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Abstract

The Long-Term Pavement Performance (LTPP) database  
contains surface profile data for numerous pavements 
that are used mainly for computing International 
Roughness Index (IRI).(2) In order to obtain more infor-
mation from these surface profiles, a Hilbert-Huang 
Transform (HHT) based surface profile algorithm was 
developed to analyze LTPP field road profile data in 
order to extract smoothed, consistent profiles from 
noise-filled data sets using empirical mode decom-
position (EMD). The application of this algorithm to 
concrete surface profiles resulted in the successful  
separation of the intrinsic mode functions contained 
within the profile data for several LTPP pavement test  
sections from Wisconsin, Arizona, and Utah. Arizona 
was the only test section where the profiles showed  
consistent “curl” deflections for the same slab over a 
20-month timespan and during both winter and early fall 
seasons. The consistent slab shape is likely due to built-in 
curl. Built-in curl is defined as permanent concrete slab 
deformation that occurs early in the life of the pavement.
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By categorizing and separating intrinsic 
mode functions contained within LTPP 
profile data, the results can be used to  
analyze specific portions of LTPP surface 
profile data in order to improve concrete 
pavement models in the future. Currently, 
no comprehensive procedure exists to 
model or estimate long-term, effective 
built-in curling. The developed surface pro-
file algorithm that has proven to be univer-
sal can be applied to any LTPP profile data 
for analysis.

Introduction

The LTPP database contains surface profile  
data for pavement sections throughout the 
United States that is used to compute IRI. 
Byrum previously used Wisconsin LTPP 
section profiles to analyze curvature in  
concrete pavement slabs.(3) However, the 
difficulty with analyzing raw field profiles  
is the level of noise and frequency of  
inconsistencies within these data sets. To 
remedy this problem, an automated pave-
ment analysis method was developed to 
smooth the real-field profiles and allow for 
more accurate and consistent analysis of 
pavement sections or slabs. This method 
is based on the EMD process contained  
within the HHT. Past analysis of road  
surface profiles using the HHT is limited. 
Adu-Gyamfi et al. used the empirical mode 
decomposition for pavement surface  
analysis, and Attoh-Okine et al. also used  
it to analyze two flexible pavement  
profiles.(4,5) 

The application in this paper focuses on 
grouping intrinsic mode functions (IMF) to 
analyze built-in curl features of rigid pave-
ment profiles. Extraction of noise in real-life 
and artificial profile data can be performed 
by applying a sifting process to filter and 

identify the IMFs that are contained in raw 
surface profiles. The idea behind the Hilbert-
Huang-based sifting process is to identify 
the intrinsic functions contained within the 
data and to subsequently remove and cat-
egorize them in order to analyze specific  
portions of the original profile. Figure 1 
shows the basic decomposition of any  
profile.(6)

Where y(x) is the original profile, cj(x)  

represents IMFs within the data set, and 
rn(x)  is the residue after the first n IMFs have 
been removed.

In the case of pavement profiles, some of  
the IMFs are due to “noise/surface texture,”  
“curling,” and/or “base trends” within 
the pavement. Removing the IMFs due to 
“noise/surface texture” from the distorted, 
non-linear profiles, will reveal the smoother 
functions of the original data set that can 
be attributed to “curl” and/or “base trends.” 
Quotations are used around “noise/surface  
texture,” “curl,” and “base trends” to 
emphasize that these terms are used only 
to group functions of similar characteristics  
contained in surface profiles. Surface 
profiles contain IMFs attributed to many  
different variables. The goal of this paper is 
not to explain what causes trends in pave-
ment profiles but to develop a method to  
analyze them.

After the automated profile analysis is per-
formed, the resulting IMFs can be grouped 
to represent different portions of the  
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y(x) = n
=1

 cj(x) + rn(x)

Figure 1. y of x is equal to the summation of c subscript j 
of x plus r subscript n of x. 

j 
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original data set. Based on frequencies  
and wavelengths of the extracted func- 
tions, IMFs will be categorized into three 
separate groups. Frequencies of the 
intrinsic mode functions decrease as the  
number of calculated IMFs increase. 
Therefore, the first IMF extracted will 
have the highest frequencies and shortest  
wavelengths of any function within the  
profile. The opposite will be the case for  
the final IMF.

