Long-Term Pavement Performance Data Analysis Program: Effect of Dowel Misalignment on Concrete Pavement Performance

PUBLICATION NO. FHWA-HRT-20-070

NOVEMBER 2020

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

FOREWORD

This report documents the analysis of data collected through the Long-Term Pavement Performance (LTPP) program to characterize the effects of dowel misalignment on concrete pavement performance. The objective of this research was to measure the alignment of dowels at the transverse joints of in-service pavements. This report documents this information on a State-by-State basis. Data were used to evaluate typical distribution of various types of misalignment and analyze how misalignment relates to pavement performance factors such as cracking, faulting, and spalling.

A majority of dowels in LTPP studies had good alignment with regard to horizontal skew, vertical tilt, longitudinal translation, and vertical translation. To characterize the entire transverse joint, rather than just the individual dowels, the joint score and equivalent dowel diameter measures were used for each pavement section. The researchers found that, while dowel misalignment may be a contributing factor, its effects were secondary, as there are many other factors that affect pavement performance. The biggest contribution of dowel misalignment was in terms of its effect on load transfer at the transverse joints, which may translate to poor faulting performance, depending on other factors that impact faulting.

Cheryl Allen Richter, Ph.D., P.E. Director, Office of Infrastructure Research and Development

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation (USDOT) in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. FHWA-HRT-20-070	2. Gover	rnment Accessio	on No.	3. Recipien	t's Catalog No.	
4. Title and Subtitle				5 Report D	late	
Long-Term Pavement Performance Data Analysis Program			ogram:	November	2020	
Effect of Dowel Misalignment on Concrete Pavement			nt	6. Performi	ng Organization Cod	e
Performance						
7. Author(s)				8. Performi	ng Organization Rep	ort No.
Shreenath Rao, Ph.D., P.E.	, and Lax	Premkumar, P.H	Ξ.		0 0 1	
9. Performing Organization	n Name an	d Address		10. Work U	Init No.	
Applied Research Associat	es, Inc.					
100 Trade Centre Drive, Su	uite 200			11. Contrac	t or Grant No.	
Champaign, IL 61820				DTFH61-14	4-C-00017	
12. Sponsoring Agency Na	me and A	ddress		13. Type of	Report and Period C	lovered
Office of Infrastructure				Final Repor	t; May 2014–Septer	ber 2018
Federal Highway Administ	ration			14. Sponsor	ring Agency Code	
6300 Georgetown Pike				HRDI-30		
McLean, VA 22101						
15. Supplementary Notes						
The Federal Highway Adm	ninistration	n Contracting O	fficer's Re	presentative	was Jack Springer (r	etired).
16. Abstract						
Magnetic imaging tomogra	phy (MIT) scanning is a r	ondestruc	tive method	for measuring the ali	gnment of
dowels placed at transverse	e joints of	jointed plain con	ncrete pav	ements (JPC)	Ps). Several highway	agencies across
the United States have adop	pted speci	fications for dov	vel alıgnm	ient, with ma	ny using the joint sco	ore measure.
However, this measure was	d intuitively and	1 not base	d on any labo	bratory or field tests.	National	
Cooperative Highway Research Program (NCHRP) Report 63				/ provides a i	methodology to deter	mine an
equivalent dowel diameter measure based on dowel misaligni developed from laboratory tests and with limited field validat				ent (Knazano	ovich et al. 2009). In	is procedure was
and the performance of IPCP is unclear, but understanding it				imperative	for developing constr	
guidelines. This report presents results of MIT scanning dat				ollected on I	ong Term Payement	Performance
(LTPP) test sections and data analysis to assess the effect			ffects of d	owel misalio	inment on IPCP perfe	rmance As part
of this study. MIT scanning was performed on 121 Speci			necific Pa	vement Stud	ies-2 and 3 General F	avement
Studies-3 test sections. Dowel alignment parameters, join			ioint scor	e and equiv	alent dowel diameter	were calculated
as part of the analysis. Statistical analysis was performed to			med to de	termine any i	relationship between	the joint score
and cracking and between the joint score and spalling. The a				lvsis did not	indicate any definitiv	ve relationship
between the joint score and	or the joint scor	e and spal	ling within t	he analysis range for	most States.	
although some effect was observed for three States. This lack of relationship does not mean severely r					rely misaligned	
dowels have no effect on p	erformance, pai	ocalized dist	resses. Analysis of th	e equivalent		
dowel diameter as a measure of dowel misalignment for use with AASHTOWare® Pavement ME Design					E Design	
software suggests that using the equivalent dowel diameter is a less-biased estimator of long-term load-transfer					n load-transfer	
efficiency (LTE), as model	ed using A	ASHTOWare I	Pavement	ME Design,	than using the actual	dowel diameter,
suggesting a relationship b	etween do	wel misalignme	nt and lon	g-term LTE	(AASHTO 2014). He	owever, there is
considerable scatter in the LTE modeled using AASHTOWare Pavement ME Design versus actual LTE. The					ual LTE. The	
remaining bias and scatter suggests that the models (i.e., equivalent dowel diameter and LTE in AASHTOWa					AASHTOWare	
Pavement ME Design) could potentially be improved using data collected as part of this study.						
17. Key Words			18. Distr	Distribution Statement		
Long-term pavement perfo	rmance, L	TPP,	No restri	ctions. This o	document is available	e to the public
concrete pavement performance, dowel th			through	the National	Technical Informatio	n Service,
misalignment, dowel alignment, MIT scanning,			Springfie	eld, VA 2216	01.	
equivalent dowel diameter,	dowel sp	ecifications	http://wv	<u>vw.ntis.gov</u>		22 D :
19. Security Classif. (of thi	s report)	20. Security C	lassif. (of	this page)	21. No. of Pages	22. Price
Unclassified		Unclassified			116	N/A

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized.

