC elastic modulus 0.11194 0.0287 Fair 
w/c ratio −0.2794 <0.0001 Strong 

State 2 DOT Stepwise Regression Analysis 

Average Rutting/IRI Versus State 2 DOT QA Data items 

Table 98 and table 99 present the outcomes of stepwise regression analysis for developing the 
preliminary relationship and models for rutting and IRI, respectively, based on QA test data 
items. For both relationships, HMA binder content (bottom layer) was the only data item 
selected. As binder content is a key indicator of many key HMA properties, such as VFA, air 
voids, and E*, selection of this data item was deemed reasonable. Review of the models’ 
coefficients shows that, for both models, increasing HMA mix binder content results in a 
decrease of rutting and IRI. 
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Table 98. Stepwise selection summary for relationship between rutting and State 2 DOT 
QA test data items. 

Step 
Effect 

Entered 
Effect 

Removed 
No. 

Effects In 
Model 

R2 
Cp 

Statistic 
PRESS 
Statistic Pr > F** 

Coefficient 
Estimate** 

0 Intercept — 1 0.0000 24.93 0.9075 1.0000 1.1788 

1 

HMA 
binder 
content 
(bottom 
layer) 

— 2 0.1177 1.699* 0.8025* <0.0001 −0.125 

Stepwise selection summary: RMSE = 0.06597, R2 = 0.135, N = 181. 
—No data. 
*Optimal value of criterion. 
**Values at step 1. 

Table 99. Stepwise selection summary for relationship between IRI and State 2 DOT QA 
test data. 

Step 
Effect 

Entered 
Effect 

Removed 
No. 

Effects In 
Model 

R2 
Cp 

Statistic 
PRESS 
Statistic 

Pr > 
F** 

Coefficient 
Estimate** 

0 Intercept — 1 0.0000 13.31 52,103 1.0000 239.08 

1 

HMA 
binder 
content 
(bottom 
layer) 

— 2 0.0642 2.7187* 49,217* 0.0005 −29.8127 

Stepwise selection summary: RMSE = 16.23508, R2 = 0.0814, N = 184. 
—No data. 
*Optimal value of criterion. 
**Values at step 1. 

Average Cracking/Faulting Versus State 2 DOT QA Data Items 

Table 100 and table 101 present outcomes of basic model development through stepwise 
regression analysis for JPCP cracking and faulting, respectively. The results in table 100 indicate 
that PCC 7-d compressive strength, w/c ratio, and sand equivalent were the three QA data items 
that met the independent variables selection criteria and thus were included in the preliminary 
model. A detailed examination of the preliminary model shows that, although all three data items 
do impact JPCP faulting development, the model coefficients do present trends that were not as 
expected. The reasons for this situation might include interactions between the selected data 
items and lack of completeness of this model, as key inputs such as traffic and climate are not 
included. The selection of the three data items, however, shows that there is a strong correlation 
between QA data items and JPCP cracking. 

For transverse joint faulting, table 101 shows that PCC coarse aggregate absorptivity, sand 
equivalent, and coarse aggregate content were the three QA data items that met the independent 
variables selection criteria and thus were included in the preliminary model. Detailed 
examination indicated that all three data items are reasonable. The trends, as shown by model 
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coefficients, were also deemed reasonable, because increasing coarse aggregate absorptivity (less 
strength/durability) does decrease load transfer due to aggregate interlock and thus increases 
faulting. Also, increasing PCC coarse aggregate content increases PCC strength/modulus and 
thus reduces faulting, as indicated by the models’ coefficients. 

Table 100. Stepwise selection summary for the relationship between JPCP transverse 
cracking and State 2 DOT QA test data items. 

Step 
Effect 

Entered 
Effect 

Removed 

No. 
Effects 

In 
Model 

R2 Cp PRESS Pr > F Estimate 
0 Intercept — 1 0.0000 140.101 26,581.41 1.0000 −270.61 

1 
PCC 7-d 
compressive 
strength 

— 
2 0.1577 60.092 22,601.51 <0.0001 0.015 

2 w/c ratio — 3 0.2458 16.263 20,343.20 <0.0001 155.53 

3 Sand 
equivalent 

— 4 0.2763 2.3923* 19,795.69* <0.0001 1.584 
R2 = 0.2763, RMSE = 7.11510, N = 382. 
—No data. 
*Optimal value of criterion. 

Table 101. Stepwise selection summary for relationship between JPCP transverse joint 
faulting and State 2 DOT QA test data items. 

Step 
Effect 

Entered 
Effect 

Removed 

No. 
Effects 

In 
Model 

R2 Cp PRESS Pr > F Estimate 

0 Intercept — 
1 0.0000 80.2788 84.3902 1.0000 10.000748 

1 
Coarse 
aggregate 
absorptivity 

— 
2 0.1416 23.0699 72.8125 <0.0001 2.370160 

2 Sand 
equivalent — 

3 0.1869 6.0956 69.1270 <0.0001 −0.107917 

3 
PCC coarse 
aggregate 
content 

— 
4 0.1991 3.0071* 68.1633* 0.0245 −0.000597 

R2 = 0.44719, RMSE = 0.0991, N = 382. 
—No data. 
*Optimal value of criterion. 
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State 2 DOT Finalized GLM/ANOVA Regression Analysis 

Average Rutting/IRI Versus State 2 DOT QA Data Items 

Table 102 and table 103 present the outcomes of GLM regression analysis for developing the 
finalized relationship/models for rutting/IRI (based on QA test data items). For the rutting model, 
table 102 shows binder content as the significant variable included in the model. As expected, 
increasing binder content resulted in a decrease in rutting. The R2, COV, and RMSE of this 
model were deemed reasonable (note that the model does not include other key variables such as 
traffic, climate, and thickness). For IRI, in table 103, the significant variables were binder 
content and air voids. As expected, increasing binder content reduced IRI, while increasing air 
voids increased IRI. Thus, the model was deemed reasonable. Model diagnostic statistics R2, 
COV, and RMSE were deemed as reasonable, as this was not a full model with all parameters 
included. 

Table 102. GLM summary for relationship between average rutting and State 2 DOT QA 
test data items. 

Parameter Estimate Pr > |t| 
Intercept 1.17446 <0.0001 
HMA binder content (bottom layer) −0.1679 <0.0001 

R2 = 0.1346, COV = 25.9, RMSE = 0.0652. 

Table 103. GLM summary for relationship between average IRI and State 2 DOT QA test 
data items. 

Parameter Estimate Pr > |t| 
Intercept 274.32 0.0052 
HMA binder content (bottom layer) −25.946 0.0299 
HMA air voids (top layer) 3.7107 0.1172 

R2 = 0.0814, COV = 20.73, RMSE = 16.122. 

Average Cracking/Faulting Versus State 2 DOT QA Data Items 

Table 104 and table 105 present the outcomes of GLM regression analysis for developing the 
finalized relationship and models for cracking and faulting, respectively (based on PCC QA test 
data items). For the cracking model, table 104 shows that PCC unit weight and w/c ratio as the 
significant variables included in the model. PCC compressive strength decreases with increasing 
w/c ratio. Therefore, increasing w/c ratio would result in increased cracking, as shown by the 
model in table 104. Also, in general, PCC strength increases with increased unit weight; thus, as 
expected, the model shows that increasing PCC unit weight does reduce cracking. The models’ 
R2 was low, while COV was high. Model SEE was deemed reasonable. The low R2 and high 
COV values were due mostly to the fact that this was not a full model that considered other key 
parameters such as climate, traffic, and joint load transfer mechanism characterization. 



 

 208 

Table 104. GLM summary for relationship between average JPCP transverse cracking and 
State 2 DOT QA test data items. 

Parameter Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 218.2 64.5 3.38 0.0008 
w/c ratio 91.1 27.2 3.34 0.0009 
PCC unit weight −1.721 0.46 −3.70 0.0002 

R2 = 0.0469, COV = 255.74, RMSE = 8.1. 

Table 105 shows that increasing coarse aggregate absorptivity (indicator of lower aggregate 
durability and aggregate interlock) results in an increase in faulting. This increase is as expected. 
Increasing both PCC sand equivalent and 7-d compressive strength reduces faulting. As a higher 
sand equivalent value indicates that there is less claylike material in the PCC (i.e., increased 
durability and higher PCC strength), the two trends were found to be reasonable and as expected. 
The R2, COV, and RMSE of this model were deemed reasonable (note that the model does not 
include other key variables such as traffic, climate, or thickness). 

Table 105. GLM summary for relationship between average JPCP transverse joint faulting 
and State 2 DOT QA test data items. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 11.42 2.376 4.81 <0.0001 
Coarse aggregate 
absorptivity 1.15 0.141 8.13 <0.0001 

Sand equivalent −0.11 0.024 −4.65 <0.0001 
PCC 7-d compressive 
strength −0.000206 0.0000768 −2.69 0.0075 

R2 = 0.188236, COV = 70.568, RMSE = 0.437632. 

Use of Derived Parameters to Predict Performance 

With the types of QA data elements available with State 2 DOT, the evaluation of the use of 
derived parameters was not possible. Therefore, models with the use of derived parameters are 
not presented in this section. 

Case Study 2: Utilizing Data from Innovative Technologies as Leading Indicators of 
Performance 

Case Study 2a: Evaluation of Impact of RWD-Measured Maximum Deflection on Fatigue 
Cracking Observed in HWY NN (MP 33.1–47.3) 

The research team selected an overlay construction project from 2008 to evaluate the ability of 
continuous deflection monitoring devices to identify structural conditions that might affect future 
pavement performance. The construction project selected is located along SH NN in State 2. The 
selected project corridor spans between MP 33.1 and MP 47.3, while the duration of 
performance evaluation was between 2007 and 2013 for this case study. The project timeline is 
illustrated in figure 125. 
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Source: FHWA. 
OL = overlay; M&F = mill and fill. 

Figure 125. Illustration. Timeline of project performance evaluation. 

The project corridor considered showed poor performance and recorded high levels of distress in 
2007, based on pre-overlay data aggregated in the State PMS. The reported fatigue, rutting, and 
IRI are shown in figure 126, figure 127, and figure 128. A rehabilitation activity was performed 
between MP 33.1 and MP 45.2 in 2008 as noted in the State 2 DOT QA and contracts databases. 
The 2008 rehabilitation activity involved a 4-inch overlay between MP 33.1 and MP 41.2, 
followed by a 5-inch mill and fill between MP 41.2 and MP 45.2. The QA materials data 
indicated that two mixes were used in this effort, as shown in table 106 through table 109, a 
virgin mix and a RAP mix. However, the location references for the mixes were not evident, as 
the stationing data were missing, i.e., not recorded (although the database offers the feature to 
record the location reference), in the construction records. Table 108 and table 109 show that the 
RAP mix had higher air voids and VMA. Construction was completed in September 2008. The 
focus of this specific evaluation was not on the QA records, but instead was on the ability of an 
innovative technology, such a continuous deflection monitoring device, to identify structural 
deficiencies that might result from either low-quality materials or construction and could affect 
future pavement performance. 
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Source: FHWA. 

Figure 126. Chart. Fatigue cracking in selected segment of SH NN in 2007 pre-overlay. 

 
Source: FHWA. 

Figure 127. Chart. Average rutting in selected segment of SH NN in 2007 pre-overlay. 
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Source: FHWA. 

Figure 128. Chart. Average IRI in selected segment of SH NN in 2007 pre-overlay. 

Table 106. QA test result summary of asphalt content for the SH NN project. 

Mix ID 
Quantity 

(Tons) 
Number of 

Tests QL PF 
I/DP 

(Dollars) 
Mix 168525 17,404 18 96.500 1.05000 4,612.06 
64-28 W/RAP 14,568 15 99.165 1.05000 4,370.40 

QL = Quality Level; PF = Pay Factor; I/DP = incentive and disincentive payment. 

Table 107. QA test result summary of mat density for the SH NN project. 

Mix ID 
Quantity 

(Tons) 
Number of 

Tests QL PF 
I/DP 

(Dollars) 
Mix 168525 17,404 36 95.274 1.04440 14,332.69 
64-28 W/RAP 14,568 30 97.857 1.05000 16,826.04 

Table 108. QA test result summary of VMA for the SH NN project. 

Mix ID 
Quantity 

(Tons) 
Number of 

Tests QL PF 
I/DP 

(Dollars) 
Mix 168525 17,404 18 99.877 1.05000 4,612.06 
64-28 W/RAP 14,568 15 75.067 0.93359 –5,804.55 
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Table 109. QA test result summary of air voids for the SH NN project. 

Mix ID 
Quantity 

(Tons) 
Number of 

Tests QL PF 
I/DP 

(Dollars) 
Mix 168525 17,404 18 97.333 1.05000 13,836.18 
64-28 W/RAP 14,568 15 53.905 0.76109 –62,649.13 

The continuous deflection monitoring device that provided structural response data was the 
RWD. Deflection data were collected within 12 mo of pavement construction for this project. 
Deflection data are plotted in figure 129, figure 130, and figure 131, overlapping field fatigue 
cracking, average rutting, and IRI at every 1/10th of a mile. Deflection data are distinguished for 
the segments that underwent 4-inch overlay and 5-inch mill and fill. Please note that the segment 
between MP 45.2 and MP 47.3 did not have a rehabilitation treatment. The average measured 
deflections were 13 mils and 19 mils, suggesting a reduced structural capacity of the latter 
segment. The performance data agree with the observed lower structural capacity, indicating that 
the higher distress in the latter segment is a consequence of a downside in the construction event. 

 
Source: FHWA. 

Figure 129. Chart. Fatigue cracking in selected segment of SH NN in 2008 post-overlay. 
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Source: FHWA. 

Figure 130. Chart. Average rutting in selected segment of SH NN in 2008 post-overlay. 

 
Source: FHWA. 

Figure 131. Chart. Average IRI in selected segment of SH NN in 2008 post-overlay. 

Clearly, the QA data available do not allow the research team to fully corroborate this fact, 
which is not the intent of this analysis. However, the data do verify that the RWD deflections can 
signal the presence of a weaker section that is likely to develop distresses sooner than 
anticipated. Communication with the State DOT and a review of the roadway images did not 
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indicate the presence of traffic-altering operations (the presence of warehouses or intersections 
with other high-traffic roadways). Performance data tracked over the next several years indicated 
that the latter segment continued to deteriorate until a second rehabilitation activity (cold in-
place recycling) was performed between MP 41.2 and MP 47.3, which reduced all critical 
distresses. Figure 132 and figure 133 show the fatigue cracking and IRI within the highway 
corridor being evaluated and highlight the increase in distresses in the latter segment. 
Performance data post-2012 rehabilitation, however, show reduced cracking and IRI in the 
project. 

 
Source: FHWA. 

Figure 132. Chart. Average fatigue cracking in selected SH NN corridor from 2009 to 2013. 
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Source: FHWA. 

Figure 133. Chart. Average IRI in selected SH NN highway corridor from 2009 to 2013. 

Detailed Statistical Analysis 

The observed trends in figure 129 through figure 131 were further investigated by performing 
detailed ANOVA to determine whether RWD maximum deflection measured within 12 mo of 
construction had a significant impact on fatigue cracking, rutting, and IRI (after 5 yr in service). 
Analysis, as described previously, used the model form in figure 134: 

 
Figure 134. Equation. Model form to estimate distress or IRI. 

Where: 
Distress or IRI = fatigue cracking or rutting or IRI. 
δ = maximum deflection class. 

<15 mils = low. 
>15 mils = high. 

Results are presented in table 110 through table 112 for fatigue cracking, rutting, and IRI, 
respectively. 
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Table 110. Summary of ANOVA results indicating significance of RWD maximum 
deflection on future fatigue cracking distress. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 1,156.351 79.3692 14.57 <0.0001 
Maximum deflection, low −1,108.223 107.5032 −10.31 <0.0001 
Maximum deflection, high 0.000 — — — 

R2 = 0. 40513, COV = 151.41, RMSE = 836.20, N = 244. 
—No data. 

Table 111. Summary of ANOVA results indicating significance of RWD maximum 
deflection on future rutting distress. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 0.143963 0.00267188 53.88 <0.0001 
Maximum deflection, low −0.0307308 0.00361897 −8.49 <0.0001 
Maximum deflection, high 0.000 — — — 

R2 = 0. 22956, COV = 22.128, RMSE = 0.02815, N = 244. 
—No data. 

Table 112. Summary of ANOVA results indicating significance of RWD maximum 
deflection on future IRI. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 115.1869 4.20600 27.39 <0.0001 
Maximum deflection, low 14.2745 13.60403 1.05 0.2949 
Maximum deflection, high −41.3936 5.67421 −7.30 <0.0001 

R2 = 0. 1774, COV = 49.55, RMSE = 46.646, N = 285. 