IMF Grouping

The first group, “noise/surface texture” 
functions (NFUN), are high frequency IMFs 
resulting partially from surface texture 
or noise contained within the pavement 
profile. The wavelengths are short and the 
amplitudes small. The peaks of the waves 
tend to appear sharp and pointed.

“Curl” functions (CFUN) compose the sec-
ond group. Compared to the NFUNs, these 
IMFs are characterized by lower frequen-
cies, higher amplitudes, and longer wave-
lengths. Before CFUNs are extracted, much 
of the “noise/surface texture” will have 
already been removed from the profile by 
the NFUNs. This will cause the CFUNs to 
appear smoother than the NFUN group. The 
hypothesis used here is that these IMFs are 
partially caused by temperature curling or 
built-in curling within the pavement slabs.

The last group, “base” functions (BFUN), 
display the lowest frequencies, and the 
wavelengths will be longer than the CFUNs. 
The BFUNs are due to overall “base trends” 
within the profile. In ISLAB2005 concrete 
slab models, the curling magnitude is 
always calculated assuming the original 
surface is horizontally flat. This is not the 
case for a real pavement section. If the 
underlying “base trends” of pavement are 

not taken into account, there will likely be 
deflections and curvatures that are incor-
rectly assumed to be caused by “curling.” 
The BFUNs are the smooth, low frequency 
IMFs. The final residue is always grouped 
with the BFUNs.

Grouping IMFs allows for evaluation of any 
portion of the profile, both individually and 
as a group. For instance, the overall “base 
trend” of a profile can be obtained by sum-
ming all the members of the BFUN group. In 
most cases, the portion of greatest interest 
is the removal of the NFUN group to reveal 
the smoother characteristics of the slab pro-
files in absence of distortions from “noise/
surface texture,” leaving just the combina-
tion of the CFUN and BFUN groups repre-
senting a smoothed version of the profile.

Grouping IMFs can be difficult because 
there is no clear or concise method by which 
to do it, and profiles contain varying num-
bers of IMFs. Steps for the classification of 
the IMFs and their grouping into NFUNs, 
CFUNs or BFUNs, previously defined, is 
described below using an LTPP pavement 
section from Wisconsin.

Wisconsin Section 553009

The LTPP database contains a profile for 
Wisconsin pavement section 553009 (see 
figure 2). This profile was collected on  
June 9, 2008, during run 6, at 4:07 p.m. 
from the left wheel path. The 11-slab  
section contains concrete that is 8 inches 
thick. The profile was chosen because the 
slab profiles are easily identified by their 
surface data and provide a good example of 
classifying IMFs.

The developed automated Hilbert-Huang-
based algorithm was applied to the entire 
profile shown in figure 2, and the IMF 
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results for the middle slab (centered on  
x ≈ 800 inches) were extracted for analysis. 
When using this automated profile analysis 
algorithm with field data, spiking effects 
during the empirical mode decomposition 
process tend to cause distortions near the 
edges of the analyzed profiles. The middle 
slab is extracted for analysis to avoid these 
distortions.

The first IMF, and member of the NFUN 
group, is composed of “noise/surface tex-
ture” from the original profile. Figure 3 
shows a function with the characteristic 
high frequencies and short wavelengths of 
members of the NFUNs. Spiking and dis-
tortion did take place near the edges of the 
11-slab profile during the decomposition 
process, but the profile was long enough 
that the middle slab was unaffected.

Removing the first IMF from the original  
profile leads to the smoother profile 
(referred to as the first residue) as shown 
in figure 4. It is clear that the first IMF 
is indeed a function of the NFUN group. 
There is some noticeable smoothing near 
the bottom of the slabs, meaning the empir-
ical mode decomposition sifting is perform-
ing as expected. The amount of data, still  
present within the first residue which 
shows characteristics of “noise/surface tex-
ture,” will determine whether the second 
IMF is grouped as an NFUN or a CFUN. 
There appears to still be “noise/surface  
texture” contained within the first residue 
as shown in figure 4. Therefore, the second 
IMF will likely be another member of the 
NFUN group.

Figure 2. Original 11-slab profile from Wisconsin LTPP test section 553009. 
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Figure 3. First IMF from the middle Wisconsin LTPP 553009 slab profile. 
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Figure 4. First residue with the original profile from Wisconsin LTPP test section 553009.

© Dan Franta
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Figure 5. Second IMF and second member of the NFUN group.