	SI* (MODERN I	METRIC) CONVER	RSION FACTORS	
	APPROXIMA	TE CONVERSION	IS TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd ²	square yard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE: volu	imes greater than 1,000 L shall I	be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
	TEI	MPERATURE (exact deg	grees)	
°F	Fahranhait	5 (F-32)/9	Coleius	°C
1	ramennen	or (F-32)/1.8	Geisius	0
		ILLUMINATION		
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²
	FOR	CE and PRESSURE or S	STRESS	
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIMAT	E CONVERSIONS	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
Cymbol	When Fourthow		Torina	Cymbol
mm	millimotoro	LENGIH	inches	in
mm	millimeters	LENGIH 0.039	inches foot	in #
mm m	millimeters meters	0.039 3.28	inches feet	in ft
mm m m	millimeters meters meters	LENGIH 0.039 3.28 1.09 0.621	inches feet yards miles	in ft yd mi
mm m m km	millimeters meters meters kilometers	LENGIH 0.039 3.28 1.09 0.621	inches feet yards miles	in ft yd mi
mm m km	millimeters meters meters kilometers	LENGIH 0.039 3.28 1.09 0.621 AREA 0.0016	inches feet yards miles	in ft yd mi
mm m km mm ²	millimeters meters meters kilometers square millimeters	LENGIH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	inches feet yards miles square inches	in ft yd mi in ² ft ²
mm m km mm ² m ²	millimeters meters meters kilometers square millimeters square meters	LENGIH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	inches feet yards miles square inches square feet square yards	in ft yd mi in ² ft ² yd ²
mm m km mm ² m ² ba	millimeters meters meters kilometers square millimeters square meters bectares	LENGIH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	inches feet yards miles square inches square feet square yards acces	in ft yd mi in ² ft ² yd ² ac
mm m km mm ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters hectares square kilometers	LENGIH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²
mm m km mm ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²
mm m km mm ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters hectares square kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²
mm m km mm ² m ² ha km ² ha	millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	in ft yd mi in ² ft ² yd ² ac mi ² fl oz
mm m km m ² m ² ha km ² ha km ² L L m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35 314	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³
mm m km m ² m ² ha km ² ha km ² L L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic vards	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
mm m km m ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	LENGIH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
mm m km m ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³
mm m m km mm ² m ² ha km ² mL L m ³ m ³ g	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz
mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "+")	millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2 000 lb)	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	LENGIH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (ovact doc	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb)	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton")	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact deg	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb) grees)	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton") EE	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact deg 1.8C+32	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb) grees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T
mm m km mm ² m ² ha km ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square meters square meters hectares square kilometers milliliters itters cubic meters cubic meters grams kilograms megagrams (or "metric ton") Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact deg 1.8C+32 ILLUMINATION	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb) grees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	millimeters meters meters kilometers square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2040	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb) grees) Fahrenheit foot-candles foot l ambody	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	millimeters meters meters kilometers square millimeters square meters hectares square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919 CE and DECOURDE	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb) grees) Fahrenheit foot-candles foot-candles	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²	millimeters meters kilometers square millimeters square meters square meters square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919 CE and PRESSURE or S	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb) grees) Fahrenheit foot-candles foot-Lamberts	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ² N	millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters free celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919 CE and PRESSURE or S 2.225 2.445	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2,000 lb) grees) Fahrenheit foot-candles foot-Lamberts STRESS poundforce	in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl lbf

*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

TABLE OF CONTENTS

CHAPTER 1. BACKGROUND AND LITERATURE REVIEW	. 1
CHAPTER 2. SELECTION OF LTPP TEST SECTIONS	. 7
CHAPTER 3. MIT SCANNING	. 9
CHAPTER 4. DOWEL ALIGNMENT DATA ANALYSES	13
DOWEL ALIGNMENT ANALYSES	13
JOINT SCORE ANALYSES	19
EQUIVALENT DOWEL DIAMETER ANALYSES	21
CHAPTER 5. MIT SCANNING ANALYSES BY STATE	23
ARIZONA	23
ARKANSAS	27
CALIFORNIA	31
COLORADO	36
DELAWARE	40
IOWA	45
KANSAS	49
NORTH CAROLINA	54
NORTH DAKOTA	58
SOUTH DAKOTA	63
WISCONSIN	67
CHAPTER 6. JOINT SCORE ANALYSES	73
CHAPTER 7. JOINT-OPENING ANALYSES	87
CHAPTER 8. AASHTOWARE PAVEMENT ME DESIGN ANALYSES USING	
EQUIVALENT DOWEL DIAMETER	89
CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS	03
REFERENCES	05

LIST OF FIGURES

Figure 1. Illustration. Types of dowel misalignment (adapted from Tayabji 1986) Figure 2. Chart. Percentage of analysis pavement test sections with respect to	2
PCC thickness.	8
Figure 3. Chart. Percentage of analysis pavement test sections with respect to	
construction vear.	8
Figure 4. Photo. Testing a pavement transverse joint using an MIT scanning device.	9
Figure 5. Photo. MIT scanning of North Carolina LTPP test section 37 0207.	11
Figure 6. Photo. Cracking and spalling on Arkansas LTPP test section 05 0217	11
Figure 7. Photo. Full-width spray patching on Delaware LTPP test section 10, 0208.	12
Figure 8 Photo Skewed transverse joints on Iowa LTPP test section 19, 0259	12
Figure 9 Chart Horizontal skew distribution of dowels (23 300 1 5-inch-diameter dowels	12
from 1 997 transverse joints and 21 240 1 25-inch-diameter dowels from 1 824	
transverse joints)	14
Figure 10 Chart Vertical tilt distribution of dowels (23 300 1 5-inch-diameter dowels	11
from 1 997 transverse joints and 21 240 1 25-inch-diameter dowels from 1 824	
transverse joints)	14
Figure 11 Chart I ongitudinal translation distribution of dowels (23 300 1 5-inch-diameter	17
dowels from 1 997 transverse joints and 21 240 1 25-inch-diameter dowels from	
1 874 transverse joints)	15
Figure 12 Chart Vertical translation distribution of dowels (23 300 1 5-inch-diameter	15
dowels from 1.997 transverse joints and 21.240.1.25-inch-diameter dowels from	
1 874 transverse joints)	15
Figure 13 Chart Cumulative horizontal skew distribution of 21 240 1 25-inch-diameter	15
dowels from 1.824 transverse joints	16
Figure 14 Chart Cumulative vertical tilt distribution of 21 240 1 25-inch-diameter dowels	10
from 1.824 transverse joints	16
Figure 15 Chart Cumulative longitudinal translation distribution of	10
21 240 1 25-inch-diameter dowels from 1 824 transverse joints	17
Figure 16 Chart Cumulative vertical translation distribution of 21 240 1 25 inch diameter	1/
dowels from 1.824 transverse joints	17
Figure 17 Chart Cumulative horizontal skew distribution of 23 300 1.5 inch diameter	1 /
dowels from 1 997 transverse joints	18
Figure 18 Chart Cumulative vertical tilt distribution of 23 300 1.5 inch diameter dowals	10
from 1 007 transverse joints	10
Figure 10 Chart Cumulative longitudinal translation distribution of	10
22 200 1 5 inch diameter devels from 1 007 transverse joints	10
Eigure 20. Chart Cumulative vertical translation distribution of 22 200.1.5 inch diameter	19
dowals from 1.007 transverse joints	10
Gowers from 1,997 transverse joints.	19
2 821 transverse joints (22 200 1 5 inch diameter devials from 1 007 transverse joints	
5,621 transverse joints (25,500 1.5-inch-diameter dowels from 1,997 transverse joints	21
and 21,240 1.23-incir-diameter dowels from 1,824 transverse joints)	∠1 24
Figure 22. Chart. Horizontal Skew distribution for LTPP lest sections in Arizona	24 24
Figure 25. Chart. Vertical uni distribution for LTPP test sections in Arizona.	24 24
rigure 24. Unart. Longitudinal translation distribution for LTPP test sections in Arizona	24