The results in table 110 through table 112 show the following: 

• RWD-measured pavement deflection shows an impact on all three performance measures 
(cracking, rutting, and IRI). 

• Pavement sections with measured maximum deflection less than 15 mils exhibited the 
least amount of distress. 

• Pavement sections with measured maximum deflection greater than 25 mils exhibited the 
highest amount of distress. 

• Fatigue cracking had the highest R2 with RWD deflections (40 percent). For rutting and 
IRI, R2 was 15 percent to 18 percent. 

The results show that, at the project level, RWD-measured deflection can be a good indicator of 
future performance. The suitability of RWD-measured deflection data at the network level as a 
leading indicator of performance will need to be investigated by agencies. Please note that it is 
not the intent of this research to determine whether RWD can serve as a valuable QA tool. This 
case study does not validate or disprove the potential of any TSDD for use in QA. 
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Case Study 2b: Evaluation of Field-Measured Dowel Misalignment on Future Faulting 
Distress 

Field-measured JPCP transverse joint dowel misalignment (S) data were evaluated to assess the 
feasibility of using such data as a leading indicator for future faulting performance. The data 
were obtained for four projects in State 2. The projects were constructed between 2011 and 2013, 
and, within the selected project segment, each project showed varying levels of faulting. 
Figure 135 shows the relationship between overall S and JPCP transverse joint faulting (after 
2-4 yr in service). The information presented in figure 135 shows that, for this project, joints 
with S less than 0.6 experience no significant levels of faulting. However, for joints with S 
greater than 0.6, faulting after 2–4 yr in service increased significantly to over 0.12 inches (the 
threshold design value). The plot also shows the relationship between S and faulting was 
nonlinear. 

 
Source: FHWA. 

Figure 135. Chart. Relationship between overall S and JPCP transverse joint faulting (after 
2–4 yr in service). 

The nonlinear relationship between S and faulting implied that fitting a linear model to the S 
parameter and faulting measurements would not produce meaningful models. Also, there were 
insufficient data for performing a full-scale ANOVA test. A more appropriate methodology for 
analysis was thus development of a nonlinear model relating S to measured faulting and assess 
the reasonableness of the model faulting predictions (i.e., goodness of fit and bias). The research 
team assessed fitness based on model diagnostic statistics R2 RMSE. Bias was assessed by 
performing a paired t-test to determine whether measured and predicted faulting were from the 
same population. The nonlinear model form is as presented in figure 136. 

 
Figure 136. Equation. Faulting. 
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Where: 
Fault = average transverse joint faulting, inches. 
S = dowel misalignment, mils. 
α, β = regression coefficients. 

The models’ diagnostic statistics and t-test results are presented in table 113 and table 114. 
Table 113 shows model diagnostic statistics (R2 = 0.9778, COV = 14.5, RMSE = 0.01156), 
which were all deemed reasonable. Figure 137 shows plot of predicted and measured faulting, 
which was reasonable. The paired t-test results in table 114 showed that, at the 5 percent 
significance level, measured and predicted faulting were essentially from the same population. 
The results presented showed a very reasonable relationship between dowel misalignment 
measure S and faulting. This result implies that the level of S measured postconstruction can 
effectively indicate future faulting levels. Thus, the measure of dowel alignment is potentially a 
leading indicator of faulting development. There is a potential benefit to using this parameter in 
the development of faulting prediction models. 

Table 113. Faulting and dowel misalignment property S nonlinear model diagnostic 
statistics. 

Source DF Sum of Squares Mean Square F Value Pr > F 
Model 1 0.0845 0.0845 388.88 <0.0001 
Error 7 0.00152 0.000217 — — 
Uncorrected total 8 0.0860 — — — 

R2 = 0.9778, COV = 14.5, RMSE = 0.01156. 
—No data. 
DF = degrees of freedom. 

Table 114. Bias testing for outputs from the faulting and dowel misalignment property S 
nonlinear model (paired t-test of measured versus predicted faulting). 

Mean 95th Percent CL 
Mean 

Standard 
Deviation 

95th Percent CL 
Standard Deviation t Value Pr > |t| 

0.00635 −0.00458 0.0173 0.0131 0.00865 0.0266 1.37 0.2120 
CL = confidence level. 
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Source: FHWA. 

Figure 137. Chart. Plot of measured versus predicted faulting. 

STATISTICAL ANALYSIS FOR STATE 3 

Statistical analysis was done to determine feasibility of utilizing State 3 DOT QA test data as a 
leading indicator of pavement performance, as characterized by three performance measures: 
structural cracking index (SCI), functional cracking index (FCI), and rutting. Analysis was done 
using the integrated State 3 DOT PMS and QA test database, described in chapter 4 and 
chapter 5, and analysis methodologies previously described in this chapter. Analysis was done 
using network-level data. The results are described in the following sections. 

State 3 DOT Correlation Analysis 

Summary of Correlations between SCI, FCI, Rutting, and HMA QA Test Data 

Table 115 through table 117 present the results of correlation analysis between SCI and FCI and 
State 3 DOT QA data items. Table 118 and table 119 present similar results for rutting. The 
analysis identified gradation (large, intermediate, and fine aggregate sizes), mix volumetrics 
(VFA, VMA, and VTM), and binder properties G* and phase angle as the QA data items with 
strong correlation with SCI. All these data items impact key HMA properties (strength, modulus, 
and stability) and thus fatigue and structural distress. 
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Table 115. HMA QA data basic statistics. 

QA Variables 

No. 
Data 

Points Mean 
Standard 
Deviation Minimum Maximum 

HMA core thickness 64 3.68 0.33 2.7 4.0 
Percent passing 
0.075-mm sieve 199 6.47 1.14 5.1 8.8 

Percent passing 1.18-mm 
sieve 199 18.24 2.01 16.3 22.0 

Percent passing 1.5-mm 
sieve 199 8.36 1.15 6.5 11.0 

Percent passing 2.36-mm 
sieve 199 25.66 3.19 21.8 32.9 

Percent passing 3.0-mm 
sieve 199 10.80 1.03 9.0 13.0 

Percent passing 4.75-mm 
sieve 199 39.37 5.10 30.0 59.0 

Percent passing 6.0-mm 
sieve 199 14.06 1.48 12.0 17.0 

Percent passing 9.5-mm 
sieve 199 64.29 8.92 48.0 90.0 

Percent passing 12.5-mm 
sieve 199 76.59 10.25 58.0 96.0 

Percent passing 19.0-mm 
sieve 199 90.86 7.78 78.5 100.0 

Percent passing 25.0-mm 
sieve 140 93.73 5.70 85.9 100.0 

VFA 197 75.41 3.32 70.0 84.3 
VMA 197 11.83 1.36 10.0 15.0 
VTM 197 3.03 0.65 2.1 4.5 
HMA core density 139 95.26 1.04 92.8 96.5 
SA1 199 5.13 0.64 4.2 6.6 
|G*|sin δ 199 1.36 0.25 1.1 1.9 
DSR G* (ORIG) 199 1.37 0.25 1.2 1.9 
DSR δ (ORIG) 199 84.59 3.49 78.6 87.2 
Gsb 199 2.72 0.28 0.0 2.9 
Gmm 199 2.57 0.26 0.0 2.7 
Gmb 199 2.47 0.25 0.0 2.6 
TSR 43 5.00 18.72 0.9 90.1 
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Table 116. Pearson’s correlation tables for State 3 DOT PMS SCI. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
HMA core thickness 0.183 0.1551 Fair 
Percent passing 0.075-mm sieve −0.377 <0.0001 Strong 
Percent passing 1.18-mm sieve −0.425 <0.0001 Strong 
Percent passing 1.5-mm sieve −0.393 <0.0001 Strong 
Percent passing 2.36-mm sieve −0.487 <0.0001 Strong 
Percent passing 3.0-mm sieve −0.374 <0.0001 Strong 
Percent passing 4.75-mm sieve −0.482 <0.0001 Strong 
Percent passing 6.0-mm sieve −0.403 <0.0001 Strong 
Percent passing 9.5-mm sieve −0.565 <0.0001 Strong 
Percent passing 12.5-mm sieve −0.583 <0.0001 Strong 
Percent passing 19.0-mm sieve −0.467 <0.0001 Strong 
Percent passing 25.0-mm sieve −0.297 0.0004 Strong 
VFA 0.400 <0.0001 Strong 
VMA −0.532 <0.0001 Strong 
VTM −0.499 <0.0001 Strong 
HMA core density −0.086 0.3203 Weak 
SA1 −0.397 <0.0001 Strong 
|G*|sin δ −0.253 0.0003 Strong 
DSR G* (ORIG) −0.247 0.0005 Strong 
DSR δ (ORIG) −0.256 0.0003 Strong 
Gsb −0.076 0.2896 Weak 
Gmm −0.036 0.6134 Weak 
Gmb −0.032 0.6591 Weak 
TSR 0.285 0.0706 Strong 
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Table 117. Pearson’s correlation tables for State 3 DOT PMS FCI. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
HMA core thickness 0.105 0.4152 Strong 
Percent passing 0.075-mm sieve −0.160 0.0252 Fair 
Percent passing 1.18-mm sieve −0.165 0.0208 Fair 
Percent passing 1.5-mm sieve −0.154 0.0307 Fair 
Percent passing 2.36-mm sieve −0.241 0.0006 Strong 
Percent passing 3.0-mm sieve −0.100 0.1636 Fair 
Percent passing 4.75-mm sieve −0.280 <0.0001 Strong 
Percent passing 6.0-mm sieve −0.094 0.1911 Fair 
Percent passing 9.5-mm sieve −0.256 0.0003 Strong 
Percent passing 12.5-mm sieve −0.234 0.001 Strong 
Percent passing 19.0-mm sieve −0.223 0.0017 Strong 
Percent passing 25.0-mm sieve −0.068 0.4267 Strong 
VFA 0.166 0.0207 Weak 
VMA −0.279 <0.0001 Strong 
VTM −0.234 0.001 Strong 
HMA core density 0.000 0.9968 Weak 
SA1 −0.145 0.0427 Fair 
|G*|sin δ −0.052 0.4696 Weak 
DSR G* (ORIG) −0.054 0.4526 Weak 
DSR δ (ORIG) 0.034 0.6313 Weak 
Gsb 0.384 <0.0001 Strong 
Gmm 0.397 <0.0001 Strong 
Gmb 0.400 <0.0001 Strong 
TSR 0.257 0.1043 Strong 
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Table 118. HMA QA data basic statistics. 

QA Variables 

No. 
Data 

Points Mean 
Standard 
Deviation Minimum Maximum 

Percent passing 0.075-
mm sieve 190 6.15 0.92 5.10 11.87 

Percent passing 1.18-mm 
sieve 190 17.65 1.70 16.34 26.67 

Percent passing 1.5-mm 
sieve 190 8.02 0.82 7.00 14.11 

Percent passing 2.36-mm 
sieve 190 24.76 2.94 19.70 40.93 

Percent passing 3.0-mm 
sieve 190 10.52 0.81 9.00 15.27 

Percent passing 4.75-mm 
sieve 190 38.25 4.96 30.00 64.27 

Percent passing 6.0-mm 
sieve 190 13.64 1.13 12.83 18.60 

Percent passing 9.5-mm 
sieve 190 62.60 8.93 48.00 97.53 

Percent passing 12.5-mm 
sieve 189 74.30 9.79 58.00 96.71 

Percent passing 19.0-mm 
sieve 186 89.02 7.78 78.46 100.0 

Percent passing 25.0-mm 
sieve 129 91.93 5.33 85.89 98.67 

VFA 190 76.11 3.48 68.77 86.68 
VMA 190 11.54 1.34 10.03 18.07 
VTM 190 2.87 0.61 2.09 4.07 
HMA core density 150 95.21 1.02 93.10 96.49 
SA1 190 4.94 0.47 4.22 8.25 
Resistivity 190 1.49 × 10−5 2.04 × 10−6 0.58 × 10-5 2.34 × 10−5 
DSR G* (ORIG) 190 1.39 0.25 1.16 1.86 
DSR δ (ORIG) 190 84.25 3.68 78.60 87.20 
Gsb 190 2.76 0.04 2.71 2.88 
Gmm 190 2.60 0.05 2.53 2.65 
Gmb 190 2.51 0.05 2.44 2.55 
Lab air void 190 0.96 0.00 0.96 0.97 
G*/sin δ 190 1.40 0.25 1.18 1.86 
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Table 119. Pearson’s correlation s for State 3 DOT PMS rutting. 

QA Variables 
Pearson’s 

Correlation 
Test of 

Significance Comments 
Percent passing 0.075-mm sieve −0.08878 0.2232 Weak 
Percent passing 1.18-mm sieve −0.07548 0.3006 Weak 
Percent passing 1.5-mm sieve −0.06463 0.3757 Weak 
Percent passing 2.36-mm sieve −0.01488 0.8386 Weak 
Percent passing 3.0-mm sieve 0.01623 0.8242 Weak 
Percent passing 4.75-mm sieve 0.01488 0.8386 Weak 
Percent passing 6.0-mm sieve −0.08071 0.2683 Weak 
Percent passing 9.5-mm sieve −0.03268 0.6544 Weak 
Percent passing 12.5-mm sieve −0.06199 0.3968 Weak 
Percent passing 19.0-mm sieve 0.05486 0.457 Weak 
Percent passing 25.0-mm sieve 0.2453 0.0051 Strong 
VFA −0.06328 0.3857 Weak 
VMA 0.05284 0.469 Weak 
VTM 0.01339 0.8545 Weak 
HMA core density −0.32 <0.0001 Strong 
SA1 −0.05191 0.4769 Weak 
Resistivity −0.18524 0.0105 Fair 
DSR G* (ORIG) 0.09586 0.1883 Weak 
DSR δ (ORIG) 0.25318 0.0004 Strong 
Gsb 0.04525 0.5353 Weak 
Gmm 0.02402 0.7422 Weak 
Gmb 0.09539 0.1905 Weak 
Lab air void 0.39005 <0.0001 Strong 
G*/sin δ 0.08781 0.2283 Weak 

HMA core thickness, gradation (mostly intermediate and fine sizes), and mix volumetrics were 
identified as the QA data items with strong correlations with FCI. Gradation and volumetrics 
affect HMA tensile strength and stability, which significantly impacts HMA’s ability to resist 
cracking and fracture. Table 118 and table 119 identify the percentage passing the 25-mm sieve 
size (large aggregates), HMA density and air voids, and DSR δ (ORIG) as having a strong 
correlation with rutting. HMA mixes with larger sized aggregate, higher density, and lower air 
voids are mostly more resistant to rutting, and thus these data items are highly correlated with the 
distress. Also, increasing the phase angle (δ) of asphalt binders produces binders that are less 
resistant to rutting. Phase angle is an indicator of modification. Modified binders have lower 
phase angle. Phase angle is thus highly correlated with rutting. 

State 3 DOT Stepwise Regression Analysis 

Average Cracking (SCI/FCI) Versus State 3 DOT QA Data Items 

Table 120 and table 121 present outcomes of preliminary model development through stepwise 
regression analysis for SCI and FCI, respectively. The results in table 120 indicate that HMA 
core density is the only data item selected. HMA density correlates well with strength and 
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modulus and thus has a significant impact on SCI. The preliminary model shows that increasing 
HMA density decreases SCI, which is as expected. For FCI, a preliminary model was not 
developed, as none of the data items met the selection criteria. 

Table 122 presents outcomes of preliminary model development through stepwise regression 
analysis for rutting. 

Table 120. Stepwise selection summary for relationship between SCI and State 3 DOT QA 
test data items. 

Step 
Effect 

Entered 
Effect 

Removed 
No. 

Effects  
Model 

R2 Cp PRESS Pr > F Estimate 
0 Intercept — 1 0.0000 2.3283 1539.8612 0.00 169.3 

1 
HMA 
core 
density 

— 2 
0.0437 −0.7063* 1495.8259* 5.16 −0.757 

R2 = 0.0437, RMSE = 3.57862, N = 115. 
—No data. 
*Optimal value of criterion. 

Table 121. Stepwise selection summary for relationship between FCI and State 3 DOT QA 
test data items. 

Step 
Effect 

Entered 
Effect 

Removed 
No. 

Effects 
No. 

Parameters  
Model 

R2 Cp PRESS Pr > F 
0 Intercept — 1 1 0.0000 0.41006 6623.89 — 

R2 = 0.0000, RMSE = 7.55634, N= 114. 
—No data. 