The second IMF, shown in figure 5, still 
displays the short wavelength and high 
frequency characteristics of “noise/surface 
texture.” Although the second IMF has lon-
ger wavelengths and lower frequencies 
than the first IMF, the frequencies and wave-
lengths displayed are not characteristic of 
“curling.” Therefore, the second IMF will be 
classified as another NFUN. 

Removing the second IMF from the first 
residue gives the resulting second residue 
shown in figure 6. The remaining “noise/
surface texture” portions of the original 
profile have been significantly removed 
by the second IMF, as displayed by the 
smoothness of the second residue. Now 
that the “noise/surface texture” has been 
extracted, the next IMF will likely be com-
posed of “curl.”

Figure 7 shows the portion of the original 
profile resulting from “curl” and classified as 

a member of the CFUNs. It is clear that this 
IMF has lower frequency, smoother waves, 
and larger amplitudes than what was typical 
of the NFUNs. Notice that the “curl” data 
is zeroed on the x-axis. This is because the 
“curl” data is free of nearly all “base trends.” 
Also, notice that “curl” is driven by joint  
spacing. The lengths of the slab correspond  
to the resulting “curl” wavelength. The  
third IMF appears to contain most of the 
“curl” data from the original profile; con-
sequently, after it is removed, the original 
profile is reduced to its “base trends.”

As previously mentioned, the third IMF 
(shown in figure 7) removed the “curl” data 
from the second residue (shown in figure 6).  
Removal of the third IMF from the sec-
ond residue results in the third residue 
as shown in figure 8. The third residue  
displays the underlying “base trend” of 
the data set for the middle slab. Therefore, 
any remaining IMFs, along with the final  
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Figure 7. Third IMF and first and only member of the CFUN group.

Figure 6. Second residue with the original shifted profile.

© Dan Franta
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Figure 8. Third residue with original shifted profile. 

residue, will be classified as BFUNs. 
IMFs four, five, and six, along with the 
final residue, compose the BFUN group 
for this Wisconsin slab as shown in  
figure 8. It is clear that the BFUN group  
is free of “noise/surface texture” and “curl.”

Physical grouping of the IMFs can now be 
completed. The summation of the NFUNs 
is shown in figure 9. The CFUNs group is  
composed of the third IMF already dis- 
played in figure 7. The BFUNs with the orig-
inal slab profile are displayed in figure 8. 
Finally, the combination of CFUNs+BFUNs 
with the original profile is shown in  
figure 10. This final combination of the 
CFUNs+BFUNs constitutes a smoother  
version of the original slab profile.

The sum of the two IMFs comprising the 
NFUN group for this profile is shown in  
figure 9. The high frequency and low 

amplitude wavelengths, along with lack 
of smoothness, are consistent with trends 
associated with “noise/surface texture” and 
thus confirm these IMFs do indeed belong 
in the NFUN group.

Finally, as shown in figure 10, the BFUNs 
and CFUNs comprise the majority of a 
profile data set. The original profile was 
shifted downward over the top of the 
CFUNs+BFUNs result, using a minimiza-
tion of least squares, in order for easier  
comparison of the two profiles. The 
CFUNs+BFUNs had a significant portion  
of the “noise/surface texture” removed, 
resulting in a smoother profile. NFUNs  
distort original profiles, therefore sug-
gesting that the combination of the 
CFUNs+BFUNs is a more accurate repre-
sentation of the profile the LTPP data were 
collected to explore.

© Dan Franta
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Figure 9. NFUN group for the Wisconsin LTPP 553009 slab profile.

Figure 10. CFUNs+BFUNs with the original slab profile (shifted by least squares minimization for comparison). 

© Dan Franta
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Results

Using the grouping of IMFs procedure 
from the Hilbert-Huang-based profile anal-
ysis algorithm as described, the results 
from its application to profiles from the 
Arizona and Utah LTPP test sections are  
provided. CFUNs+BFUNs results from  
surface profiles collected at different times 
from the Arizona test section are com- 
pared. A condensed version of the auto-
mated profile analysis results will be  
provided in this section.

Arizona Section 040215

The surface profile data from Arizona test 
site 040215 was used for the analysis. This 
test section contains profile data (from  
run 1) for eleven 15-ft-long slabs of  
11-inch-thick concrete, collected January 25,  

2010, at 5:37 p.m. The left wheel path data 
were used for analysis. The automated 
Hilbert-Huang-based profile analysis algo-
rithm was applied to the entire profile 
shown in figure 11. 