Figure 25. Chart. Vertical translation distribution for LTPP test sections in Arizona	. 25
Figure 26. Chart. Joint score distribution for LTPP test sections in Arizona.	. 26
Figure 27. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in Arizona	. 27
Figure 28. Chart. Horizontal skew distribution for LTPP test sections in Arkansas	. 28
Figure 29. Chart. Vertical tilt distribution for LTPP test sections in Arkansas	. 28
Figure 30. Chart. Longitudinal translation distribution for LTPP test sections in Arkansas	. 29
Figure 31. Chart. Vertical translation distribution for LTPP test sections in Arkansas	. 29
Figure 32. Chart. Joint score distribution for LTPP test sections in Arkansas.	. 30
Figure 33. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in Arkansas	. 31
Figure 34. Chart. Horizontal skew distribution for LTPP test sections in California	. 32
Figure 35. Chart. Vertical tilt distribution for LTPP test sections in California	. 33
Figure 36. Chart. Longitudinal translation distribution for LTPP test sections in California	. 33
Figure 37. Chart. Vertical translation distribution for LTPP test sections in California	. 34
Figure 38. Chart. Joint score distribution for LTPP test sections in California	. 35
Figure 39. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in California.	. 36
Figure 40. Chart. Horizontal skew distribution for LTPP test sections in Colorado	. 37
Figure 41. Chart. Vertical tilt distribution for LTPP test sections in Colorado	. 37
Figure 42. Chart. Longitudinal translation distribution for LTPP test sections in Colorado	. 38
Figure 43. Chart. Vertical translation distribution for LTPP test sections in Colorado	. 38
Figure 44. Chart. Joint score distribution for LTPP test sections in Colorado	. 39
Figure 45. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in Colorado	. 40
Figure 46. Chart. Horizontal skew distribution for LTPP test sections in Delaware	. 41
Figure 47. Chart. Vertical tilt distribution for LTPP test sections in Delaware.	. 42
Figure 48. Chart. Longitudinal translation distribution for LTPP test sections in Delaware	. 42
Figure 49. Chart. Vertical translation distribution for LTPP test sections in Delaware	. 43
Figure 50. Chart. Joint score distribution for LTPP test sections in Delaware	. 44
Figure 51. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in Delaware	45
Figure 52. Chart. Horizontal skew distribution for LTPP test sections in Iowa	. 46
Figure 53 Chart Vertical tilt distribution for LTPP test sections in Iowa	46
Figure 54 Chart Longitudinal translation distribution for LTPP test sections in Iowa	47
Figure 55 Chart Vertical translation distribution for LTPP test sections in Iowa	47
Figure 56 Chart Joint score distribution for LTPP test sections in Jowa	48
Figure 57 Chart. Joint score versus effective reduction in dowel diameter for LTPP test	. 10
sections in Iowa	<u>4</u> 9
Figure 58 Chart Horizontal skew distribution for I TPP test sections in Kansas	50
Figure 59 Chart Vertical tilt distribution for I TPP test sections in Kansas	51
Figure 60 Chart I ongitudinal translation distribution for I TPP test sections in Kansas	51
Figure 61 Chart Vertical translation distribution for I TPP test sections in Kansas	52
Figure 62 Chart Joint score distribution for I TPP test sections in Kansas	. <i>52</i> 52
Figure 62. Chart. Joint score versus effective reduction in dowel diameter for I TDD test	
sections in Kansas	51
50010113 III IXA113A3	. 54

Figure 64. Chart. Horizontal skew distribution for LTPP test sections in North Carolina 5	55
Figure 65. Chart. Vertical tilt distribution for LTPP test sections in North Carolina5	55
Figure 66. Chart. Longitudinal translation distribution for LTPP test sections in	
North Carolina	56
Figure 67. Chart. Vertical translation distribution for LTPP test sections in North Carolina 5	56
Figure 68. Chart. Joint score distribution for LTPP test sections in North Carolina5	57
Figure 69. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in North Carolina	58
Figure 70. Chart. Horizontal skew distribution for LTPP test sections in North Dakota5	59
Figure 71. Chart. Vertical tilt distribution for LTPP test sections in North Dakota	50
Figure 72. Chart. Longitudinal translation distribution for LTPP test sections in	
North Dakota	50
Figure 73. Chart. Vertical translation distribution for LTPP test sections in North Dakota	61
Figure 74. Chart. Joint score distribution for LTPP test sections in North Dakota	62
Figure 75. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in North Dakota6	63
Figure 76. Chart. Horizontal skew distribution for the LTPP test section in South Dakota	64
Figure 77. Chart. Vertical tilt distribution for the LTPP test section in South Dakota	64
Figure 78. Chart. Longitudinal translation distribution for the LTPP test section in	
South Dakota6	65
Figure 79. Chart. Vertical translation distribution for the LTPP test section in	
South Dakota6	65
Figure 80. Chart Joint score distribution for the LTPP test section in South Dakota	66
Figure 81. Chart. Joint score versus effective reduction in dowel diameter for the LTPP test	
section in South Dakota	67
Figure 82. Chart. Horizontal skew distribution for LTPP test sections in Wisconsin	68
Figure 83. Chart. Vertical tilt distribution for LTPP test sections in Wisconsin	68
Figure 84. Chart. Longitudinal translation distribution for LTPP test sections in Wisconsin 6	<u> 69</u>
Figure 85. Chart. Vertical translation distribution for LTPP test sections in Wisconsin	<u> 59</u>
Figure 86. Chart. Joint score distribution for LTPP test sections in Wisconsin	70
Figure 87. Chart. Joint score versus effective reduction in dowel diameter for LTPP test	
sections in Wisconsin	71
Figure 88. Chart. Joint score and presence of cracking for LTPP test sections in Arizona	74
Figure 89. Chart. Joint score and presence of spalling for LTPP test sections in Arizona	75
Figure 90. Chart. Joint score and presence of cracking for LTPP test sections in Arkansas 7	75
Figure 91. Chart. Joint score and presence of spalling for LTPP test sections in Arkansas	76
Figure 92. Chart. Joint score and presence of cracking for LTPP test sections in California 7	76
Figure 93. Chart. Joint score and presence of spalling for LTPP test sections in California 7	77
Figure 94. Chart. Joint score and presence of cracking for LTPP test sections in Colorado	77
Figure 95. Chart. Joint score and presence of spalling for LTPP test sections in Colorado	78
Figure 96. Chart. Joint score and presence of cracking for LTPP test sections in Delaware 7	/8
Figure 97. Chart. Joint score and presence of spalling for LTPP test sections in Delaware	79
Figure 98. Chart. Joint score and presence of cracking for LTPP test sections in Iowa	/9
Figure 99. Chart. Joint score and presence of spalling for LTPP test sections in Iowa	80
Figure 100. Chart. Joint score and presence of cracking for LTPP test sections in Kansas	30
Figure 101. Chart. Joint score and presence of spalling for LTPP test sections in Kansas	81