Table 122. Stepwise selection summary for relationship between rutting and State 3 DOT 
QA test data items. 

Step 
Effect 

Entered 
Effect 

Removed 
No. 

Effects 
No. 

Parameters  
Model 

R2 Cp PRESS Pr > F 
0 Intercept — 1 1 0.0000 42.84 0.5602 1.0000 
1 Lab air voids — 2 2 0.2098 9.420 0.4511 <0.0001 

2 
Traffic level 
(for material 
selection) 

— 3 3 0.2414 6.084 0.4385 0.0242 

3 G*/sin δ — 4 4 0.2712 3.050* 0.4243* 0.0261 
—No data. 

Average Rutting Versus State 3 DOT QA Data Items 

For rutting, lab-measured air voids, traffic level, and the computed parameter G*/sin δ were 
selected. These three data items affect rutting development and progression. The selection was 
deemed reasonable. 
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State 3 DOT Final GLM/ANOVA Regression Analysis 

Cracking (SCI/FCI) Versus State 3 DOT QA Data Items 

Table 123 through table 128 present the finalized SCI, FCI, and rutting prediction models. It 
must be noted that the final models are not full-scale models and do not include all the other key 
variables, such as measured traffic and loading, layer thickness, and climate, that influence these 
distresses. 

For the SCI model, table 123 and table 124 show that lab air voids, the interaction between HMA 
type*binder PG grade, and percent passing 19.0 mm were the QA data items that significantly 
influenced HMA structural cracking development and progression. Other variables included in 
the preliminary models were dropped or replaced with similar variables due to interactions 
among these variables. The final SCI model reported R2 equaled 35 percent, COV equaled 
7.0 percent, and RMSE equaled 6.55 percent cracking, all of which were deemed reasonable. For 
the interaction of HMA type and binder PG grade, the RAP mixes performed better than the Neat 
mixes, while PG grade 64-22 performed better than PG 76-22. Several studies have shown that 
the presence of RAP in HMA mixes can and does reduce mix rutting potential while improving 
fatigue resistance.(110) 

For FCI, table 125 and table 126 show that the interaction of HMA type*binder PG grade and 
percent passing 19.0-mm sieve were the significant variables included in the prediction model. 
Further evaluation of the model showed that the PG 76-22 mixes performed better than the 
PG 64-22 mixes; the 76-22 performed the best, which was as expected. Also, increasing the 
percent aggregate material passing the 19.0-mm sieve reduced FCI. This trend was deemed 
reasonable and expected. The models’ statistics (R2 = 0.207490, COV = 8.892089, 
RMSE = 8.096364) were deemed reasonable. 

Rutting Versus State 3 DOT QA Data Items 

For rutting, information in table 127 and table 128 showed that binder PG grade, percent passing 
19.0-mm sieve, and lab air voids were the significant variables included in the rutting prediction 
model. Further review showed that the PG 76-22 mixes performed better than the PG 64-22 
mixes, as expected. Increasing air voids increased rutting, while increasing the amount of coarse 
material passing the 19.0-mm sieve reduced the distress. These trends are as expected. The 
models statistics (R2 = 0.189, COV = 32.5, RMSE = 0.053509) were deemed reasonable. 

Table 123. GLM summary (type Ⅲ SS) for relationship between SCI and State 3 DOT QA 
test data items. 

Source DF Type Ⅲ SS Mean Square F Value Pr > F 
Lab air voids 1 658.588 658.588 15.34 0.0001 
HMA type*binder PG grade 2 182.543 91.271 2.13 0.1222 
Percent passing 19.0-mm 
sieve 1 1615.538 1615.538 37.63 <0.0001 
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Table 124. GLM summary (model coefficients) for relationship between SCI and State 3 
DOT QA test data items. 

Parameter Estimate 
Standard 

Error t Value Pr > |t| 
Intercept −702.445 222.7146 −3.15 0.0019 
Lab air voids 893.989 228.2634 3.92 0.0001 
HMA type*binder PG grade, Neat 76-22 13.850 6.8855 2.01 0.0457 
HMA type*binder PG grade, RAP 64-22 2.558 2.5512 1.00 0.3172 
HMA type*binder PG grade, RAP 76-22 0.000 — — — 
Percent passing 19.0-mm sieve −0.725 0.1182 −6.13 <0.0001 

R2 = 0.356221, COV = 7.00, RMSE = 6.5525, N = 196. 
—No data. 

Table 125. GLM summary (type Ⅲ SS) for relationship between FCI and State 3 DOT QA 
test data items. 

Source DF Type Ⅲ SS Mean Square F Value Pr > F 
HMA type*binder PG grade 2 2,520.050 1,260.025 19.22 <0.0001 
Percent passing 19.0-mm sieve 1 903.129 903.129 13.78 0.0003 

Table 126. GLM summary (model coefficients) for relationship between FCI and State 3 
DOT QA test data items. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 131.8672 10.69441 12.33 <0.0001 
HMA type*binder PG grade, Neat 
76-22 −19.9196 5.42704 −3.67 0.0003 

HMA type*binder PG grade, RAP 
64-22 6.2831 2.43707 2.58 0.0107 

HMA type*binder PG grade, RAP 
76-22 0.0000 — — — 

Percent passing 19.0-mm sieve −0.4977 0.13410 −3.71 0.0003 
R2 = 0.207490, COV = 8.892089, RMSE = 8.096364, N = 189. 
—No data. 

Table 127. GLM summary (type Ⅲ SS) for relationship between rutting and State 3 DOT 
QA test data items. 

Source DF Type Ⅲ SS Mean Square F Value Pr > F 
PG Grade 1 0.016656 0.016656 5.82 0.0169 
Percent passing 19.0 mm 
sieve 1 0.027502 0.027502 9.61 0.0022 

Lab air voids 1 0.013408 0.013408 4.68 0.0318 
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Table 128. GLM summary (model coefficients) for relationship between rutting and State 3 
DOT QA test data items. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept −4.10286 2.1401 −1.92 0.0568 
Binder PG grade, 64-22 0.06270 0.0259 2.41 0.0169 
Binder PG grade, 76-22 0.00000 — — — 
Percent passing 19.0-mm sieve −0.00361 0.0011 −3.10 0.0022 
Lab air voids 4.72390 2.1829 2.16 0.0318 

R2 = 0.189, COV = 32.5, RMSE = 0.053509, N = 185. 
—No data. 

Use of Derived Parameters to Predict Performance 

Comparable to the analysis presented for State 1, QA data from State 3 permitted the calculation 
of derived parameters that were evaluated for their potential to correlate to performance. The 
results of the performance modeling efforts using derived parameters are presented in the 
following tables: 

• Table 129, for structural cracking in State 3 DOT data. The derived parameter included in 
the model is SAI and |G*|sin δ. The corresponding results for a model with conventional 
QA parameters are presented in table 126. 

• Table 130, for functional cracking in State 3 DOT data. The derived parameter included 
in the model is SAI. The corresponding results for a model with conventional QA 
parameters are presented in table 127. 

• Table 131, for rutting in State 3 DOT data. The derived parameter included in the model 
is the resistivity for each binder grade. The corresponding results for a model with 
conventional QA parameters are presented in table 128. 

Table 129. GLM summary (model coefficients) for relationship between structural 
cracking and “derived” parameters from State 3 DOT QA test data items. 

 Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 80.13613094 4.67558595 17.14 <0.0001 
Material selection for traffic level 2 −17.45812051 1.81654994 −9.61 <0.0001 
Material selection for traffic level 3 0.92842423 1.00432963 0.92 0.3563 
Material selection for traffic level 4 0.00000000 — — — 
PG grade 64-22 −4.67946000 1.18334310 −3.95 0.0001 
PG grade 76-22 0.00000000 — — — 
Specific surface of aggregate 
mixture 

−1.07258698 0.52490001 −2.04 0.0422 

|G*|sin δ 19.34588546 3.19129916 6.06 <0.0001 
R2 = 0.447885, COV = 6.247186, RMSE = 5.869310, N = 223. 
—No data. 
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Table 130. GLM summary (model coefficients) for relationship between functional 
cracking and “derived” parameters from State 3 DOT QA test data items. 

Parameter Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 84.97296915 6.17358166 13.76 <0.0001 
Material selection for traffic level 2 −12.80765353 2.45024861 −5.23 <0.0001 
Material selection for traffic level 3 −3.27748265 1.37387600 −2.39 0.0179 
Material selection for traffic level 4 0.00000000 — — — 
Specific surface of aggregate 
mixture 

−1.90733083 0.73839655 −2.58 0.0104 

R2 = 0.130512, COV = 9.248507, RMSE = 8.421056, N = 223. 
—No data. 

Table 131. GLM summary (model coefficients) for relationship between rutting and 
“derived” parameters from State 3 DOT QA test data items. 

QA Test Data Item Estimate 
Standard 

Error t Value Pr > |t| 
Intercept 0.270024 0.036680 7.36 <0.0001 
Material selection for traffic level 2 −0.032741 0.019709 −1.66 0.0984 
Material selection for traffic level 3 0.037899 0.009813 3.86 0.0002 
Material selection for traffic level 4 0.000000 — — — 
Resistivity*PG grade 64-22 −6067.280796 2,185.201499 −2.78 0.0061 
Resistivity*PG grade 76-22 −8325.828849 2,370.921206 −3.51 0.0006 

R2 = 0.137212, COV = 33.61180, RMSE = 0.055265, N = 190. 
—No data. 

Results presented in table 129 through table 131, again (as with derived parameters models in 
State 1), were used to evaluate the value of using these derived parameters to predict 
performance. Table 132 summarizes the R2 obtained for the prediction models based on the 
conventional QA parameters directly obtained from State QA databases and the derived 
parameters. It is clear, at least based on goodness of fit, that the structural cracking model was 
improved. The lack of improvement in functional cracking is not unexpected, because the 
derived parameters capture the material parameters that affect the mechanism of structural 
cracking. Clearly, the QA data in State 3 suggest the rutting performance has been well 
controlled with the existing specifications and may not be well explained through QA indicators. 

Table 132. Summary of goodness of fit using QA data and using derived parameters. 

State Model 
R2 for Models with 

Conventional QA Data 
R2 for Models with 
Derived Parameters 

State 3 Functional cracking 21 13 
Structural cracking 36 45 
Rutting 19 14 

Clearly, the analyses presented in this report are intended to evaluate the ability of QA and 
construction data to predict performance. The results of the models using derived parameters 
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suggest that these parameters have a potential for improving performance predictions and may be 
an approach for agencies to consider for integrating QA data to predict performance. Based on 
the premise that these parameters were fundamentally derived to combine mix volumetrics and 
binder properties to effectively relate to performance, it is worthwhile to consider them in 
modeling for future applications of integrating QA data for performance prediction in PMS. 
These results are encouraging for recommending the use of derived parameters to agencies. 

Case Study 3: Integrating QA Data Into PMS for Improved Performance Modeling 

Results from the analyses of data from State 1, State 2, and State 3 are encouraging for the use of 
QA data as leading indicators of performance. This case study demonstrates an example of 
procedures to materialize the use of QA to improve PMS prediction models, i.e., to integrate QA 
and construction parameters into the PMS system, for improving the performance model. This 
case study example presents a procedure for incorporating into State 3 DOT PMS systems the 
QA data items identified as having a significant impact on pavement performance. The example 
was developed using data from State 3 DOT PMS and QA data tables, and it uses existing State 
3 DOT performance forecasting models. 

Example Methodology for Incorporating QA Data Items as Leading Indicator of Performance 

The methodology presented in this case study involves the following steps: 

1. Identify the pavement type of interest. 

2. Determine the QA data items that impact performance for utilization as leading indicators 
of performance. 

3. Determine existing (State 3 DOT) PMS performance forecasting models for the identified 
pavement types of interest. 

4. Develop correction factors for the performance forecasting models identified in step 3 
using the QA data items identified as leading indicators and adjust/correct existing PMS 
models outputs as needed. 

5. Evaluate predictions of performance with correction factors and characterize 
improvements in goodness of fit and bias. 

The project team developed the methodology described previously based on current State 3 DOT 
performance forecasting models. This methodology might not necessarily be suitable for other 
agencies, however. The goal is to illustrate enhancements in prediction capacity of existing 
forecasting models with the inclusion of QA-type data. Another goal is to illustrate that QA-type 
data can be included in the PMS forecasting models without significant modifications to existing 
processes/procedures and analysis tools. 
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Identify Pavement Type of Interest 

State 3 DOT classified new and overlaid HMA pavement types into families based on pavement 
type, traffic, climate, and so on. The selected pavement families for this case study were 17, 19, 
20, 22, 26, 40, 42, 45, and 47 in the agency’s PMS. 

Determine QA Data Items That Impact Performance for Utilization as Leading Indicators of 
Performance 

State 3 DOT QA test data items included in the final SCI prediction model are presented in 
table 133. As shown in this table, lab air voids, the interaction between HMA type and binder PG 
grade, and percentage passing 19.0-mm sieve were the QA data items found to have a significant 
impact on future flexible pavement SCI. These variables form the basis for developing 
adjustment factors to adjust the State 3 DOT SCI forecasting models and predicted SCI (for 
pavement families 17, 19, 20, 22, 26, 40, 42, 45, and 47). 

Table 133. GLM summary for relationship between SCI and State 3 DOT QA test data. 

Source DF Type Ⅲ SS Mean Square F Value Pr > F 
Lab air voids 1 658.588 658.588 15.34 0.0001 
HMA type*binder PG grade 2 182.543 91.271 2.13 0.1222 
Percent passing 19.0-mm 
sieve 1 1,615.538 1,615.538 37.63 <0.0001 

Determine Existing State 3 DOT PMS Performance Forecasting Models for the Identified 
Pavement Types of Interest 

State 3 DOT SCI forecasting models currently incorporated in the DOTs’ PMS are based on 
pavement age (time since last significant construction event) and are presented in figure 138 for 
the selected families 17, 19, 20, 22, 26, 40, 42, 45, and 47 for SCI. The plot shows significant 
variations in SCI for the different pavement families. SCI after 15 yr in service rage from 60 to 
97, and at 30 yr range from 86 to 17. 
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Source: FHWA. 

Figure 138. Graph. Plots of predicted SCI versus age for selected families of HMA 
pavements in State 3 DOT. 

Determine Reasonableness of Forecasting Models 

This step involved comparing measured SCI and forecasted SCI from the State 3 DOT models to 
determine goodness of fit and presence of bias. Reasonableness of goodness of fit was assessed 
using diagnostic statistics R2 and RMSE. Bias was assessed by developing simple linear 
relationship between measured and predicted SCI and checking if the slope of the measured 
versus predicted SCI linear model with no intercept was 1.0. A slope of 1.0 implies there are not 
significant levels of bias. Bias was also assessed by performing a paired t-test using the measured 
and predicted SCI. A p-value greater than 0.05 (i.e., 5 percent significance) implied that the 
difference between measured and predicted SCI was not significantly different, and thus they 
belong to the same populations. 

Outcomes of the analysis described are presented as follows: 

• Goodness of fit: RMSE = 3.66, R2 = 0.2187. 
• Bias: 

o Slope of measured versus predicted SCI linear curve = 1.02. 
o 95 percent CI of slope ranges from 1.01 to 1.03. 
o p-value for testing hypothesis that slope = 0: less than 0.0001. 
o Pair t-test p-value: less than 0.0001. 

The results presented showed an average goodness of fit for PMS models but significant bias in 
predictions (1 to 2 percent greater than measured values on average). This bias is shown in 
figure 139. 
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Source: FHWA. 

Figure 139. Graph. Plot of predicted versus measured SCI using State 3 DOT SCI 
forecasting models for selected families of HMA pavements. 

Develop Correction Factors 

Under this step, using the QA data items identified as leading indicators, adjustment/correction 
factors for existing PMS SCI forecasting models were developed. Correction factors were 
developed in the form of the model presented in figure 140: 

 
Figure 140. Equation. Correction factors model. 

Where: 
ADJSCI = adjusted SCI. 
SCI = estimated from State 3 DOT SCI forecasting models. 
CORRFACTOR = P1*LAB_AV + P2*PG64-22 + P3*PG76-22 + P4*Neat + P5*RAP + 

P6*%PASS3/4. 
LAB_AV = lab-measured HMA air voids. 
PG64-22 =1.0 if binder grade is PG64-22. 
PG76-22 =1.0 if binder grade is PG76-22. 
Neat = 1.0 if HMA is a neat mix. 
RAP = 1.0 if HMA contains RAP. 
%PASS3/4 = Percent passing ¾-inch sieve size. 
P1 = −23.6294. 
P2 =17.5694. 
P3 = 17.4206. 
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P4 = −0.4805. 
P5 = 0.000010. 
P6 = 0.0479. 