CFUNs+BFUNs analysis is used in the mid-
dle slab to avoid edge spiking effects from 
the sifting process.

The CFUNs+BFUNs group is nearly free of 
all “noise/surface texture” distortions as 
shown in figure 12.

The same test section was analyzed in a 
similar manner using profile data collected 
from run 2 on September 20, 2008, at 2:26 
a.m. from the left wheel path.

The surface profile section displayed in  
figure 13 shares some similarities with the 
profile shown in figure 11.

Figure 11. Original Arizona LTPP 040215 profile collected January 25, 2010.

© Dan Franta
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Figure 13. The Arizona LTPP 040215 section collected September 20, 2008.

Figure 12. CFUNs+BFUNs with the original middle slab profile from Arizona.

© Dan Franta
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A closer look at the middle slabs from the  
two raw profiles is displayed in figure 14.  
The middle slab shown in figure 14 is 
the profile of interest. Notice the differ-
ences between the two raw profiles. 
The CFUNs+BFUNs, as computed by the  
developed Hilbert-Huang-based algorithm, 
for the two different profiles are compared 
in figure 15. The two raw profiles displayed 
in figure 14 are not nearly as similar as 
the two CFUNs+BFUNs profiles shown in 
figure 15. Once the NFUNs were removed, 
the CFUNs+BFUNs for the two slab profiles 
closely resemble one another. These slabs 
were collected approximately 20 months 
apart, during different seasons, and the 
CFUNs+BFUNs profiles remain basically 
the same. This is likely due to the early-age 
built-in curl within the slabs. The developed 
algorithm allows for this determination.

Utah Section 493011

An 11-slab section using the surface pro-
file data from the Utah test section was 
also analyzed using the automated Hilbert-
Huang-based profile analysis algorithm. 
This data is from section 493011, collected 
on October 9, 2007, at 3:01 p.m., during  
run 1, from the left wheel path. The section 
contains 10-inch-thick concrete of varying 
slab lengths.

The same procedure used for the Wisconsin 
and Arizona LTPP test sections is applied 
to the Utah profile shown in figure 16. The 
slab profile used for analysis is centered on  
x ≈ 828 inches.

Again, the developed Hilbert-Huang based 
profile analysis algorithm successfully 
extracted the CFUNs+BFUNs from the mid-
dle slab profile as shown in figure 17.

Figure 14. Raw middle three Arizona LTPP 040215 slab profiles from 2010 and 2008.

© Dan Franta
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Figure 15. CFUNs+BFUNs for the middle slabs collected in 2010 and 2008.

© Dan Franta

Figure 16. Eleven-slab LTPP 493011 profile from Utah.
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Figure 17. Original slab profile with the CFUNs+BFUNs from the middle Utah LTPP 493011 slab profile.

Conclusions

The LTPP database contains vast amounts 
of surface profile data mainly used for com-
puting IRI. The developed Hilbert-Huang-
based pavement profile analysis algorithm 
can be used to successfully separate LTPP 
surface profiles into “noise/surface texture,” 
“curl,” and “base trend” sources. Trends 
from surface profiles were identified in 
Wisconsin, Arizona, and Utah LTPP profiles.

Due to spiking during sifting, it is best to 
discard the slabs near the edges for the 
multi-slab scenarios and also to neglect 
them during IMF grouping classifications. 
The length and number of slabs required for 
a multi-slab profile to be effectively decom-
posed and grouped varies with the unique 

characteristics of each profile. Multiple slab 
configurations tend to provide better sepa-
ration of NFUNs, CFUNs, and BFUNs than 
single slab configurations and should be 
used with this developed profile analysis 
algorithm whenever possible.

The separation of the profiles allows for 
built-in curl analysis from LTPP surface pro-
file data. An Arizona LTPP slab profile was 
shown to contain consistent “curl” deflec-
tions for the same slab over a 20-month 
timespan and during both winter and 
early fall seasons. The raw profiles were 
smoothed using the developed algorithm, 
which allowed for the analysis. The consis-
tent slab shape is likely due to early age 
built-in curl.

© Dan Franta
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The LTPP database is composed of mul-
tiple types of road profile sections with 
various slab lengths, thicknesses, and load 
transfer mechanisms, among other things. 
The developed Hilbert-Huang-based profile 
analysis algorithm has been proven to be 
universal and can be applied to any of these 
various road surface profiles.
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