Figure 102. Chart. Joint score and presence of cracking for LTPP test sections in	
North Carolina.	81
Figure 103. Chart. Joint score and presence of spalling for LTPP test sections in	
North Carolina.	82
Figure 104. Chart. Joint score and presence of cracking for LTPP test sections in	
North Dakota	82
Figure 105. Chart. Joint score and presence of spalling for LTPP test sections in	
North Dakota	83
Figure 106. Chart. Joint score and presence of cracking for the LTPP test section in	
South Dakota	83
Figure 107. Chart. Joint score and presence of spalling for the LTPP test section in	
South Dakota	84
Figure 108. Chart. Joint score and presence of cracking for LTPP test sections in	
Wisconsin	84
Figure 109. Chart. Joint score and presence of spalling for LTPP test sections in	
Wisconsin	85
Figure 110. Chart. Joint-opening data from five instrumented transverse joints at Arizona	
LTPP test section 4_0215.	88
Figure 111. Chart. Predicted and actual LTE Using AASHTOWare Pavement ME Design	
from the LTPP database for 117 test sections using the actual and average equivalent	
dowel diameter	102
Figure 112. Chart. Predicted and actual LTE Using AASHTOWare-Pavement ME Design	
from the LTPP database for 117 test sections using the actual and average equivalent	
dowel diameter	102

LIST OF TABLES

Table 1. Number of LTPP test sections by State for MIT scanning and analyses	7
Table 2. MIT scanning field input.	. 10
Table 3. Weighting factors used to determine the joint score (Yu and Khazanovich 2005)	. 20
Table 4. Average joint score for States with LTPP test sections.	. 21
Table 5. Equivalent dowel diameter and effective percent reduction in dowel diameter for	
States with LTPP test sections.	. 22
Table 6. Details of LTPP test sections in Arizona.	. 23
Table 7. Dowel misalignment summary for LTPP test sections in Arizona	. 25
Table 8. Joint score and equivalent dowel diameter for LTPP test sections in Arizona	. 26
Table 9. Details of LTPP test sections in Arkansas.	. 27
Table 10. Dowel misalignment summary for LTPP test sections in Arkansas	. 30
Table 11. Joint score and equivalent dowel diameter for LTPP test sections in Arkansas	. 31
Table 12. Details of LTPP test sections in California	. 32
Table 13. Dowel misalignment summary for LTPP test sections in California.	. 34
Table 14. Joint score and equivalent dowel diameter for LTPP test sections in California	. 35
Table 15. Details of LTPP test sections in Colorado.	. 36
Table 16. Dowel misalignment summary for LTPP test sections in Colorado	. 39
Table 17. Joint score and equivalent dowel diameter for LTPP test sections in Colorado	. 40
Table 18. Details of LTPP test sections in Delaware	. 41
Table 19. Dowel misalignment summary for LTPP test sections in Delaware.	. 43
Table 20. Joint score and equivalent dowel diameter for LTPP test sections in Delaware	. 44
Table 21. Details of LTPP test sections in Iowa.	. 45
Table 22. Dowel misalignment summary for LTPP test sections in Iowa	. 48
Table 23. Joint score and equivalent dowel diameter for LTPP test sections in Iowa	. 49
Table 24. Details of LTPP test sections in Kansas.	. 50
Table 25. Dowel misalignment summary for LTPP test sections in Kansas	. 52
Table 26. Chart. Joint score and equivalent dowel diameter for LTPP test sections in	
Kansas	. 53
Table 27. Details of LTPP test sections in North Carolina	. 54
Table 28. Dowel misalignment summary for LTPP test sections in North Carolina	. 57
Table 29. Joint score and equivalent dowel diameter for LTPP test sections in	
North Carolina.	. 58
Table 30. Details of LTPP test sections in North Dakota.	. 59
Table 31. Dowel misalignment summary for LTPP test sections in North Dakota	. 61
Table 32. Joint score and equivalent dowel diameter for LTPP test sections in	
North Dakota	. 62
Table 33. Details of the LTPP test section in South Dakota	. 63
Table 34. Dowel misalignment summary for the LTPP test section in South Dakota.	. 65
Table 35. Joint score and equivalent dowel diameter for the LTPP test section in	
South Dakota	. 66
Table 36. Details of LTPP test sections in Wisconsin.	. 67
Table 37. Dowel misalignment summary for LTPP test sections in Wisconsin	. 70
Table 38. Joint score and equivalent dowel diameter for LTPP test sections in Wisconsin	. 71
Table 39. Joint score category.	. 73

Table 40. Summary results of statistical analyses.	74
Table 41. Maximum joint opening, dowel alignment data, and joint score for five	
instrumented transverse joints with joint-opening data at Arizona LTPP test section	
4 0215	88
Table 42. Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in Arizona	91
Table 43. Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in Arkansas	92
Table 44. Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sites in Colorado	
Table 45. Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in California	94
Table 46 Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test section in Delaware	95
Table 47. Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in Iowa	96
Table 48. Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in Kansas	
Table 49 Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in North Carolina	98
Table 50. Comparison of AASHTOWare Pavement ME Design analyses results with	
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in North Dakota	99
Table 51 Comparison of AASHTOWare Pavement ME Design analysis results with actual	
LTPP distress data using the average equivalent and actual dowel diameter for the	
LTPP test section in South Dakota	100
Table 52 Comparison of AASHTOWare Pavement ME Design analyses results with	100
actual LTPP distress data using the average equivalent and actual dowel diameter for	
LTPP test sections in Wisconsin	100
Table 53. Summary of AASHTOWare Pavement ME Design analyses results with actual	100
LTPP distress data using the average equivalent and actual dowel diameter	. 101
2111 alstebs and using the average equivalent and actual do ver diameter	101

LIST OF ABBREVIATIONS

ACPA	American Concrete Pavement Association
DBI	dowel bar inserter
FHWA	Federal Highway Administration
GPS	General Pavement Studies
JPCP	jointed plain concrete pavement
LTE	load-transfer efficiency
LTPP	Long-Term Pavement Performance
MIT	magnetic imaging tomography
NCHRP	National Cooperative Highway Research Program
PCC	portland cement concrete
SMP	Seasonal Monitoring Program
SPS	Specific Pavement Studies

CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Transverse joints are essential features of jointed plain concrete pavements (JPCPs) that help relieve thermal- and moisture-induced stresses. At the same time, they are the weakest aspects of JPCPs, experiencing higher stresses and deflections compared to interior parts of the slab under the same loading conditions. With modern JPCPs, dowels are placed across transverse joints to allow for wheel-load shear transfer across slabs while also allowing unrestricted slab expansion and contraction due to changes in temperature and moisture. When compared to JPCPs with undoweled transverse joints, slab corner deflections in JPCPs with doweled transverse joints are reduced by the improved wheel-load shear transfer. Dowels help increase pavement life by providing greater smoothness and reducing the potential for pumping, base erosion, and faulting. These pavement-life-extending benefits have been demonstrated by several pavement studies (Yu et al. 1998; Khazanovich et al. 1998; Hoerner et al. 2000). Some researchers consider pumping and transverse joints (Khazanovich et al. 1998; Lechner 2005).