As shown in figure 140, a common adjustment factor was used, regardless of pavement family. 
Also, all the identified QA data leading indicators were included in the formula for estimating 
the adjustment factor. 

Evaluate Predictions of Performance with Correction Factors and Characterize Improvements 
in Goodness of Fit and Bias 

Figure 141 shows the plot of measured versus corrected and adjusted State 3 DOT-predicted 
SCI. The plot shows a significant improvement in goodness of fit and bias. The project team 
confirmed these results using the diagnostic statistics previously described and summarized as 
follows: 

• Goodness of fit: RMSE = 4.38, R2 = 0.4995. 
• Bias: 

o Slope of measured versus predicted SCI linear curve = 1.0046. 
o 95 percent CI of slope ranges from 0.99659 to 1.01269. 
o p-value for testing hypothesis that slope = 0: 0.2575. 
o Pair t-test p-value: 0.0563. 

The results presented show that there is no significant bias in corrected SCI predictions, and 
goodness of fit improved significantly from 0.22 to 0.5. RMSE increased marginally from 3.6 to 
4.4 percent cracking. It was expected that the R2 of 0.5 would have been greater (better goodness 
of fit) if adjustment factors were developed individually for each family of pavements. 

 
Source: FHWA. 

Figure 141. Graph. Plot of “corrected” State 3 DOT predicted versus measured SCI. 
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This example illustrated that adjusting existing forecasted SCI values with QA data-derived 
adjustment factors (within State 3 DOT PMS) does improve forecasted SCI significantly 
(improved goodness of fit and less bias). This example is also a preliminary analysis performed 
to illustrate the project team’s vision to incorporate QA parameters into an agency’s PMS. 

SUMMARY OF STATISTICAL ANALYSIS FOR STATE 4 

As explained in the first section of this chapter, Utilizing QA Test Data as Leading Indicators of 
Pavement Performance, data from State 4 were used only for a case study to examine the value 
of incorporating IC data from construction as a dataset to improve pavement management 
performance models. There is clear evidence from current State practices that IC specifications 
are used to control coverage and number of passes, which is worthy of recommending IC data 
for future use in asset management and for purposes of evaluating anomalies in pavement 
condition data. It has also been found that the consistency in IC outputs in relation to in situ 
material properties is machine dependent. It is, therefore, of interest in this study to determine the 
extent to which IC data correlate to traditional QA parameters. Success in establishing this 
correlation provides the opportunity to use IC data as an indirect measure to relate construction 
data to performance, which was the goal of this case study. 

Case Study 4: Using Data from Innovative Technologies as Leading Indicators of 
Performance 

Chapter 4 and chapter 5 discussed the data elements and the integration of IC and QA data. This 
section presents the analyses performed with the assembled datasets to establish a correlation 
between field density and IC outputs. Other laboratory QA test data were also available for each 
mix used in the three IC projects. 

Approach Adopted for the Analysis 

Mostly, basic regression techniques, such as single and multiple linear regression, are good 
investigative tools that can be used to establish the relationships between dependent and several 
independent variables. For more complicated relationships, the application of nonlinear 
regression techniques may be suitable. For this analysis, multivariate regression analysis 
techniques were adopted due to the nature of the data available and implied experimental design. 
For multivariate regression analysis to be viable (assessing whether one or more independent 
variables explain the dependent variable), the following key assumptions must be satisfied: 

• Sample size—In general, a sample size of 20 or more is required for regression analysis. 
The assembled database contained over 150 individual field-measured HMA density 
records with accompanying IC measurements close enough (less than 5 inches) to be 
deemed as representative of the density measurements. 

• No auto-correlation—Placement and compaction of HMA in the field to achieve density 
specifications require several passes of the vibratory roller. Thus, as IC observations and 
outputs are “compaction stage” dependent, it is reasonable to assume that output (i) value 
will be correlated with output (i − 1) value. This situation was overcome by estimating 
averaged IC outputs that represented the whole HMA placement and compaction in-place 
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process. Statistics such as the average, maximum, minimum, and last IC outputs were 
used for analysis. 

• Linear relationship—Pearson’s correlation estimates are presented in table 134. The 
estimates show a fair degree of correlation between the key IC responses and outputs. 
Also, the relationship between the dependent variable (density) and independent variables 
(IC outputs) was relatively weak. This weakness indicates a nonlinear relationship 
between dependent and independent variables, if any exists. The use of mathematical 
clusters derived empirically using the IC outputs or nonlinear models may be more 
appropriate for model development. 

• No or little multicollinearity—A key requirement for a stable and reliable predictive 
model with multiple independent variables is the absence of multicollinearity in the 
independent data. Multicollinearity is the presence of a strong correlation between two or 
more independent variables, resulting in the inability to isolate the relationship between 
each independent variable and the dependent variable. One or more variables, hence, 
become redundant in the model. The coefficient estimated for a given variable (broadly 
defining how critical the variable is) may vary widely, depending on which other 
independent variable is included in the model, thereby affecting the overall sensitivity of 
the model. 

• Homoscedasticity—This assumption relates to the requirement for equal variance in the 
data and is also the basis for other statistical analyses, such as ANOVA and the t-test. 
There should be a uniform spread along the entire range of the data used in the model, 
implying the error in the model also has a uniform spread. 

Table 134. Correlation analysis of field-measured HMA density and key IC outputs. 

Variables 

HMA 
Density 

(Percent) 
Amplitude 

(mm) CMV 

Roller 
Frequency 

(Hz) RMV 
No. of 
Passes 

HMA density 
(percent) 1.00000 0.06476 0.01961 −0.00253 0.05520 0.09432 

Amplitude 
(mm) 0.06476 1.00000 0.50326 −0.47037 0.47223 0.16613 

CMV 0.01961 0.50326 1.00000 −0.20014 0.51060 0.31523 
Roller 
frequency (Hz) −0.00253 −0.47037 −0.20014 1.00000 −0.04412 0.21221 

RMV 0.05520 0.47223 0.51060 −0.04412 1.00000 0.19021 
Number of 
passes 0.09432 0.16613 0.31523 0.21221 0.19021 1.00000 

Regression Analysis 

Appropriate regression analysis was conducted to identify IC outputs that significantly impact 
field-measured HMA density. Furthermore, this analysis helped evaluate the feasibility of 
modeling/predicting field-measured HMA density. The regression model adopted the related 
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density with interaction of categorical variables “Project”; compaction equipment, “Machine”; 
and key IC outputs “CMV” and “amplitude” (figure 142). The outputs of the regression analysis 
are presented in table 135. 

 
Figure 142. Equation. Regression model adopted to relate density to IC. 

Table 135. Regression statistics to correlate field HMA density to key IC outputs. 

Source DF Type I SS Mean Square F Value Pr > F 
Project 2 9.113 4.557 4.57 0.012 
Project*Machine 5 9.410 1.882 1.89 0.1004 
AMP*Project*Machine 7 24.551 3.507 3.52 0.0017 
CMV*Project*Machine 7 12.649 1.807 1.81 0.0896 

N = 157; R2 = 0.291284; COV = 1.063607; RMSE = 0.998459. 

The information in table 135 shows the following: 

• Variables that have a significant impact on density are project, machine, AMP, and CMV 
with significance less than 0.1000. 

• Variables listed explain approximately 29 percent of variance. 

• Project and IC roller represent variance due to differences in HMA specifications and 
properties and compaction equipment. 

Figure 143 and figure 144 show predicted versus measured density and residual versus predicted 
density. Figure 143 shows a reasonable goodness of fit (R2 = 0.29), whereas figure 144 shows 
very insignificant levels of multicollinearity or homoscedasticity. 
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Source: FHWA. 

Figure 143. Graph. Plot of measured versus predicted density. 

 

Source: FHWA. 

Figure 144. Graph. Plot of residual (error) versus predicted density. 

Summary of Case Study for State 4 

Field-measured HMA density, along with other layer types of density, and properties are key test 
outcomes traditionally used for QA and acceptance of pavement projects. Relationships between 
HMA density and other pavement properties, such as HMA dynamic modulus and short- and 
long-term performance, have been established in this and other previous studies. 
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This case study was conducted to determine whether measurements from new construction 
technologies, such as IC, can serve as indicators of key material properties, such as density, that 
are known to have a significant impact on pavement performance. With such established 
correlations, it would be possible to relate data from IC as an indicator of performance for use in 
PMS for future pavement performance forecasting. The premise being that, once a relationship is 
established between say HMA density and future pavement performance, then IC outputs can be 
incorporated into future pavement performance forecasting models and utilized effectively for 
PMS. 

The outcome of this case study shows that key IC outputs measured during construction (HMA 
placement and compaction) may be used for future performance forecasting; however, with the 
current advancements in this technology and the current development of specifications for this 
technology, it is not possible to guarantee a strong correlation to performance. Future pavement 
performance data from projects that have utilized IC may provide better insights into the 
potential for correlation and performance prediction. Therefore, conclusions from the current 
study are preliminary as more extensive research is required for such model’s development. In 
summary, the results of this case study suggest: 

• Relationships between IC outputs and density are complex and cannot be modeled using 
traditional simple regression procedures. 

•  Reasonable models can be developed like the one presented in table 135 (which now 
shows an R2 of 0.29) once a suitable regression procedure is adopted. 
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

PROJECT SUMMARY 

Project Scope and Objectives 

The MAP-21 Act established new performance-based requirements for planning and 
programming to enable the most efficient use of Federal transportation funds. FHWA issued the 
NPRM in 2015 and the final ruling in 2017 to establish new requirements for performance 
management to ensure the most efficient investment of Federal transportation funds and to 
improve investment decisionmaking.(2) As agencies establish performance targets and measure 
progress to assess whether they are meeting their established targets, they also recognize that 
condition assessment data can serve only as a lagging indicator, i.e., distress is measured only 
after it has manifested to the surface and has started to follow a particular trend. As pavement 
design and construction technologies become more sophisticated, and as digital data collection 
and storage are increasingly becoming the norm, there is the potential to relate construction data 
collected in real time (at the time of construction) to future pavement performance. Thus, 
agencies are using construction-related data, collected in real time, as measurable factors and 
leading indicators of future pavement performance trends. 

The specific objectives of this project were to: 

• Identify construction QA and other as-built pavement-related data that can serve as 
leading indicators of future pavement performance. 

• Develop procedures and processes to utilize these data identified as leading indicators for 
integration into an agency’s PMS. The integration should aim to improve accuracy and 
reliability of predicted pavement performance. 

To fulfill project objectives, research was performed to: 

• Identify current (i.e., state of the practice) and innovative (i.e., state of the art) pavement 
construction and QA testing technologies. 

• Establish data collection and storage practices associated with the technologies identified. 

• Evaluate the potential for utilizing the identified construction QA data as leading 
indicators of future pavement performance. 

• Determine the feasibility of utilizing potential leading indicators within an agency’s PMS 
to improve prediction capability of pavement performance forecasting models. 

The project team used data from four SHAs to conduct detailed statistical correlation and 
modeling required to determine construction and QA data variables that could serve as leading 
indicators of performance. The team developed case studies to demonstrate different instances 
for which different types of construction QA data may be used to improve the performance 
forecasting component of PMS. The case studies demonstrate that construction QA data can be a 
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leading indicator of performance, and that it is possible to improve PMS performance prediction 
by incorporating construction QA data into PMS. The main products from this research are 
practical recommendations and best practices for the inclusion of agency QA and construction 
data within the pavement management decisionmaking framework. 

Research Approach 

The research approach involved the following activities: 

1. Collecting detailed information on agency practices and performing indepth interviews 
with agencies of interest to this research. 

2. Obtaining QA, construction, and performance data from selected agencies that collect 
comprehensive data and maintain databases with long-term visions for pavement 
management that align with the goals of this research. The selection of agencies was 
based on the following factors: 

a. Maturity of the agency’s pavement management program, including performance 
data collection as per national performance management measures ruling (e.g., the 
PMS must collect performance measures that characterize smoothness [IRI], 
load-related cracking, rutting in flexible pavements, and faulting in jointed concrete 
pavements). 

b. Advancements in the agency’s construction QA program (e.g., routine traditional 
QA testing as well as adoption of innovative QA testing technologies and pavement 
construction practices). 

c. Assessment of the agency’s construction QA and PMS reporting, aggregation, and 
integration strategies for all forms of data, such as electronic databases, 
e-documents, or ad hoc reports. This assessment determined the readily available 
data, the ability to integrate the various data types and formats, and requirements for 
meaningful statistical analyses. 

d. Awareness and preliminary efforts by the agency to use QA data for purposes 
beyond construction contracts, such as in PRS, and interest in exploring the value of 
construction QA and other data types for performance forecasting. 

The later sections of this chapter further discuss in detail the reasons for selection of the 
agencies and, thus, the parameters available for use in the analyses. As noted, four 
agencies were selected for data analyses. Because of the project’s nonattribution policy, 
the names of the State agencies are not disclosed in this report. 

3. Assembling and processing QA data, construction information, and PMS data from actual 
agency databases. 

4. Assessing feasibility of integrating QA data into the agency’s existing PMS using 
appropriate algorithms and scripts required to relate the wide variety of location 
referencing systems for the heterogeneous structured and unstructured data assembled. 
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5. Identifying, through review of past research studies, QA data variables that impact future 
performance of the as-constructed pavement. These variables have the potential to serve 
as leading indicators of pavement performance. Note that statistical modeling verified the 
impact of these variables (see step 6). 

6. Conducting statistical correlation, modeling, and ANOVA to determine the feasibility of 
utilizing construction QA data as a leading indicator of future pavement performance. 
This activity involved the use of data from three State DOT QA and PMS databases. The 
statistical analyses included development of: 

a. Pearson’s correlation statistics. 

b. General linear models (including the use of the stepwise selection option to identify 
the QA variables with potential for impacting future pavement performance). 

c. Nonlinear performance models. 

d. ANOVA models to confirm preliminary findings from step 6a and step 6b. 

7. Developing case studies that highlight improvements to PMS condition forecasting 
capacity through utilization of QA data from conventional methods and from innovative 
test methods/construction technologies. Data from four DOTs were used in the case 
studies, two of which used data from innovative test methods and construction 
technologies. 

a. Case study from State 1 DOT demonstrated the added value of using other agency 
databases such as traffic and climate data. 

b. Case study from State 2 DOT demonstrated the correlation of data generated by 
innovative technologies (MIT-Scan for rigid pavements and RWD for AC pavements) 
to performance. 

c. Case study from State 3 DOT demonstrated an example of a practical application of 
this research for improving pavement management performance prediction models. It 
involved: 

i.  Forecasting performance (structural cracking) using existing PMS performance 
forecasting models for five pavement families. 

ii. Developing QA data item derived adjustment factors for existing State 3 DOT 
PMS performance forecasting models. 

iii. Comparing forecasted performance from step 7a and step 7b. 

iv. Assessing the outcome of step 7c and characterizing improvements. 

d. Case study from State 4 DOT demonstrated methods to use data from innovative 
construction technologies providing spatial coverage of pavement and material 
characteristics as indirect indicators of performance. Although findings from this case 
study were marginally successful, the intent was to showcase that data collected from 
new construction technologies (or QA methods alternatively) with vast spatial 
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coverage may offer correlations to other material QA parameters that may hold a 
strong correlation to performance. 

8. Demonstrating procedures and developing guidelines for the use of QA data to improve 
pavement performance prediction. 

The research was divided into two phases: the first for performing viability studies, and the 
second to develop revised models, validations, and case studies. The remaining sections of this 
chapter present project accomplishments and findings. 

REVIEW OF QA PRACTICES AND PERFORMANCE PREDICITION CAPABILITIES 

QA Parameters Related to Performance Prediction 

The project team reviewed State agency QA practices and existing literature pertinent to this 
research. These reviews produced a list of conventional QA material parameters used by 
agencies. The parameters are typically directly available in QA databases or in agency records. 
The most critical data are material and construction parameters that are proven indicators of 
performance. 

Such data include gradation parameters, HMA volumetrics, density values (lab and field), layer 
thicknesses, binder type, PCC strength, aggregate type, and PCC mix design index properties. 
The project team also identified generally established relationships for material property and 
performance; for example, see table 136 for HMA pavements and table 137 for PCC pavements. 

Table 136. Generally established relationships between QA parameter and HMA pavement 
performance. 

QA Parameter for HMA Pavements* 
Relationship to HMA Pavement 

Performance 
Original G*/sin δ at specified high pavement 
temperature. Indicator of permanent deformation potential 

in HMA pavements. RTFOT residue G*/sin δ at specified high 
pavement temperature. 
PAV residue G*/sin δ at specified intermediate 
pavement temperature. 