To be effective, dowels must be parallel to both the centerline and surface of the pavement, placed with sufficient cover, and centered across the transverse joint. Any deviation from such positioning is considered dowel misalignment. Some engineers and researchers only consider rotation as misalignment and consider translation as mislocation, but for convenience and consistency, all deviations (e.g., rotational and translational) in this study are considered misalignments.

The major categories of dowel misalignment are translational—which includes horizontal, longitudinal, and vertical translation—and rotational—which includes horizontal skew and vertical tilt—as illustrated in figure 1 (Tayabji 1986; Rao 2009). Horizontal translation is often disregarded as a misalignment parameter because properly positioning dowels at regular spacing (typically 12 inches) along the transverse joint is not an issue and not considered a key factor affecting transverse joint performance.

Figure 1. Illustration. Types of dowel misalignment (adapted from Tayabji 1986).

Potential adverse effects of dowel misalignment include the following:

- Reduced load-transfer efficiency (LTE), resulting in increased long-term faulting and, in some situations, increased corner cracking.
- Transverse joint spalling from excessive steel/concrete bearing stresses.
- Slab cracking from transverse joint lockup or restraint.

Dowels are placed in concrete using dowel baskets or dowel bar inserters (DBIs). Dowel baskets are carriages designed to support or link dowels and hold them at the desired alignment during paving operations. DBIs place dowels into fresh concrete as the concrete is laid, eliminating the need to manually place dowels in baskets prior to paving operations.

In the past two decades, highway agencies and paving contractors have increasingly used magnetic imaging tomography (MIT) scanning to evaluate dowel alignment in JPCPs. Numerous evaluations of the accuracy of MIT scanning have shown such devices are reliable tools for measuring dowel alignment with high accuracy for dowels inserted with dowel baskets with cut transport-tie wires or DBIs (Yu and Khazanovich 2005). Studies by Hossain and Elfino (2006) and Leong et al. (2006), respectively, confirmed the accuracy of MIT scanning devices. Researchers found MIT scanning devices to be robust and versatile for investigations requiring large numbers of measurements in a wide range of environments (Yu and Tayabji 2007). The robustness and versatility of the devices prompted the Federal Highway Administration's (FHWA) Concrete Pavement Technology Program to initiate a loan program encouraging the implementation of MIT technology. FHWA identified MIT scanning devices as practical, implementation-ready products with the potential to improve the quality of concrete pavements (Yu 2005).

The increased use of MIT scanning has exposed the issue of how much dowel misalignment is acceptable to an agency. Many agency's dowel alignment tolerances were established prior to a

clear understanding of field-achievable tolerances and a real-world understanding of the effects of dowel misalignment on pavement performance. These once-acceptable dowel alignment tolerances are under scrutiny, launching renewed interest in dowel misalignment research, including laboratory and field studies by Khazanovich et al. (2009), Rao et al. (2009), Leong et al. (2006), Milind et al. (2006), and the American Concrete Pavement Association ((ACPA) 2006). These studies contributed significantly to the understanding of how dowel misalignment impacts transverse joint movements and the long-term performance of JPCPs.

In NCHRP Report 637, the effect of dowel misalignment on the performance of JPCP was evaluated through laboratory testing, analytical modeling, and limited field testing (Khazanovich et al. 2009). A procedure was developed to compute an equivalent dowel diameter for a transverse joint based on alignment of all dowels at that joint. Key results from Khazanovich et al. (2009) include the following:

- Extreme longitudinal and vertical translation can cause significant reductions in shear capacity.
- A combination of low concrete cover and low embedment length (resulting from vertical and longitudinal translation) has a more adverse effect on dowel performance than either of the two rotational misalignments.
- Dowel rotational misalignments of up to 2 inches have a negligible effect on pullout and shear performance measures.

The researchers concluded that rotational dowel misalignment is not a sufficient cause for transverse joint lockup and does not cause significant additional longitudinal stresses. The researchers developed a procedure to compute the equivalent dowel diameter for a transverse joint based on dowel misalignment that considers the effects of longitudinal translation, vertical translation, horizontal skew, and vertical tilt of all dowels within the joint. The equivalent dowel diameter calculated using this procedure can be used in mechanistic–empirical pavement design procedures, such as those used with AASHTOWare® Pavement ME Design software, to model the long-term performance of the pavement, primarily LTE and faulting, and the resulting International Roughness Index, but was shown to have minimal effect on transverse joint locking and slab cracking (AASHTO 2014).

Field studies show that slab or transverse joint distress may not always occur from rotational dowel misalignments (i.e., horizontal skews or vertical tilts). Khazanovich et al. (2009) observed that, within the nonextreme limits of rotational dowel misalignments measured in their study, there were no differences in the amount of transverse cracking and transverse joint spalling observed from rotational dowel misalignments. ACPA (2006) observed that projects with a significant number of rotationally misaligned dowels performed well without showing any signs of distress after 8 yr or more of service under heavy traffic, suggesting a limited number of rotationally misaligned dowels in JPCP transverse joints may be tolerable. A project constructed in 1977 that was surveyed and cored by Fowler and Gulden (1983) performed well under moderately high interstate traffic without any signs of increased distresses for over 25 yr despite the prevalence of severely rotationally misaligned dowels.

Some researchers conducted slab pullout tests to model the effects of severely rotationally misaligned dowels on transverse joint behavior during joint movement (Tayabji 1986; Prabhu

et al. 2006; Khazanovich et al. 2009). Although the exact test configurations varied, in some cases, multiple dowels were tested together to represent a transverse joint. General observations from these tests were that the force required to displace a dowel increased with increasing rotational misalignment. When the dowels were nonuniformly rotationally misaligned, a greater amount of pullout force was required and showed a greater amount of cracking than transverse joints with dowels that were uniformly rotationally misaligned. Slabs developed cracking only at significant misalignment levels (greater than 0.75 inches) when the rotational misalignment of dowels along the transverse joint was nonuniform and excessive levels of joint opening were present (greater than 0.5 inches). Minor spalling around dowels was observed in slabs with severe rotational misalignment. Khazanovich et al. (2009) observed that rotational dowel misalignments of up to 2 inches have a negligible effect on pullout and shear performance measures.

One of the earliest methods to categorize dowel misalignment and consider the combined effects of all dowels at a transverse joint was developed by Yu and Khazanovich (2005) and calculates the rotational misalignment of all dowels within the transverse joint into a joint score. Transverse joints with a higher joint score correspond to more dowels with higher levels of rotational misalignment than transverse joints with a lower joint score. The joint score does not consider longitudinal and vertical translations, and the weight factors based on the extent of rotational misalignment for any individual dowel were developed intuitively and not based on any laboratory or field tests. Because of this limitation, the joint score measure was discussed in an FHWA Technical Brief as only a quick first step toward identifying transverse joints for further investigation with regard to lockup potential, but not necessarily as a measure for acceptance by highway agencies (Yu and Tayabji 2007).