Indicator of load-associated cracking 
potential in HMA pavements. 

PAV residue creep stiffness at 10℃ above the 
specified low pavement temperature. Indicator of thermal cracking potential in 

HMA pavements. PAV residue m-value at 10℃ above the 
specified low pavement temperature. 
Field HMA density, voids, HMA thickness. Indicator of cracking and rutting/permanent 

deformation potential in HMA pavements. Mix design gradation, volumetrics. 
*It can be generally assumed that development of all surface distresses can impact ride quality. 
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Table 137. Generally established relationships between QA parameter and PCC pavement 
performance. 

QA Parameter for PCC Pavements* 
Relationship to PCC Pavement 

Performance 
w/c ratio, cement content, fly ash/SCM 
replacement levels, air content, aggregate 
gradation, fineness modulus, unit weight, 
aggregate absorption capacity. 

Indicator of PCC strength and cracking and 
faulting potential. 

PCC compressive/flexural strength, thickness. Indicator of cracking and faulting potential. 
Aggregate type/CTE. Indicator of cracking due to thermal curling 

stresses. 
Dowel bar diameter and alignment. Indicator of faulting potential. 
Temperature and humidity at time of 
construction (in construction records). 

Directly related to built-in temperature and 
moisture gradients that affect cracking. 

*It can be generally assumed that development of all surface distresses can impact ride quality. 

Other Derived Parameters 

Past research studies have derived parameters as a function of various material index properties 
for both HMA and PCC. (See references 10, 11, 14, and 16.) Some of these derived parameters 
were found to directly correlate to performance based on laboratory test results and M-E models. 
The upside of these derived parameters is that they are developed as a function of multiple index 
properties that, in combination, can capture the collective effect of material properties, such as 
those of binder and aggregates in HMA or cement content and aggregate type in PCC, to offer a 
direct correlation to performance. The index properties that are significant here are typically 
available from QA data collection practices. Examples of such derived parameters, discussed in 
detail in this report, include: 

• HMA dynamic modulus, a level 3 input to the M-E pavement design procedure.(16) 

• Resistivity correlated to rutting.(10,11) See figure 14. 

• Rutting and fatigue resistance models estimating number of allowable load repetitions to 
failure. See figure 14 through figure 19. 

• Permeability correlated to durability, which is not directly predicted in M-E design or 
measured in traditional PMS data collection activities. See figure 20. 

• PCC fatigue and PCC material properties that are direct indicators of performance (in 
interaction with other site-specific parameters like traffic, climate, and so on). See 
figure 21 through figure 38. 

Using the relationships established in these previous research studies and the approaches adopted 
in the previous studies for aggregating or clustering QA-type materials data, the project team 
established the potential for use of data variables in agencies’ QA databases, either directly or in 
combination with other material properties and pavement design variables, to develop cluster 
parameters for use in predicting future pavement performance. 
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REVIEW OF STATE PRACTICES, QA, AND PMS DATABASES 

The project team conducted detailed phone interviews and onsite visits to collect information 
from State agencies with various levels of advancements in their QA testing programs and 
construction quality database systems. The agencies collectively had also achieved significant 
experience with specifications developed for use in innovative QA testing and modern 
construction technologies, including 3D construction. Specifications, QA data collection 
practices (material approval, material certifications, QC, verification, and acceptance), data 
storage systems, PMS, condition data collection procedures, and performance forecasting models 
in the PMS were reviewed. Agencies selected for interviews and subject areas of discussion are 
summarized in table 138. 

The information gathered from these agencies covered various aspects of construction and QA 
practices as well as PMS. The information also included details about location referencing for 
the different data types and database structures from the standpoint of data integration for the 
purposes of this project. The outcome was to identify agencies with the most suitable practices 
and data for use in analyses to satisfy project objectives. The project team selected agencies that 
have well-established QA and PMS databases, as well as agencies that have an interest in 
exploring the value of using construction data to improve performance prediction. 

Table 138. State agencies interviewed and the subjects discussed. 

State PMS Construction 
QA 

HMA 
QA 

PCC 
QA 
UB 

NDT/Innovations 
(IC, GPR, 
MIT-Scan) 3D/CIM 

Colorado ● ● ● ● ● ● ● 
Maryland ● ● ● ● ● — ● 
Florida ● ● ● ● ● ● ● 
Minnesota ● ● ● ● ● ●  
Michigan ● ● ●  ● ● ● 
Utah ● ● ● ● ● ● ● 
Mississippi ● — ● — — — — 
State 1 ● — ● — ● — — 
Oregon ● — ● — — ● ● 

—Topic not discussed. 

Summary of Agency Practices Leading to Selection of Data for Analyses 

State agency surveys were conducted in 2015–2016 with the aim to collect information about 
agency QA and PMS databases and to assess their use for performance prediction under this 
study. The surveys provided the following conclusions: 

• Agencies are not set up to fully automate QA and PMS data integration and thus directly 
integrate QA data variables into a PMS. 

• Agencies empirically acknowledge relationships between QA data variables and future 
pavement performance. 
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• Agencies indicate that QA data can be further used when routinely updating construction 
specifications as well as in a PMS. 

• Agencies have, to a high degree, an interest in bridging the gap between the construction 
QA and PMS activities. The reasons for each agency’s interest in cross-linking these 
databases may vary. 

• States recognize that there is an increased scope for facilitating the integration process by 
using the enhancements in as-built data collection that are largely enabled by automation 
in construction technologies. Current practice does not permit the use of as-built records. 

• The extent of QA data available, the types of data collected, the extent of data accessible 
electronically, and the methods of storage vary across agencies. The efforts involved in 
assembling and integrating databases remain unique to each agency. 

• Data integration that allows mapping performance to QA data by project or by location 
requires significant effort. 

It was with the understanding of these conclusions that the project team selected State agencies 
to obtain data for the analyses under this project. In addition, knowledge of specific details of 
databases in each agency was a factor in selecting agency databases for use in this study. 

Identification of State Agencies for Data Analyses and Case Studies 

Based on State agency interviews and information obtained about datasets that can be potentially 
used to establish and validate correlations between QA data and performance, the project team 
selected data from four agencies. The selection of these agencies enabled a wide range of 
analyses covering different pavement types, QA parameters, innovative technologies, and levels 
and tiers of analyses. The following factors were considered when selecting the State agencies: 

• Ability to include different QA material parameters in the analyses with the data. Data 
from multiple States highlighted the similarities and differences in the outcomes from one 
State to another. 

• Ability to perform both network and project-level analyses. 

• Historical condition data over an adequate period for performance forecasting. 

• Agency’s general vision for improving PMS and a desire to use QA data for forecasting. 

• Maturity and advancements in the construction quality database system. 

• Extent of data maintained in electronic format, to an extent, instead of using paper 
records. 

• Data from evolving QA and construction technologies. 
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• Suitable location referencing formats across different databases, and the ability to identify 
data for a given project segment within each database. 

• General efforts of the State DOT that aligned with project goals. 

• Willingness to assist the project team. 

Individual State agencies were selected for analyses for the following specific reasons: 

• State 1: 
o Maintained comprehensive and well-organized data in both the QA and PMS 

databases. 

o Organized the QA data by lots and assigned data by specific paving dates. 

o Accessed traffic and climate data from other national databases to develop a case 
study demonstrating the added value of integrating other agency databases. 

• State 2: 
o Analyzed both PCC and HMA projects. 

o Made QA data and PMS data available, with the ability to match the location 
referenced at both the network and project levels, and, therefore, the ability to 
perform a project-level case study. 

o Provided the ability to consider at least two innovative technologies: in this case, the 
MIT-Scan for PCC pavements and a continuous deflection monitoring device/RWD 
for HMA pavements. 

• State 3: 
o Maintained comprehensive and well-organized data in both the QA and PMS 

databases. 

o Was already interested in pursuing the use of construction data for structural and 
functional performance measures. The agency’s main interest was utilizing aggregate 
properties, AC properties for the prediction of cracking, and rutting in HMA. 

• State 4: 
o Used IC data from three construction projects with corresponding QA in-field HMA 

density data and QA material mix design data, which enabled a project-level case 
study. Note: these data were used only for a case study. 

Table 31 and table 33 present summaries of the analyses performed utilizing data from these 
States for flexible and rigid pavement, respectively. Note the general unavailability of data 
related to 3D designs and as-constructed plans. This obstacle was mostly due to the limited 
maturity in the use of these technologies and agencies not having developed clear policies for 
ownership, collection, and archiving of 3D plans. Thus, because of the lack of 3D data from 
as-built projects, the project team did not include case studies with data collected from 3D 
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technologies for this project. The data, however, exist. A clear policy on data management of 
as-built designs will make them available for future analyses. 

DATA ANALYSES 

The project team conducted preliminary and detailed data analyses to verify the following: 

• QA data and other construction data collected at the time of construction can be 
integrated into PMS databases and structures. 

• QA data and other construction data collected at the time of construction are detailed 
enough to be used to compute clusters and parameters known to impact future pavement 
performance. 

• QA data and other construction data collected at the time of construction impact future 
distress and IRI development and progression, and thus the data can serve as leading 
indicators of future pavement performance. 

• QA data and other construction parameters can be integrated into the agency’s PMS and 
used for improved pavement performance forecasting. 

The project team used data from the three State databases—States 1, 2, and 3—to perform a 
variety of analyses that would offer a broad understanding of the impact of QA parameters on 
future pavement performance and thus serve as a leading indicator. The project team completed 
both network-level and project-level analyses. However, the team focused on identifying the QA 
parameters that showed the strongest correlations with performance and had a significant impact 
on future performance. Models that aligned with laboratory and field observations in past 
research studies were developed and tested the individual QA data items and clusters for 
significance. 

Table 73 shows a summary of the various performance indicators that were most viable for 
long-term prediction based on the available data for flexible and rigid pavements. This summary 
also indicates whether the performance prediction was done at the network or project level. The 
table also displays the type of QA and construction parameters that were used to predict 
performance. 

As also shown in table 139 and table 140, the case studies used data from States 1, 2, 3, and 4. 
These case studies addressed different aspects of applying the results of this research. 
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Table 139. Summary of performance prediction evaluations and case studies included in 
the report. 

State 
Performance Indicator 

Case Study Rutting Faulting Cracking 

State 1 

F, N, Q, A 
F, N, Q, V 
F, N, Q, D, A 
F, N, Q, D, V 
F, N, Q, D, A, T, C# 

— F, N, Q, A 
F, N, Q, V 
F, N, Q, D, A 
F, N, Q, D, V 
F, N, Q, D, A, T, C# 

Benefit of adding 
traffic and climate 
data. 

State 2 

F, N, Q, A 
F, P, Q, RW, A# 

R, N, Q, A 
R, P, Q, M, A# 

F, N, Q, A 
R, N, Q, A 
F, P, Q, RW, A# 

Data from 
nontraditional 
QA/network-level 
tests correlated to 
performance. 

State 3+ 

F, N, Q, A 
F, N, Q, D, A 
F, N, Q, A 

— F, N, Q, A 
F, N, Q, D, A 
F, N, Q, A 

Implementation of 
improved prediction 
model in the DOT’s 
PMS. 

State 4 

F, P, Q, IC, A# — F, P, Q, IC, A# Demonstration of 
methods to 
“indirectly” link 
modern technologies 
to performance. 

—No data. 
#In case study. 
+State has functional and structural cracking in pavement management database. 
Pavement type: F = flexible, R = rigid; analysis level: N = network level, P = project level; data types: 
Q = traditional QA data, D = QA-derived parameters, M = MIT-Scan, RW = RWD, IC = IC data, T = traffic, 
C = climate; data used: A = averages, V = COV/variability. 

Table 140. Summary of analysis type and case studies included in the report. 

State Analysis Type: IRI Case Study 
State 1 — Benefit of adding traffic and climate data. 

State 2 F, N, Q, A 
R, N, Q, A 

Data from nontraditional QA/network-level tests 
correlated to performance. 

State 3+ — Implementation of improved prediction model in the 
DOT’s PMS. 

State 4# — Demonstration of methods to “indirectly” link 
modern technologies to performance. 

—No data. 
#In case study. 
+State has functional and structural cracking in pavement management database. 
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Challenges in Data Analyses 

Several challenges, both anticipated and unanticipated, were encountered and overcome. The 
challenges are summarized as follows: 

• QA data within an agency are stored in multiple unstructured and disconnected databases 
that are maintained by different departments and personnel. The data are not necessarily 
consistent in format or location referencing fields. 

• Significant effort may be required to assemble (not integrate) data from different stages 
of the project, including material certification, mix design approvals, QC, and acceptance. 
The data are also archived for different periods. 

• Electronic data in some cases, especially related to projects over a decade old, have been 
converted to hardcopies and original electronic records that are not traceable. The project 
team used scanned PDF reports to obtain the necessary data in such cases. 

• Study data received by the project team were, in some cases, not in the format or level of 
detail required for use in performance forecasting. This situation was a result of less 
stringent requirements by the State DOT in the data entry procedures, which permitted 
incomplete data entries. Such incomplete datasets were not used for analyses. 

• Various QA data items were aggregated at different levels: from the whole project, i.e., 
several miles to 0.1- to 1-mi sections, to specific locations within a project. The level of 
aggregation has a significant impact on the ability to use the data for performance 
forecasting and the accuracy and improvements in performance forecasting due to the 
inclusion of QA type data. 

• Multiple databases, beyond construction QA and PMS, were integrated to correlate QA 
and PMS data to link the referenced project and location. The project team recognized 
how this procedure, and the complexity associated with it, varied between agencies. 
Coordinating basic data collection and reporting standards within agencies is needed to 
improve the feasibility of integrating the various datasets. 

Procedures for Statistical Analyses 

The statistical procedures include, as discussed in detail in chapter 6, the following steps: 

1. Review assembled PMS and QA test databases for accuracy and reasonableness and then 
estimate computed parameters that can be derived from QA test data. 

2. Use time-series (historical) PMS distress (cracking, rutting, faulting, IRI) data to develop 
simple linear regression models for forecasting future pavement performance (e.g., 
distress and IRI). 

3. Estimate for each PMS section the baseline distress level, which is the distress measured 
and forecast at the end of a given service life, about 10 or 15 yr. 



 

 252 

4. Perform statistical analysis, which involves the following: 

a. Identify preliminary Pearson’s correlations between distress/IRI and QA test data. 

b. Develop general linear models relating distress, IRI, and QA test data using GLM and 
stepwise regression statistical techniques. The overall model acceptance was 
determined based on the values and criteria due to various diagnostic statistics, 
including overall model’s p-value, Mallows coefficient, Cp, PRESS statistic, and 
coefficient of determination R2. For QA data variables to be included in a specific 
individual model, selection and acceptance were due to the data variables’ 
significance level and VIF. A significance level of 15 percent and VIF less than 
10 percent were used. 

c. Formulate the final model and assess the model’s independent QA test data variables’ 
significance and sensitivity to the given distress. A robust model was selected in this 
step with a significant validation of material behavior. The final model was selected 
based on several factors, including diagnostic statistics (R2, RMSE, COV, VIF, and 
p-value) and evaluation of the models’ reasonableness. 

Based on the steps listed previously, the variables that were identified as having a strong 
correlation with distress and IRI are tabulated in table 141 to table 143 for HMA, and table 144 
for PCC pavements. The set of significant variables included in the final model, i.e., parameters 
with a p-value less than 15 percent, are tabulated in table 145 for HMA and table 146 for PCC. 
The models and the coefficients for each parameter are discussed in chapter 6. 
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Table 141. Summary of HMA QA data items categorized as “strong” based on computed 
Pearson’s correlation statistic (r) for cracking. 

QA Variables State 1 State 2 State 3* 
HMA core thickness — — Yes** 
Large coarse aggregate sizes (≥1.0 inch) — — Yes* 
Intermediate coarse aggregate sizes (≤1.0 inch and 
greater than No. 40) Yes — Yes* 

Fine aggregate sizes (less than or equal to No. 40) Yes — Yes* 
Percent AC binder content Yes — — 
HMA bulk density — — — 
HMA lab air voids — —  
HMA VMA Yes — Yes* 
HMA VFA Yes — Yes*** 
HMA VTM — — Yes* 
Computed E* — — Yes*** 
SA1 — — Yes*** 
|G*|sin δ — — Yes*** 
DSR G* (ORIG) — — Yes*** 
DSR δ (ORIG) — — Yes*** 
Gsb — — Yes** 
Gmm — — Yes** 
Gmb — — Yes** 
TSR — — Yes* 

—No data. 
*Structural and functional. 
**Functional only. 
***Structural only. 
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Table 142. Summary of HMA QA data items categorized as “strong” based on computed 
Pearson’s correlation statistic (r) for rutting. 