Despite that stipulation, many highway agencies are adopting the joint score measure in their specifications for establishing acceptance criteria primarily because of its simplicity (CDOT 2015; Gancarz et al. 2015). A typical specification requires the joint score to be less than 10, above which corrective action is often specified. Corrective actions range from cutting misaligned dowels (to effectively reduce the joint score to less than 10 by eliminating any chance of the misaligned dowel contributing to transverse joint lockup) to removal and replacement of the transverse joint by performing full-depth repairs.

However, there is no evidence, empirical or otherwise, to support the aforementioned criterion for corrective action based on transverse joint lockup since it is inconsistent with the results from NCHRP Report 637 and limited transverse joint-opening and -closing studies conducted by Mallela et al. (2012). They measured joint openings and closings over a 48-hour period of transverse joints with a joint score ranging from 1 to 40 and found that all transverse joints tested, including those with the highest number and degree of dowel misalignment (i.e., joint scores ranging from 30 to 40), experienced transverse joint opening and closing as a function of temperature change, suggesting there were no transverse joint lockups.

Due to the limited scope of laboratory and field studies completed to date, there is still a significant lack of guidance for establishing effective construction specifications based on actual field performance. Practical questions yet unanswered include the following:

- Do one or two severely misaligned dowels at a transverse joint have the same impact as several dowels with minor misalignment?
- Do misaligned dowels in the wheel path have the same impact as those outside the wheel path?
- Does one out-of-compliance transverse joint warrant corrective action?
- How many consecutive transverse joints need to be misaligned before distress is evident?
- Are there other factors (e.g., climate, base type, dowel size, pavement thickness) that contribute to transverse joint lockup?
- Are the weighting factors used to compute the joint score representative of actual field performance?
- How can relative dowel misalignment (i.e., dowels misaligned in different directions) be best account for compared to uniform dowel misalignment (i.e., dowels misaligned in the same direction)?
- What are the effects of various types of misalignment on actual field performance?

The General Pavement Studies (GPS) and Specific Pavement Studies (SPS) test sections included in the Long-Term Pavement Performance (LTPP) database (i.e., GPS-3 and SPS-2) were used in this current study to evaluate and address some of the aforementioned questions (FHWA 2014). Much of the information needed to evaluate performance of these test sections vis-à-vis dowel alignment is contained in the LTPP database, including the following:

- Design, materials, construction, and support data.
- Climatic data.
- Traffic data.
- Pavement performance data.
- Falling weight deflectometer data.
- Distress data.
- Profile data.
- Transverse joint-opening and -closing data (for select test sections).

The key piece of information needed to evaluate performance of these test sections with regard to dowel alignment not included in the LTPP database is alignment data for each of the dowels within the transverse joints. This current research effort was conducted to collect MIT scanning data on various GPS-3 and SPS-2 test sections for inclusion in the LTPP database. Results of MIT scanning and analysis are presented in the following sections. MIT scanning data collected as part of this project were used in a preliminary analysis as part of this study and serve as a platform for detailed statistical analysis to address unanswered practical questions regarding effects of dowel misalignment on actual field performance. While a preliminary analysis was performed in this study, a more thorough and detailed statistical analysis and evaluation of the data were beyond the scope of this study, the primary purpose of which was to collect and document dowel misalignment data at these GPS-3 and SPS-2 test sections.

CHAPTER 2. SELECTION OF LTPP TEST SECTIONS

The LTPP database includes 181 doweled JPCP test sections ranging in thickness from 6.4 to 13.2 inches. Each test section is a driving lane (i.e., traffic or outside lane), 500 ft in length, with approximately 33 transverse joints. Based on scheduling and availability of lane closures for the LTPP test sections, a total of 3 GPS-3 and 121 SPS-2 test sections were included in field data collection using an MIT scanning device. At some SPS-2 sites, one or two test sections were not tested because of scheduling conflicts with lane closures and testing crew travel.

Five test sections (one each in Iowa and Kentucky and two in both North Dakota and Wisconsin) were not included in the analysis because they had skewed transverse joints. One test section (Wisconsin) was not included in the analysis because it had only four dowels per transverse joint. One test section (Arkansas) with 1-inch-diameter dowels was eliminated from analysis due to an error with the MIT parameter file. Table 1 represents the breakdown of the numbers of LTPP test sections by State. Arkansas included 1 GPS-3 and 12 SPS-2 test sections. The distribution of LTPP test sections by portland cement concrete (PCC) thickness and construction year are shown in figure 2 and figure 3.

		Number of LTPP Test Sections	Number of LTPP Test Sections
State	Experiment Type	for Field Data Collection	Used in Analyses
Arizona	SPS-2	12	12
Arkansas	GPS-3/SPS-2	13	12
California	SPS-2	12	12
Colorado	SPS-2	12	12
Delaware	SPS-2	14	14
Iowa	SPS-2	13	12
Kansas	SPS-2	12	12
Kentucky	GPS-3	1	0
North Carolina	SPS-2	8	8
North Dakota	SPS-2	14	12
South Dakota	GPS-3	1	1
Wisconsin	SPS-2	12	10
Total	GPS-3/SPS-2	124	117

Table 1. Number of LTPP test sections by State for MIT scanning and analyses.

Source: FHWA.

Figure 2. Chart. Percentage of analysis pavement test sections with respect to PCC thickness.

Source: FHWA.

Figure 3. Chart. Percentage of analysis pavement test sections with respect to construction year.

CHAPTER 3. MIT SCANNING

In recent years, highway agencies and paving contractors have increasingly used MIT scanning devices, as shown in figure 4, for evaluating dowel alignments in JPCPs. The measuring process involves setting rails on the transverse joint to be scanned, entering pavement information into a handheld computer, and then pulling the unit along the joint. During scanning, the device emits a weak, pulsating magnetic signal and detects the transient magnetic response signal induced in the metal dowels. The methods of tomography are then used to determine the position and alignment of the dowels. The data analysis process is performed using software provided with such devices.

© 2005 Shreenath Rao.

Figure 4. Photo. Testing a pavement transverse joint using an MIT scanning device.

The accuracy of MIT scanning results depends on the position and alignment of the dowels. MIT scanning devices are designed to provide the most accurate results under the following conditions (Yu and Khazanovich 2005; ACPA 2006):

- Mean dowel depth of 4 to 8 inches.
- Maximum rotational misalignment of 0.75 inches.
- Maximum longitudinal translation of 2 inches.

When these conditions are satisfied, the accuracy is typically within 0.12 inches on rotational misalignment and vertical translation (Yu and Khazanovich 2005). For dowels placed in baskets, MIT scanning results are accurate only if the dowels are insulated from the basket by a coating (either paint or epoxy) and the transport ties on the basket are cut or removed. Even if the transport tie wires are not cut during construction, they eventually break due to cyclic movements of the adjacent slabs and the resulting stresses in the tie wires. Thus, older pavements originally constructed with uncut transport tie wires reflect MIT scanning signals as if the tie wires were cut. MIT scanning results are also sensitive to the lateral placement of the dowel basket. The best results are obtained when the dowel basket is centered under the transverse joint

saw cut. The presence of other sources of metal (e.g., dowels close to tie bars, steel mesh reinforcement, metal conduit, and overhead power lines) may cause interference and will induce errors in the data.