QA Variables State 1 State 2 State 3 
HMA core thickness — — — 
Large coarse aggregate sizes (≥1.0 inch) — — Yes 
Intermediate coarse aggregate sizes (≤1.0 inch and greater than 
No. 40) 

— — — 

Fine aggregate sizes (less than or equal to No. 40) Yes — — 
Percent AC binder content — Yes# — 
HMA bulk density — — Yes 
HMA lab air voids Yes Yes# Yes 
HMA VMA — — — 
HMA VFA — — — 
HMA VTM — — — 
Computed E* — — — 
SA1 — — — 
|G*|sin δ — — — 
DSR G* (ORIG) — — — 
DSR δ (ORIG) — — Yes 
Gsb — — — 
Gmm — — — 
Gmb — — — 
TSR — — — 

—No data. 
#Bottom layer and top layer/lift. 
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Table 143. Summary of HMA QA data items categorized as “strong” based on computed 
Pearson’s correlation statistic (r) for IRI. 

QA Variables State 1 State 2 State 3 

HMA core thickness — — — 
Large coarse aggregate sizes (≥1.0 inch) — — — 
Intermediate coarse aggregate sizes (≤1.0 inch and greater than 
No. 40) 

— — — 

Fine aggregate sizes (less than or equal to No. 40) — — — 
Percent AC binder content — Yes — 
HMA bulk density — — — 
HMA lab air voids — Yes# — 
HMA VMA — — — 
HMA VFA — — — 
HMA VTM — — — 
Computed E* — — — 
SA1 — — — 
|G*|sin δ — — — 
DSR G* (ORIG) — — — 
DSR δ (ORIG) — — — 
Gsb — — — 
Gmm — — — 
Gmb — — — 
TSR — — — 

—No data. 
#Bottom layer and top layer/lift. 
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Table 144. Summary of PCC QA data items categorized as “strong” based on computed 
Pearson’s correlation statistic (r) for cracking and faulting. 

QA Variables 
State 1 

Cracking 
State 2 

Cracking 
State 3 

Cracking 
State 1 

Faulting 
State 2 

Faulting 
State 3 

Faulting 
PCC fly ash content 

N/A 

Yes 

N/A N/A 

Yes 

N/A 

PCC coarse 
aggregate content — Yes 

PCC sand content Yes Yes 
PCC cement content Yes — 
w/c ratio — Yes 
Additive (WRA) 
amount Yes Yes 

PCC water content — Yes 
PCC air content — Yes 
PCC unit weight — — 
PCC yield strength — Yes 
Coarse aggregate 
specific gravity 

— Yes 

Coarse aggregate 
absorptivity Yes Yes 

Coarse aggregate LA 
abrasion — Yes 

Intermediate 
aggregate LA 
abrasion 

Yes — 

Fineness modulus — Yes 
Fine aggregate 
absorptivity 

— Yes 
—No data.
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Table 145. Summary of HMA QA data variables included and associated p-values in cracking, rutting, and IRI prediction 
models. 

HMA QA Variables 

State 1 
HMA 

Cracking 

State 2 
HMA 

Cracking 

State 3 
HMA 

Cracking 
State 1 
Rutting 

State 2 
Rutting 

State 3 
Rutting 

State 1 
IRI 

State 2 
IRI 

State 3 
IRI 

Percent passing 
¾-inch sieve 0.0254 — <0.0001 0.0925 — 0.0022 — — — 

Percent passing No. 4 
sieve <0.0001 — — — — — — — — 

HMA percent passing 
No. 40 sieve — — — 0.0272 — — — — — 

HMA percent asphalt 
binder — — — 0.0144 <0.0001 — — 0.0299 — 

HMA bulk density 0.0008 — — — — — —  — 
HMA lab air voids — — 0.0001 0.0261  0.0318 — 0.1172 — 
HMA in-place air 
voids 0.0018 — — 0.0313 — — — — — 

Computed HMA E* <0.0001 — — 0.0005 — — — — — 
Mix type (Neat/RAP) — — 0.1222 — — — — — — 
Binder PG Grade — — 0.1222 — — 0.0169 — — — 
RWD maximum 
deflection, d — <0.0001 — — <0.0001 — — <0.0001 — 

—No data.
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Table 146. Summary of PCC QA data variables included and associated p-values in 
cracking and faulting models. 

PCC QA Variables 
JPCP Cracking 

(Fatigue) Faulting 
w/c ratio 0.0009 — 
PCC unit weight 0.0002 — 
Coarse aggregate absorptivity — <0.0001 
Sand equivalent — <0.0001 
PCC 7-d compressive strength — 0.0075 
MIT-Scan (misalignment parameter, S) — <0.0001 

—No data. 

Evaluation of Derived Parameters as Indicators of Performance 

Results presented in table 129 through table 135 represent preliminary analyses to determine the 
improvements that can be expected with the inclusion of the derived parameters. 

QA data from State 1 and State 3 to calculate derived parameters are discussed in detail in 
chapter 2 and summarized earlier in this chapter. The results of the statistical analyses performed 
using the derived parameters as model inputs were found to significantly improve performance 
prediction. Table 147 summarizes the R2 obtained for the prediction models based on the 
conventional QA parameters directly obtained from State QA databases and for the models 
developed using the derived parameters. It is clear, at least based on goodness of fit, that the 
models were improved in many cases: for average cracking (remained the same), average rutting, 
and COV of rutting in State 1; for structural cracking in State 3. The lack of improvement in 
functional cracking is not a concern because the derived parameters capture the material 
parameters that affect the mechanism of structural cracking. 

Table 147. Summary of goodness of fit using QA data and using derived parameters. 

State Model 
R2 for Models with 

Conventional QA Data 
R2 for Models with 
Derived Parameters 

State 1 Average cracking 42 42 
COV cracking 40 59 
Average rutting 27 46 
COV rutting 26 25 

State 3 Functional cracking 21 13 
Structural cracking 36 45 
Rutting 19 14 
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Case Studies 

The statistical analyses, performed using data from three State databases with different QA data 
elements, covered a wide range of performance models. However, for an agency to adopt this 
study’s approach for improving performance predictions of the PMS models, additional 
considerations are required. This process may involve an agency deciding to include other 
databases, or selecting nontraditional QA tests and network-level tests, or simply using an 
optimal approach of incorporating select parameters into PMS models. The project team 
developed four case studies that covered different aspects of applying this research for practice. 
The following case studies analyzed data from each State and display the associated results. 

Case Study with State 1 DOT—Using Traffic and Climate Data 

State 1 analyses identified gradation, mix volumetrics, in-place density, and AASHTOWare 
Pavement ME level 3 computed dynamic modulus parameters as the independent variables as 
inputs to the cracking and rutting performance (table 89). The traditional PMS model in an 
agency’s PMS uses only age as a variable. This case study incorporated data from additional 
databases to estimate traffic and climate data in addition to conventional QA and PMS data. By 
integrating the four data sources, the model was significantly improved. The model statistics for 
the equations, presented in table 148, shows the significant improvement to the performance 
prediction model by incorporating data from other QA and other databases, such as traffic and 
climate. It resulted in a 45 percent increase in R2, 17 percent decrease in COV, and an 18 percent 
decrease in SEE. Figure 123 shows a plot of measured and predicted cracking versus age for 
model age as a variable, whereas figure 124 shows the same for predictive model in using age, 
climate, traffic, and QA variables. A review of the plots presented shows the superior predictive 
capacity of the model using age, QA, traffic, and climate parameters. 

Table 148. Model statistics for example PMS cracking prediction models using age and 
additional QA parameters. 

Model  N R2 COV 
RMSE 

(Percent) 
Model using age (figure 121) 1,589 0.38 96.3 2.86 
Model using age and QA parameters (figure 122) 1,393 0.55 80.9 2.35 

Case Study with State 2 DOT—Using Advanced Test Methods 

Data from State 2 DOT were used to evaluate, at a project level, the correlation of data from 
structural condition monitoring (not traditional QA) to HMA performance as well as data from 
MIT-Scan-based S testing to joint faulting within 10 yr after construction. This case study 
highlights the ability to utilize data from nonconventional QA test methods as indicators of 
performance. 

A rehabilitation project considered on a SH in State 2 DOT showed high levels of pre-overlay 
distress along the entire segment (figure 126 to figure 128). The pavement was overlaid with 
traditional overlay and mill-and-fill strategies using two HMA mix designs. Location referencing 
on the project was not provided for the mixes; therefore, it was not clear from QA data the 
specific locations of the two mixes on the project. RWD test data soon after construction showed 
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higher deflections and lower structural capacity on one segment of the rehabilitation project 
(figure 129 to figure 131), which correlated to post-overlay performance. A statistical analysis 
showed the following: 

• RWD-measured pavement deflection had a significant impact on all three performance 
measures (cracking, rutting, and IRI). 

• Pavement sections with measured maximum deflection less than 15 mils exhibited the 
least amount of distress. 

• Pavement sections with measured maximum deflection greater than 25 mils exhibited the 
highest amount of distress. 

• Fatigue cracking had the highest R2 with RWD deflections (40 percent). For rutting and 
IRI, R2 was 15 to 18 percent. 

A second case study with data from State 2 DOT utilized S measured using the MIT-Scan at the 
time of construction and correlated it with performance 6 yr postconstruction. A nonlinear 
model, as shown in figure 135 and figure 136, illustrates that the measure of dowel alignment is 
potentially a leading indicator of faulting development. Using this parameter might help an 
agency in developing future faulting prediction models. It is recognized that a relatively small 
subset of existing QA data from an agency would include data from this technology; however, 
agencies should consider making such data available for future projects. 

Case Study with State 3 DOT—Incorporating Performance Predictions Into PMS 

This case study demonstrated the ultimate application of the results from this study, i.e., 
developing QA data-based performance prediction models for an agency’s PMS. This case study 
showed, using performance forecasting curves for seven pavement families, methods to 
incorporate data items identified as having a significant impact on pavement performance. The 
example was developed using data from State 3 DOT PMS and QA data tables, and it uses 
existing State 3 DOT performance forecasting models as well as performance predictions within 
this study developed for structural cracking. The methodology presented in this case study 
involves the following steps: 

1. Identify the pavement type of interest and the performance criteria, which in this case 
study was the flexible pavement SCI. 

2. Determine which QA data items that impact performance can be utilized as leading 
indicators of performance. Statistical analyses showed that the parameters, lab air 
voids, HMA type, PG grade of the binder, and the percent passing the 19-mm sieve 
were used in the model, as shown in table 145 and table 133. 

3. Determine existing (State 3 DOT) PMS performance forecasting models for the 
identified pavement types of interest, which are shown in figure 138 and figure 139. 
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4. Develop correction factors for the performance forecasting models identified in step 3 
using the QA data items identified as leading indicators and adjust/correct existing 
PMS model outputs as needed. The correction factor developed is shown in figure 140. 

5. Evaluate predictions of performance with correction factors and characterize 
improvements in goodness of fit and bias. The case study showed that the bias in the 
existing models was remedied significantly using the construction QA parameters, as 
shown in the statistics for the prediction shown in figure 141. 

Case Study with State 4 DOT—Utilizing Data From Innovative Technologies as Leading 
Indicators of Performance 

This case study was performed using State 4 data to examine the value of incorporating results 
from an innovative technology—IC in this case study—to improve pavement management 
performance models. At the time of this study, IC specifications were being used by States to 
record coverage and number of passes, which is worthy of recommending IC data for future use 
in asset management and for purposes of evaluation of anomalies in pavement condition data. It 
has also been found that the consistency in IC outputs in relation to in situ material properties is 
machine dependent. The intent of this case study was to determine the extent to which IC data 
correlate to traditional QA parameters. Success in establishing this correlation provides the 
opportunity to use IC data as an indirect measure of QA and, therefore, an opportunity to relate 
them to performance. 

The analyses performed with the assembled datasets to establish a correlation between field 
density and IC outputs involved the following steps: 

1. Identifying projects that have suitable data. In this case study, IC data from three 
construction projects were used. The data provide compaction history for the “entire” 
pavement, layer by layer and lift by lift. The corresponding survey grade GPS tracking 
and temperature measurements from IR sensors were also available. Other QA data 
included field density and lab aggregate, binder, and HMA test data. 

2. Assembling data for multiple regression analysis. From all three projects identified for 
the analyses, over 16 million IC readings were collected. A summary of the data 
assembled are presented in table 45 and table 46 for IC and field QA data, respectively. 
Table 60 and table 61 showing summaries of IC and conventional field testing data, 
respectively. Figure 104 and figure 105 present heatmaps of the spatial temperature data. 

3. Performing regression analysis. Multivariate regression analysis was conducted to 
identify IC outputs that significantly impact field-measured HMA density and evaluate 
the feasibility of modeling/predicting field-measured HMA density. The regression 
model adopted related field-measured density with interaction of “project,” “compaction 
equipment,” and key IC outputs “CMV” and “amplitude” (figure 142 and table 135). 

Overall this case study demonstrated that key IC outputs measured during construction (HMA 
placement and compaction) may be used for future performance forecasting; however, with the 
current advancements in this technology and the current development of specifications for this 
technology, it is not possible to guarantee a strong correlation to performance. Future pavement 
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performance data from projects that have utilized IC may provide better insights into the 
potential for correlation and performance prediction. Therefore, conclusions from the current 
study are preliminary, as more extensive research is required for the model’s development. 

CONCLUSIONS 

The research showed promising results supporting the use of QA and construction data as 
leading indicators of performance prediction. The following conclusions can be made from this 
study: 

• It is evident that no State is set up to directly correlate QA data with PMS condition data 
based on the review of State practices. 

• There exists among State agencies a high degree of interest in complementing PMS 
models with construction and QA data due to increased knowledge of the impact of 
several material properties with performance. The adoption of M-E design procedures by 
States, combined with FHWA efforts to implement PRS, have urged agencies to consider 
systematic collection of QA data more seriously. Furthermore, agencies also recognize 
this process as a necessary step to streamline their QA procedures and improve their 
specifications. 

• There is an increased scope for facilitating the integration process by the enhancements in 
as-built data collection largely enabled by automation in construction technologies 
(LiDAR, GNSS, AMG, sUAS, IC, and so on) combined with mobile technologies and 
tagging features in QA test devices. 

o These emergent technologies are promising for enhancing the construction data 
integration procedures. However, the current state of practice does not permit the use 
of as-constructed data because States do not currently require contractors to submit 
as-built records. 

• None of the agencies have matured their ideas to a formal, well-established, and 
automated process to integrate QA and performance. 

• The extent and types of material property data available in databases varies between 
States. Thus, the development of prediction models will be unique to each agency. 
Individual analyses will be required for each distress type to identify significant variables 
and to develop performance models. 

• The integration of QA databases requires significant effort and will require a customized 
effort for each State agency. 

• Statistical models can be developed for the prediction of all distress types identified in the 
NPRM. The following QA properties were found to be significant for each distress type: 

o Flexible pavement cracking—HMA aggregate gradation, binder type, air voids, 
density, modulus, or mix type (Neat/RAP). 
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o Flexible pavement rutting—HMA aggregate gradation, binder content, air voids, and 
modulus. 

o Flexible pavement IRI—HMA binder content and air voids (model minimally 
analyzed). 

o Rigid pavement cracking—PCC mix design index properties such as w/c ratio 
materials content and unit weight. 

o Rigid pavement faulting—PCC mix design index properties such as coarse aggregate 
absorptivity, sand equivalence, and PCC 7-d compressive strength. 

• Innovative technologies used in QC, construction, and pavement evaluation have a 
potential to predict long-term performance if: 

o MIT-Scan (misalignment parameter, S) was highly correlated to joint faulting 
developed within 2–4 yr after construction. 

o Deflections measured from a continuous deflection monitoring technology, such as 
the RWD, were correlated to cracking, faulting, and IRI measured within 5 yr after 
construction. 

Findings of this study are convincingly promising and suggest the following: 

• QA parameters can be correlated to performance measures that have been identified in 
the NPRM. 

• QA data can be integrated into a State PMS to improve distress prediction models. 

• Agencies with the right tools are interested in exploring the use of QA data to improve 
PMS pavement performance forecasting accuracy. 