For the current study, a two-person crew was deployed for field testing. Testing was restricted to the LTPP lane (i.e., traffic or outside lane) for all test sections with lane closures provided by State highway agencies. The rail assembly was set up along the transverse joint of the outside lane to test the joint in one complete scan. For safety reasons due to live traffic in the inside lane, the scan was terminated about 6 inches before the centerline longitudinal joint. In most cases, data from all dowels in the LTPP lane were collected because the last dowel is typically 6 inches away from the centerline longitudinal joint and MIT scanning devices can collect alignment data as long as the front end of the unit is reasonably close (i.e., within a few inches).

For each LTPP test section, scanning commenced at the beginning of the test section and proceeded along the direction of traffic until the end of the test section. Any notes taken during scanning were documented through test logs for every LTPP test section. Each day, upon completion of field data collection, data files were saved to a local server and uploaded to a secure server for backup purposes.

To reduce processing errors and for consistency and efficiency during data collection, the settings shown in table 2 were used for all LTPP test sections. The raw MIT data files were rerun with the appropriate dowel diameter parameter file during post data collection analysis, correcting for dowel alignment results to reflect the actual dowel diameter from the LTPP database. Based on the PCC thickness of each test section included in the LTPP database, the depth deviation parameter was recalculated. This recalculation did not impact the results of the analysis as compared to collecting data using the correct inputs for PCC thickness and dowel size. Images documented during MIT scanning are shown in figure 5 through figure 8.

MIT Input	Value
PCC thickness	11.0 inches
Dowel spacing	12.0 inches
Offset of first dowel	6.0 inches
Dowel size (length \times diameter)	18.0 inches \times 1.5 inches

Table 2. MIT scanning field input.

Source: FHWA.

Figure 5. Photo. MIT scanning of North Carolina LTPP test section 37_0207.

Source: FHWA.

Figure 6. Photo. Cracking and spalling on Arkansas LTPP test section 05_0217.

Source: FHWA.

Figure 7. Photo. Full-width spray patching on Delaware LTPP test section 10_0208.

Source: FHWA.

Figure 8. Photo. Skewed transverse joints on Iowa LTPP test section 19_0259.

CHAPTER 4. DOWEL ALIGNMENT DATA ANALYSES

This section discusses the analysis of dowel alignment data collected using an MIT scanning device. Major data analysis tasks included the following:

- Analyzing raw MIT scanning files to generate misalignment data, including vertical translation, longitudinal translation, horizontal skew, and vertical tilt, for each dowel at each transverse joint.
- Computing a joint score for each transverse joint.
- Computing the equivalent dowel diameter using NCHRP Report 637 methodology for each transverse joint.
- Analyzing the effects of joint score on slab cracking and transverse joint spalling.
- Comparing predicted distress from AASHTOWare Pavement ME Design and LTPP field distress using both the actual and equivalent dowel diameter for each test section.

DOWEL ALIGNMENT ANALYSES

MIT scanning data were analyzed using the software provided with the MIT scanning device. For each transverse joint successfully analyzed, software provides outputs that include the positions and depths of the dowels; horizontal, vertical, and total rotational misalignments; and longitudinal translations. The vertical translations are estimates and computed based on the average PCC thickness from the LTPP database, dowel diameter, and measured depth of dowels from the surface.

Results from the analysis were compared with the field notes to ensure consistency in transverse joint numbering. Quality checks were included to eliminate extraneous signals from errant tie bars or dowels, other metallic objects, or overhead power lines. These extraneous signals can be clearly seen in the software output as aberrations in the contour plots generated by the software. In case of potential influence due to tie bars, the affected dowels were eliminated from analysis.

The analysis in this current study was limited to dowels with 1.25- and 1.5-inch diameters because almost all test sections surveyed had dowels of one of these two diameters—the two most common dowel diameters used in the United States. The only 1-inch-diameter dowel test section (Arkansas) was eliminated from analysis due to an error with the MIT parameter file. The misalignment distributions for the dowels are shown in figure 9 through figure 20 and are based on the MIT scanning results of 23,300 1.5-inch-diameter dowels from 1,997 transverse joints and 21,240 1.25-inch-diameter dowels from 1,824 transverse joints. The results show that approximately 73, 80, and 62 percent of the dowels with horizontal skew, vertical tilt, and vertical translation, respectively, have misalignments ranging between 0 and ± 0.5 inches. There is more variation in the longitudinal translation data, and approximately 29 percent of the dowels have greater than 1.5 inches magnitude of longitudinal translation. There was no observed effect of PCC thickness on the amount of variation for any of the misalignment parameters. MIT scanning results for individual States are shown in the MIT Scanning Analysis by State chapter.

Source: FHWA.

Figure 9. Chart. Horizontal skew distribution of dowels (23,300 1.5-inch-diameter dowels from 1,997 transverse joints and 21,240 1.25-inch-diameter dowels from 1,824 transverse joints).

Source: FHWA.

Figure 10. Chart. Vertical tilt distribution of dowels (23,300 1.5-inch-diameter dowels from 1,997 transverse joints and 21,240 1.25-inch-diameter dowels from 1,824 transverse joints).

Source: FHWA.

Source: FHWA.

Figure 12. Chart. Vertical translation distribution of dowels (23,300 1.5-inch-diameter dowels from 1,997 transverse joints and 21,240 1.25-inch-diameter dowels from 1,824 transverse joints).

Figure 13. Chart. Cumulative horizontal skew distribution of 21,240 1.25-inch-diameter dowels from 1,824 transverse joints.

Figure 14. Chart. Cumulative vertical tilt distribution of 21,240 1.25-inch-diameter dowels from 1,824 transverse joints.

Source: FHWA.

Figure 15. Chart. Cumulative longitudinal translation distribution of 21,240 1.25-inch-diameter dowels from 1,824 transverse joints.

Source: FHWA.

Figure 16. Chart. Cumulative vertical translation distribution of 21,240 1.25-inch-diameter dowels from 1,824 transverse joints.

Figure 17. Chart. Cumulative horizontal skew distribution of 23,300 1.5-inch-diameter dowels from 1,997 transverse joints.

Figure 18. Chart. Cumulative vertical tilt distribution of 23,300 1.5-inch-diameter dowels from 1,997 transverse joints.

Source: FHWA.

Figure 19. Chart. Cumulative longitudinal translation distribution of 23,300 1.5-inch-diameter dowels from 1,997 transverse joints.

Source: FHWA.