• Agencies could use the integrated QA and PMS databases to improve construction 
specifications and other performance measures outside of the NPRM, such as pavement 
friction or JPCP joint spalling. 
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CHAPTER 8. GUIDELINES FOR UTILIZING QA DATA AS LEADING INDICATORS 
IN PMS 

This chapter provides practical guidelines and recommendations for agencies that consider the 
integration of QA test data and other construction data identified as leading indicators of 
pavement performance in its PMS. The guidelines are based on the results of the present study 
and its success in establishing correlations between QA data collected at the time of construction 
and future pavement performance. These recommendations are intended to encourage States to 
be proactive in collecting and storing construction and QA data beyond the construction contract 
period and to make data accessible for advanced performance forecasting modeling and analyses 
that support pavement management decisionmaking. 

BASIS FOR DEVELOPMENT OF GUIDELINES 

The following factors shaped the development of these guidelines: 

• States have made, and continue to make, great strides toward adopting digital data 
collection techniques, closing the gap between construction, performance, and asset 
management. Efforts by States to implement M-E design methods and PRS for 
construction have triggered the setup of comprehensive laboratory and field-testing 
programs to collect material test data directly related to pavement performance. Agencies 
are increasingly developing material libraries and are streamlining efforts to manage 
project- and network-level data for design, QA, M&R, and pavement management. 

• QA and construction data used as leading indicators of performance can and should 
leverage the momentum of these ongoing efforts and, to all intents and purposes, support 
a very critical program of a highway agency—its PMS. As such, adopting these 
guidelines should not be viewed as an attempt to implement a major programmatic 
change to an agency’s operation or management. Rather, the guidelines should be 
perceived as part of the natural progression toward the adoption and use of new 
technologies to implement better processes that are already in use by agencies. The 
guidelines will, however, require a committed effort by an agency to engage different 
departments and divisions to collaborate and then adopt the new technologies. The 
guidelines will better enable agencies to share data and other information for more 
efficient data collection and data interoperability. 

• All agencies collect QA data and pavement condition data. The extent of data collection 
and their use—specifications governing QA, stages of data collection (material approval, 
material certifications, QC, verification, and acceptance), the types of data collected, the 
format of data collection (electronic to paper records), data storage and archiving 
procedures (number of years of data available), and data accessibility—vary between 
agencies. The efforts involved in assembling and integrating databases will remain 
unique to each agency. Therefore, the guidelines presented are a set of unified and 
generalized recommendations: they do not attempt to describe the specifics of the 
procedures required to integrate QA and construction data into PMS for improved 
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performance prediction. However, they highlight the major steps involved and identify 
data to be organized and the technologies readily available for doing so. 

• This effort will involve assembling and integrating various construction, performance, 
and supplemental datasets, correlating QA data with performance data, identifying the 
parameters of interest, and developing prediction models, as discussed previously. To 
undertake these statistical analyses, an agency must assemble performance data over a 
significant period to capture the impact of construction and design parameters on 
performance. Data should be amenable to showing performance trends for all categories 
of pavements and distress types, including smoothness. Performance data used under this 
study spanned at least 10 yr. 

• The recommendations do not identify the specific QA and construction parameters that 
will be significant for an agency to develop performance prediction models. The outcome 
of the statistical modeling will depend on the QA parameters available in an agency’s 
database, the accuracy and sampling rates, the existing referencing systems across 
different agency databases and thus ability to integrate with PMS, variability in 
as-constructed design features and material properties within the local area and project, 
and the specifications used within the agency to control quality during construction. In 
other words, a detailed analysis is required by each agency to identify the parameters 
most critical for its needs. 

• Agencies across the Nation are at various levels of advancements with their QA testing 
programs and construction quality database systems. This finding ranges from agencies 
performing traditional QA tests for acceptance and maintaining electronic/paper records 
to agencies using innovative QA testing with geotagging and modern construction 
technologies with spatially mapped 3D construction data. Most agencies are in the 
process of transitioning to higher forms of data collection, i.e., agencies are making 
headway collecting data digitally and then storing construction and QA records with 
location referencing protocols. The guidelines address all tiers of QA and construction 
programs. The guidelines support agencies that will gradually scale up their QA and 
construction programs. 

QA and construction data are categorized under three tiers (also see table 149): 

o Tier 1: traditional construction and QA test methods. Data from these tests 
“currently” exist in State agency records, and they can be correlated to existing 
performance data. These tests have been used for at least 15 yr. An example of 
tier 1 test data would be thickness or density measured from field cores at specific 
locations. These data might not exist in an electronic format now, or they might 
exist in multiple formats, making data access and data integration a challenge for 
performance modeling. However, most agencies do not need to make changes to 
their current construction specifications or adopt new technologies to begin using 
tier 1 data for performance prediction. Instead, States should direct their efforts 
toward ensuring that, in the future, such data are collected and stored in a manner 
that makes them easily accessible and appropriately referenced for immediate and 
future use. 
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o Tier 2: innovative construction or QA test methods. These data include test results 
from most of the NDE-based test devices and construction technologies that have 
been in use over the last 7–10 yr. These test methods have mostly been 
standardized with formal test standards, and some agencies have specifications, 
while others might soon adopt the methods. It might be possible, although with 
limited project-level datasets, to correlate these data to performance. However, it 
is expected that, over the next 5–7 yr, data from tier 2 tests can be associated with 
performance data to result in analyses covering a 10- to 15-yr duration. An 
example of tier 2 test data would be GPR thickness measured with a higher 
sampling rate along the project, IR temperature data that may be correlated to 
density, or JPCP dowel alignment measured using MIT-Scan. Agencies must 
review current tier 2 data collection and storage protocols to ensure that the 
collection is being completed in a manner that will make data usable and readily 
available within the agency. Failure to do so may result in accumulation of vast 
amounts of legacy data that can be used in the future only with added costs. 

o Tier 3: emerging construction technologies and test methods. These data belong to 
technologies launching the digital revolution in the industry today. They are 
technologies and test methods considered promising for routine use and are being 
adopted rapidly by many agencies. There are likely no performance data at this 
stage, and agencies have not fully established formal processes (or contract 
language) to be able to obtain data from construction. However, construction and 
QA testing indicate that agencies will generate parameters that can potentially be 
correlated either directly to pavement performance or to proven indicators of 
performance. Note that, currently, there is no strong evidence of the use of such 
data to correlate to performance. Again, it is never too early for agencies to begin 
reviewing tier 3 data collection and storage protocols to ensure that these tasks are 
performed in a manner that will make them usable and readily available within 
the agency. Rather, delays in data collection efforts may result in accumulation of 
vast amounts of legacy data that can be used in the future only with added costs. 

A summary of the current status of available data and the projected data available under all 
three tiers for performance prediction is illustrated in figure 145. 
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Table 149. Tiered QA and construction data. 

Data Tier 
Examples of QA and Construction Data 

Under Each Tier 
Sources and File 

Formats 
Tier 1 (Traditional 
QA Test Data) 

• HMA: density, AC content, voids, 
gradation, lift thickness, derived 
parameters. 

• PCC: compressive strength, flexural 
strength, air content, w/c ratio, SCM 
content, PCC thickness, CTE. 

• Aggregate: gradation, moisture content. 
• Subgrade: Mr, moisture content, fines 

content 
• Pavement: initial IRI. 

• Databases 
(ACCDB). 

• Spreadsheets 
(XLSX, CSV). 

• Documents (PDF, 
TEXT). 

Tier 2 (Innovative 
QA Test Methods 
and Construction 
Technologies in 
Recent Use) 

• GPR thickness measurement, nonnuclear 
density, modulus from seismic testing. • Hierarchical data 

format files, 
spreadsheets, 
databases. 

• MIT-Scan for dowel alignment and 
effective dowel diameter. 

• IC, IR, in-place paving temperature. 
• RWD/FWD from pavement evaluation. Tier 3 (Emerging 

QA and 
Construction 
Technologies) 

• 3D construction break lines and 3D 
construction surfaces. 

• AMPT Sapp. 

• CADD data: DWG, 
DXF, DGN, 
LandXML, TXT. 

• XYZ LiDAR Data: 
LAS, E57. 

• Spreadsheets. 
• Databases. 

AMPT = asphalt mixture performance tester; Sapp = fatigue index parameter. 



 

 269 

 
 

 
Source: FHWA. 

Figure 145. Illustration. The three tiers of QA data for pavement performance prediction. 
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Agencies empirically acknowledge relationships between QA data variables and future pavement 
performance. None of the agencies studied has matured its ideas to a formal, well-established, 
and automated process to integrate QA, construction, and PMS databases. Initial efforts to locate, 
assemble, conflate, and model existing data are expected to be intense. Data integration that 
allows aligning spatial reference systems from PMS and construction QA databases by project or 
by location requires significant effort. Next, efforts to restructure collection of future QA and 
construction data compatible with pavement management are expected to be moderate. However, 
on successfully establishing the system, absorbing future data and updating models will be an 
automated process and may require relatively less effort. 

States recognize that there is an increased scope for facilitating the integration process by the 
enhancements in as-built data collections that are largely enabled by automation in construction 
technologies (LiDAR, GNSS, AMG, sUAS, IC, and so on) combined with mobile technologies 
and tagging features in QA test devices. These emergent technologies are promising for 
enhancing the construction data integration procedures. The current research shows that the 
variable of interest is the layer or lift thickness parameter that has a time reference (i.e., day and 
time of paving) and a location reference (i.e., geospatial coordinates). However, the current state 
of practice does not permit the use of as-constructed data, because States do not currently require 
contractors to submit as-built records. Agencies must consider requesting as-built models to 
enable the use of data from 3D construction for this specific application in pavement 
management. 

Finally, these guidelines should urge agencies toward a change in mindset in collecting and 
storing construction and QA data at all levels—for material approval, material certification, job 
mix formula approvals, QC, acceptance, and inspection checklists. The forethought that these 
data can and will be used for pavement management performance forecasting should be one of 
the key factors driving all design, construction, and QA data collection practices. These practices 
include accuracy and precision in recorded data; location referencing; and identification of 
highway and route numbers, project, layer, and lift information. These data also serve as an 
implied assertion to the fact that the quality of materials and construction has far-reaching 
outcomes, well beyond determining pay factors for construction contracts. It will perhaps require 
establishing a new “culture” in QA and construction data collection and storage. 

GUIDELINES FOR INTEGRATING QA AND CONSTRUCTION DATA INTO PMS 

Figure 146 illustrates a high-level overview for incorporating QA data into pavement 
management forecasting models. The diagram highlights the overall vision for combining data 
from the time of construction with other supplemental databases (for example, databases with 
traffic, climate, and maintenance information) to develop performance prediction models that 
may be used to further enhance or replace pavement management forecasting models and 
support investment decisions. These newly generated models are expected to forecast pavement 
distress more accurately than current methods do, which mostly forecast future distress based on 
trends identified in past distress data alone or augmented with as-designed pavement data. This 
schematic also highlights that the end use of construction and QA data is well beyond 
construction; these data extend into managing the pavement network.
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Source: FHWA. 

Figure 146. Illustration. Proposed integration of QA and construction data as leading indicators of performance for PMS. 
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The guidelines are divided into three parts: 

• Recommendations for data collection. 
• Recommendations for data processing, conflation, and integration. 
• Recommendations for performance prediction and integration into PMS. 

Recommendations for Data Collection 

Data Collected to Date in an Agency and Their Use—Legacy Data 

Several years ago, as agencies transitioned from manual to electronic data collection procedures, 
databases were designed and developed within agencies, generally for each individual material 
type. The features and capabilities of each of these databases reflect the needs of the agency as 
well as the computing/data-sharing technologies that existed at the time they were developed. 
Most often, these databases stored test results using limited referencing parameters and provided 
project or contract information, route numbers, lot number, test date, and stationing. These 
databases were also capable of producing ad hoc reports replicating the manual data entry 
processes that they then replaced. Future-generation databases added features and data elements, 
but none was necessarily designed with the vision of integrating QA and performance data. 
Linking databases using spatial mapping has been a challenge (figure 147), and such efforts were 
mostly exploratory or for research needs. They had to adopt other means to combine QA and 
performance data by project or contract (for example, integrating using a third database to 
identify common referencing data elements). 

In general, legacy data (i.e., past data) are not amenable for integrating QA and performance 
databases by test location or at a project level. As an example, a pavement construction contract 
completed within the bounds of a given construction stationing, using materials potentially from 
multiple sources, with QC and acceptance test results from different lots may exhibit variability 
in performance when condition data are monitored at different MPs (figure 147). In the absence 
of suitable data collection methods providing relative mapping across the different referencing 
systems, as is the case with agency legacy data, good, fair, and bad performance along the 
project may not be directly correlated to corresponding QA test results or material sources. The 
average performance of the section (between points A and E) may be correlated to the average 
values of each QA variable along the entire project, resulting in performance modeling at a 
network level. This approach might not fully capitalize on the value of the available QA data, 
because it does not correlate corresponding data for each segment to predict different 
performance levels in segments AB (good), BC (poor), CD (good), and DE (fair) at a project 
level. 

Because agencies cannot augment existing data to higher levels of data operability, they must 
consider alternatives to best utilize all data available and conflate QA performance datasets for 
immediate use in performance forecasting. However, agencies must try to overcome such 
limitations for modeling to establish systematic data collection for future data generated. 
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Source: FHWA. 

Figure 147. Illustration. Referencing using different geospatial systems, GPS, station ID, lot number, or MP. 
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Recommendations for QA Data Collection—Future Projects 

The key recommendation from this research for future data collection is that every QA or 
construction data record must possess a global location referencing system. The GPS location 
referenced must be accurate enough to enable identification of the specific location within a few 
inches, and every location on the project must be mapped to the associated construction data and 
QA data—field measured, lab measured, material approvals, and source certification. 
Compelling a common GPS referencing system is a fundamental requirement to enable direct 
correlation between construction and performance and to extend these performance prediction 
capabilities to pavement management and asset management functions. It is recommended that 
all data collected at the time of construction or pavement evaluation be mapped to a physical 
location on the highway, resulting in the following: 

• Every QA data record shall be associated with a finite and a geospatially specifiable 
physical field location. This location may represent a single point, an area, a lot, an entire 
project, or a set of projects. For example, the density of a core taken from the field shall 
be referenced with GPS coordinates of the core location. This measurement shall be 
applicable for the core location and the boundaries of the lot. Likewise, material 
certification or mix gradation shall be applicable to the project segment using the mix, as 
defined by the GPS coordinates. Furthermore, the binder certification data shall be 
associated with the projects (or project segments) that use the given binder. This action 
will be easily supported by some of the newer QA testing and construction technologies 
that have the capability for geotagging, thus providing the GPS coordinates for the test 
location. 

• Every field location (i.e., on the project) shall be associated with QA and construction 
data corresponding to the materials and construction methods used in that location. 

The second recommendation is to align collection of QA data with PMS data. This action may 
require equally distributed test sample locations within the construction project area so as to 
obtain QA data for each pavement management section. The goal here is to ensure changes in 
QA data (i.e., leading indicators of performance) are captured within each PMS section and thus 
future observed performance and current forecasts of performance. Figure 147, as an example, 
shows the number of test results represented by lots in segments AB and CD exceed the number 
of tests in BC, where the pavement shows poor performance. Such datasets in which changes in 
performance are not supported by adequate QA data will result in analyses using project 
averages that negatively affect PMS reliability. 

Note that, when adopting these recommendations for QA data collection practices, an agency 
may continue to use the testing and sampling program in existing specifications or adopt new test 
methods in the future. It is not within the scope of this project to suggest an optimum number of 
QA tests and the specific tests to be adopted. However, most agencies do already have detailed 
procedures, such as material sampling and testing, to provide representative characterization of a 
given pavement section. Agencies such as the FHWA, NCHRP, and AASHTO also have 
available similar protocols and standards. Current protocols may be modified and adapted to 
make them compatible with the goals of utilizing QA data as leading indicators of pavement 
performance within PMS. 
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In summary, regardless of the databases used, it is imperative that agencies have a means of 
tracking the specific location of each test data recorded as well as have a means to track all data 
associated with each location on the project. It is also necessary to align QA data with 
performance data collected (i.e., for each pavement management section) to develop robust 
prediction tools and to capture the sensitivity of each QA parameter to performance. These data 
collection measures are essential to the long-term use of QA and construction data for PMS or 
asset management. 

Recommendations for QA Data Elements to Be Collected for Future Projects 

Table 150 provides a summary of QA test parameters that shall be considered by an agency for 
use in establishing QA test specifications from the standpoint of performance prediction for 
pavement management. Research, including work reported in the earlier chapters of this report, 
demonstrates that several of these test specifications may produce data that might serve as 
leading indicators of pavement future performance. However, the project team is not certain 
which of these variables can significantly affect performance for a given agency at the local 
level. Additional data analyses using agency databases will be necessary to ascertain the critical 
parameters with strong correlations to future performance. 

Table 150. Recommended AASHTO/ASTM test standards for determining potential QA 
test data (includes material approval, QC, and acceptance testing). 

  

Material Type Test Property 
National Test 

Standard 
Asphalt mix 
(lab testing) 

Nominal maximum aggregate size and 
gradation. 

AASHTO M 323(38) 
AASHTO M 325(39) 

Type and percentage of recycled asphalt binder. 
Bulk specific gravity of the combined 
aggregate. 
Effective specific gravity of the aggregate. 
Bulk specific gravity of the binder. 
Design compaction level. 
Design binder content. 
Design air void content. 
Design VMA. 
Design VFA. 
FAA. 
Coarse aggregate crushed faces. 
Fine aggregate sand equivalent. 
Coarse aggregate flat and elongated particles. 
Filler-to-effective asphalt ratio. 
Moisture sensitivity. 
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Material Type Test Property 
National Test 

Standard 
Asphalt mix 
(loose mix and 
field cores 
testing) 

Asphalt content. AASHTO T 308(40) 
Laboratory density. AASHTO T 312(42) 
In-place compaction. 
Nuclear gauge/nonnuclear gauge. 

AASHTO T 166(41) 

Thickness. ASTM D 3549(111) 
Air voids/unit weight. AASHTO T 166(41), 

AASHTO T 331(112), 
AASHTO T 269(113) 

Tensile strength. AASHTO T 283(114) 
Dynamic modulus (E*). AASHTO T 342(115) or 

AASHTO T 378(116) 
Low-temperature creep compliance and 
strength. 

AASHTO T 322(117) 

Rutting resistance. AASHTO T 378(116), or 
AASHTO T 324(118), or 
AASHTO T 340(119) 

Fatigue cracking resistance. AASHTO T 321(120) or 
AASHTO TP 107(121) 

AC binder or 
blend of virgin 
and recycled 
binder in 
mixtures 
containing RAP 
and/or RAS 

Performance grade of the binder. AASHTO M 320(27) or 
AASHTO M 332(122) 

Asphalt binder complex G* and δ. AASHTO T 315(123), 
AASHTO M 320(27) 

Nonrecoverable compliance (JNR) and percent 
recovery (R%). 

AASHTO T 350(124) 

Creep stiffness, m-value, and the delta Tc 
parameter, ΔTC. 

AASHTO T 313(125) 

Viscosity-temperature relationship. AASHTO T 316(126) 

AC aggregates Toughness and abrasion resistance. AASHTO T 96(29) 
Durability and soundness. AASHTO T 104(31) 
Clay content. AASHTO T 90(32) or 

AASHTO T 176(33) 
Gradation. AASHTO T 27(34) and 

AASHTO T 11(35) 
Aggregate flat and elongated. ASTM D 4791(127)  
Coase aggregate angularity. ASTM D 5821(128) 
FAA. AASHTO T 304(129) 
Specific gravity. AASHTO T 84(36) and 

AASHTO T 85(37) 
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—No data. 

Material Type Test Property 
National Test 

Standard 
Hardened PCC Flexural strength. AASHTO T 97(55) 

Compressive strength. AASHTO T 22(54) 
Indirect tensile strength. AASHTO T 198(57) 
Modulus of elasticity and Poisson’s ratio. ASTM C 469(55) 
CTE. AASHTO T 336(58) 

PCC air content. AASHTO T 152(130) 
PCC thickness. 
Core measurements, GPR.  

Shrinkage (ultimate shrinkage and time to 
achieve 50 percent of ultimate). 

AASHTO T 160(58) 

Unit weight. AASHTO T 121(49) 
Length change due to concrete shrinkage. AASHTO T 160 

Cementitious 
materials 

Cement type. ASTM C 150(44) 
Fly ash class. ASTM C 618(45) 

PCC aggregates Fine aggregates (gradation, sand equivalency, 
fineness modulus, specific gravity, potential for 
ASR). 

AASHTO M 6(44), 
AASHTO T 11(35), 
AASHTO T 176(33), 
AASHTO T 27(34), 
AASHTO T 84(36), 
ASTM C 1260(47) 

Coarse aggregates (gradation, nominal 
aggregate size, abrasion, specific gravity). 

AASHTO M 80(47), 
AASHTO T 27(34), 
AASHTO T 96(29), 
AASHTO T 85(55) 

Fresh PCC Unit weight air content. AASHTO T 121(49) 
AASHTO T 196(50) 

w/c ratio. 
Mix design. 

Obtained from mix 
design information 

Slump. AASHTO T 119(51) 
Bleeding. ASTM C 232(52) 
Initial and final set time. ASTM C 403(53) 

PCC durability  Parameters of air void system in hardened 
concrete. 

ASTM C 457(60) 

Rapid freeze-thaw resistance. ASTM C 666(61) 
Scaling resistance. ASTM C 672(62) 

Pavement QA  Ride quality. AASHTO R 54(43) 
PCC joint effective dowel diameter (based on 
dowel alignment). 

Agency specifications 
for measuring S 

TSDD. Not available 
FWD. AASHTO T 256(131) 

IC. Agency specifications 
AC layer in situ temperature using IR. Agency specifications 
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This research also recommends the collection of data from other performance-based tests that 
produce parameters used in correlations developed for performance prediction. FHWA has led 
efforts in the past decade to develop new and improved pavement performance forecasting 
models for both asphalt and concrete pavements for use in developing PRS. The PRS 
relationships were developed based on extensive work done under NCHRP Project 1-37A and 
research conducted at University of Maryland, Arizona State University, and North Carolina 
State University. Agencies can utilize some of these relationships when developing and 
enhancing their own local models. 

Significant research has focused on developing advanced material characterization models and 
associated calibration and testing procedures to support performance prediction models for 
permanent deformation, fatigue cracking, thermal cracking, and reflection cracking distresses in 
HMA pavements. The AMPT can be incorporated into both mix design and structural design to 
estimate performance of the pavement constructed with the HMA mix. 

AMPT testing currently determines the Sapp parameter to estimate as-built fatigue performance. 
FHWA is researching the development of an equivalent parameter to estimate as-built rutting 
performance. FHWA has major ongoing efforts, through shadow projects being performed in 
several States, for the incorporation of AMPT performance tests of the mix design into PRS 
models for asphalt pavements. Additional data are expected to provide the validation and field 
data for calibration. The underlying concept of acknowledging the mix volumetrics-to-
performance relationships through the AMPT is of immense relevance to the recommendations 
provided in this chapter. This project recommends that, as AMPT procedures are developed, 
these data need to be stored and evaluated for use in future pavement performance prediction 
models to be integrated with PMS. 

3D Construction Data Integration for PMS Performance Prediction 

This research has determined that the key parameter of interest from 3D construction data is the 
thickness parameter measured with full project coverage. These data will supplement the 
thickness measured in field using traditional location-based core test data. The guidance for 
incorporating this parameter is provided with limited details because of the lack of formal 
standards existing now and the lack of procedures to obtain as-built data. The recommendations 
are rather abstract without a research validation under this study. However, the project team does 
recognize the potential to collect thickness data and its value in PMS. 

Contractors have been increasingly using AMG construction equipment for grading, trimming, 
and paving that accepts either 3D construction surfaces or 3D break lines that represent the 
crown and the edges of pavement. The 3D surface data are a mesh or triangulated irregular 
network of the pavement layer made from individual grid points (x, y, and z geospatial 
coordinates), as shown in figure 148. The x and y coordinates denote northing and easting 
horizontal location, whereas the z coordinate represents the elevation of the point. The 3D break 
lines are a series of (x,y,z) points that create a line string used for paving equipment. However, 
the pavement surface may be created from those 3D break lines. The 3D data used for 
construction come from the geospatially correct model created during the design phase. If the 
design surface varies from the actual as-built pavement surface, the contractor may be able to 
provide an as-built file for each layer. Alternatively, these surfaces may be obtained by scanning 
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each pavement layer each day using a terrestrial LiDAR scanner. LiDAR data may be a more 
accurate representation of each layer of the pavement structure. 

 
© 2020 Surveying Solutions, Inc. 

Figure 148. Image. Example of a 3D construction surface. 

After the surfaces have been obtained, the data must be processed using 3D design or 
construction software packages that offer tools to analyze the surfaces to compute the minimum 
thickness of the mesh. Most GIS software programs offer the needed functionality. 

The agency may request the as-built surfaces of each of the modeled pavement layers used from 
the contractor. The file format in which pavement surface data are received will be dependent on 
the equipment and software the contractor uses. It is important to consider which file format to 
obtain to ensure the agency sets up procedures to process the data to obtain the minimum 
thickness. Thus, the agency may request the surfaces constructed per day of operation in the 
desired format to calculate average thickness per lot (or for a select sampling area) of roadway 
paved. It is important to note that the surfaces can be associated with the horizontal alignment of 
the roadway to determine station values for beginning and stopping points for the daily 
operation. 

Recommendations for Data Processing, Conflation, and Integration 

The recommendations provided here are not intended to necessarily modify existing QA or PMS 
programs, but rather to provide agencies with the information that is required for making 
informed decisions regarding data processing, assembly, and integration within or external to 
their current QA databases and PMS programs. The key considerations for data integration 
before statistical modeling can be performed are discussed as follows. 



 

 280 

Data Conversion and Ingestion 

One of largest challenges expected when incorporating QA and construction data-based 
performance models into PMS is the data conversion process. As shown in table 149, the various 
data at each tier are available in several electronic formats and hardcopies. The data will need to 
be extracted from the files and spatially aligned with the baseline roadway data. The details of 
this process will be largely dictated by the formats of the agencies’ legacy data and future data 
collection methodologies. Regardless of the existing datasets and the PMS section attributes, the 
data integration and statistical analyses system developed will expect data to be in a particular 
format for data ingestion. Custom tools and scripts may need to be developed to preprocess the 
existing files and then convert them to a format compatible with the data assembled from the 
PMS. The following sections describe some of the common challenges encountered when 
preprocessing and converting data for use with a PMS. 

Geospatial Alignment 

As construction and QA data may be referenced by lot, station, or a GPS coordinate, the data will 
need to be converted and synthesized in a format in which the data are geospatially aligned. This 
conversion is necessary because different types of data may have different spatial references, 
resolutions, and accuracies; for example, thickness data may be available by lot number, whereas 
gradation data may only be available for a project or within certain station limits. 

A spatial join or data conflation may be performed at any level of granularity by upsampling or 
downsampling data. The process of upsampling data, i.e., converting low-granularity data to a 
higher granularity, will involve assigning a whole or interpolated value to the finer grain data. 
The process of downsampling, i.e., converting higher granularity data to a lower granularity, will 
involve selecting a representative value (e.g., mean value) and then assigning it to the coarser 
dataset. As spatial references might not perfectly overlap (figure 147), an interpolated value may 
be needed in either case of upsampling or downsampling. 

3D construction data are available only in GPS coordinates that can be tied only to a station ID 
by using the horizontal alignment of the roadway. Currently available GIS software, such as 
ArcGIS or QGIS, have the capabilities to spatially join different data sources that are 
georeferenced. However, custom tools or scripts may need to be developed to perform a spatial 
alignment for more complex data. 

Discrete Versus Continuous Data 

Due to the nature of the how measurements are taken (e.g., a continuous scanner of a section 
versus core samples every 100 ft), agencies will need to develop processes to bin the data as 
needed into the baseline data. Binning for continuous data will usually involve selecting a 
representative sample for each bin (e.g., median or mean value). Binning for discrete data may 
involve selecting a representative sample (if there are multiple samples available for each bin) or 
interpolating discrete values between bins (if no data are available for a specific bin). 
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File Formats 

As each type of data may be in various formats related to the tools or techniques with which the 
data were gathered, agencies will need to use conversion tools or processes to parse the relevant 
data or metadata available. These conversion tools may be available open source or 
commercially or may need to be developed in house by the agencies to absorb data. If the file 
formats are proprietary and cannot be parsed using available tools or documentation, software 
with proprietary formats will typically have the capability to export the file to some common 
interchange file format; however, this format will typically be a lossy (typically metadata) 
conversion. 

Data Inference 

Under certain circumstances, the data may not be explicitly available but can be inferred from 
available construction information. For example, material certification data may be inferred from 
the supplier; these data may be applicable per site or project, or for many projects. Agencies need 
to set procedures to use data from different functions of the QA program, if these data are not 
already stored in the construction and QA databases. 

Geospatial Referencing 

For data referenced by GPS, a conversion may be necessary to ensure all datasets share the same 
GPS format and coordinate system. A GPS format conversion is necessary if two datasets share 
the same map projection but have different GPS formats. For example, one dataset may be in 
decimal degrees (DD) format, and the other dataset may be in degrees-seconds-minutes format. 
Off-the-shelf software and libraries can perform simple conversions. 

If two datasets do not share the same geographic coordinate system, a map reprojection will be 
necessary so that all datasets are referenced to the same geodetic datum. For example, the world 
geodetic system (WGS) 1984 datum and the projection of universal transverse mercator (UTM) 
are not compatible, although UTM projected coordinates are referenced to WGS 1984 datum. 
WGS 1984 uses latitude and longitude for geospatial referencing, whereas UTM uses easting and 
northing coordinates. 

Recommendations for Performance Prediction 

The statistical procedures include, as discussed in detail in chapter 6, the following steps: 

1. Review assembled integrated PMS and QA test databases for accuracy and 
reasonableness and then estimate derived parameters from QA test data. 

2. Review and assemble supplemental databases such as climate and traffic. The agency 
needs to determine the specific climate and traffic parameters that will best explain 
performance characteristics and trends for each distress type. 

3. Use time-series (historical) PMS distress (cracking, rutting, faulting, IRI) data to develop 
simple linear regression models for forecasting future pavement performance (i.e., 
distress and IRI). 
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4. Estimate for each PMS section the baseline distress levels, which is the distress measured 
and forecast at the end of a given service life, about 10–15 yr. 

5. Perform statistical analysis, which involves the following: 

a. Identify preliminary Pearson’s correlations between distress, IRI, and QA test data. 

b. Develop GLMs relating distress, IRI, and QA test data using GLM and stepwise 
regression statistical techniques. The overall model acceptance should be determined 
based on the values and criteria of various diagnostic statistics, including overall 
model’s p-value, Mallows coefficient, Cp, PRESS statistic, and coefficient of 
determination R2. For QA data variables to be included in a specific individual model, 
selection and acceptance should be based on the significant of the variables and VIF 
to eliminate multicollinearity. The recommendation is to use significance level of less 
than 15 percent and VIF less than 10 percent. 

c. Formulate the final model and assess the model’s independent QA test data variables’ 
significance and sensitivity to the given distress. A robust model needs to be selected 
in this step with a significant validation of material behavior. The final model selected 
should be based on several factors, including diagnostic statistics (R2, RMSE, COV, 
VIF, p-value) and evaluation of the model’s reasonableness. 

6. Using this model and the parameters determined as significant to predict performance, 
develop suitable adjustment factors to the PMS models. 

SUMMARY 

Federal and State DOTs have achieved significant progress in incorporating advanced location, 
sensor-based, and imaging technologies in pavement construction and QA testing technologies. 
The experimental or regular use of these technologies has resulted in the availability of 
considerable amounts of data that characterize and describe all aspects of the pavement, such as 
design, materials properties, and condition. 

Development of new and improved technologies, such as 4G and 5G mobile networks, 
cloud-based computing and storage, machine learning, and artificial intelligence, is increasingly 
making it easier and possible to collect vast amounts of data and analyze it in real time or shortly 
thereafter. 

Thus, new technologies are available to ensure collection of traditional and state-of-the-art QA 
data, as well as incorporation of these data into an existing agency PMS to enhance performance 
forecasting. Doing so, however, will require agencies to perform a comprehensive review of 
current data collection practices (type, referencing system, frequency, reporting standards, and so 
on) and align these practices with future use. Agencies will also be required to review data 
storage capabilities, as data storage from existing and new technologies requires several 
terabytes of storage space annually, and this storage may not be readily available. Finally, 
analysis of the processing and analyzing of several terabytes of data will require computing 
capacity that might be beyond what is currently available to agencies. The use of new 
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cloud-based computing methodologies may be a feasible and cost-effective way of overcoming 
such hurdles. 

By carefully considering all the issues presented in these guidelines, agencies may be better 
prepared for identifying and incorporating QA-related pavement performance leading indicators 
into their PMS. It must be noted that new technologies and improvements to current test systems 
are ongoing processes. Thus, new data collection, processing, storage, integration, and analyses 
systems must be developed in a manner that ensures flexibility and adaptation to future changes 
in technologies. 
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