JOINT SCORE ANALYSES

Many highway agencies specify evaluating dowel alignment following construction at a sample number of transverse joints using an MIT scanning device (CDOT 2015; Gancarz et al. 2015). Rotational misalignments of individual dowels within a transverse joint are used to compute the joint score, and acceptance and rejection decisions are made based on criteria detailed in each highway agency's specification. A joint score is calculated as 1 plus the sum of the product of the weights empirically assigned to each degree of misalignment and the number of dowels in each misalignment category (Yu and Khazanovich 2005; Yu and Tayabji 2007). Weighting

factors for determining the joint score are shown in table 3. In table 3, the range of misalignment represents the total misalignment, which is calculated as the square root of the sum of squares of the horizontal skew and vertical tilt. In general, transverse joints with joint scores greater than 10 have a higher potential for joint lockup and are recommended for further evaluation and monitoring (Yu and Khazanovich 2005). Yu and Khazanovich (2005) developed the joint score measure intuitively as a quick first step toward identifying transverse joints for further investigation with regard to lockup potential, not as a measure for acceptance by highway agencies.

In this study, the original measure for computing the joint score established by Yu and Khazanovich (2005) was used. The original measure did not consider the number of dowels at a transverse joint or slab width because it was meant as a quick first step toward identifying transverse joints for further investigation, not as a measure for acceptance. Since the original measure was developed, some practitioners have redefined the joint score measure by scaling it to the slab width and the number of dowels at the transverse joint.

Weighting
Factor
0
2
4
5
10

Table 3. Weighting factors used to determine the joint score (Yu and Khazanovich 2005).

d = dowel diameter.

The joint score was calculated for all transverse joints tested as part of this study. The distribution of the joint score for 1,824 1.25-inch-diameter and 1,997 1.5-inch-diameter dowels is shown in figure 21. The average and standard deviation of the joint scores for each State is shown in table 4. Since two GPS-3 test sections (one each in Kentucky and Arkansas) were not included in the analysis, table 4 represents one test site (with one GPS-3 test section (South Dakota) or multiple SPS-2 test sections) in each State. Figure 21 shows that 52 percent of transverse joints with 1.5-inch-diameter dowels and 47 percent of transverse joints with 1.25-inch-diameter dowels have joint scores less than 10. However, close to 20 percent of the transverse joints indicate high joint scores (i.e., values greater than 30).

Source: FHWA.

Figure 21. Chart. Joint score distribution for 1.25- and 1.5-inch-diameter dowels from 3,821 transverse joints (23,300 1.5-inch-diameter dowels from 1,997 transverse joints and 21,240 1.25-inch-diameter dowels from 1,824 transverse joints).

State	Average Joint Score	Joint Score Standard Deviation	Number of 1.25-Inch- Diameter Dowel Transverse Joints	Number of 1.5-Inch- Diameter Dowel Transverse Joints
Arizona	11	12	197	195
Arkansas	18	16	169	202
California	27	20	196	194
Colorado	11	17	199	198
Delaware	19	22	228	219
Iowa	14	17	198	200
Kansas	18	19	198	203
North Carolina	11	15	26	232
North Dakota	11	13	190	194
South Dakota	18	8	25	0
Wisconsin	21	21	198	160

Table 4. Average joint score for States with LTPP test sections.

EQUIVALENT DOWEL DIAMETER ANALYSES

NCHRP Report 637 provided a methodology to calculate an equivalent dowel diameter using dowel misalignment (Khazanovich et al. 2009). The equivalent dowel diameter can be used in AASHTOWare Pavement ME Design to model the long-term performance of a pavement test section and compare it with actual field distresses.

The equivalent dowel diameter for the various dowel diameters was calculated for the individual transverse joints of each LTPP test section, and the values are presented in table 5. The average effective percent reduction in dowel diameter from the actual dowel diameter in place is also shown in table 5.

	Dowel Diameter	Number of Transverse	Equivalent Dowel Diameter	Standard Deviation Equivalent Dowel Diameter	Effective Reduction in Dowel Diameter
State	(Inches)	Joints	(Inches)	(Inches)	(Percent)
Arizona	1.25	197	1.20	0.05	4.2
	1.50	195	1.40	0.09	6.4
Arkansas	1.25	169	1.13	0.18	9.3
	1.50	202	1.42	0.11	5.5
California	1.25	196	0.94	0.26	25.0
	1.50	194	1.25	0.24	17.8
Colorado	1.25	199	1.18	0.27	8.3
	1.50	198	1.44	0.13	4.1
Delaware	1.25	228	1.05	0.36	16.8
	1.50	219	1.46	0.11	2.7
Iowa	1.25	198	1.17	0.18	6.4
	1.50	200	1.43	0.15	4.4
Kansas	1.25	198	1.14	0.20	8.9
	1.50	203	1.44	0.11	4.3
North Carolina	1.25	26	1.20	0.14	3.8
	1.50	232	1.42	0.24	6.1
North Dakota	1.25	190	1.23	0.06	1.8
	1.50	194	1.46	0.07	2.7
South Dakota	1.25	25	1.21	0.03	3.5
Wisconsin	1.25	198	1.15	0.17	8.1
	1.50	160	1.39	0.21	7.2

Table 5. Equivalent dowel diameter and effective percent reduction in dowel diameter for States with LTPP test sections.

CHAPTER 5. MIT SCANNING ANALYSES BY STATE

Details of the LTPP test sections in each State, along with results of MIT scanning analyses, are described in this section.

ARIZONA

The dowel alignments of 12 SPS-2 test sections in Arizona were evaluated using an MIT scanning device as part of this study. All test sections are in the eastbound direction of I–10 and were constructed in 1993. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 6. Results of MIT scanning analyses are shown in figure 22 through figure 25 and table 7.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
4_0213	7.9	1.25	12/10/2014	14
4 0214	8.3	1.25	12/09/2014	12
4_0215	11.0	1.50	12/10/2014	12
4 0216	11.2	1.50	12/11/2014	14
4_0217	8.1	1.25	12/10/2014	14
4_0218	8.3	1.25	12/09/2014	12
4_0219	10.8	1.50	12/10/2014	12
4 0220	11.2	1.50	12/09/2014	14
4_0221	8.1	1.25	12/10/2014	14
4_0222	8.6	1.25	12/09/2014	12
4_0223	11.1	1.50	12/11/2014	12
4 0224	10.6	1.50	12/11/2014	14

Table 6. Details of LTPP test sections in Arizona.

MIT scanning results from Arizona show that approximately 75, 93, and 54 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 45 percent of dowels have greater than 1 inch magnitude of longitudinal translation.

The joint score distribution and equivalent dowel diameter are shown in figure 26 and table 8. Approximately 63 percent of transverse joints have a joint score less than 10, while 10 percent of transverse joints have a joint score greater than 30. Figure 27 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in Arizona. Whereas the joint score considers only vertical tilt and horizontal skew, the equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Figure 22. Chart. Horizontal skew distribution for LTPP test sections in Arizona.

Source: FHWA.

Figure 23. Chart. Vertical tilt distribution for LTPP test sections in Arizona.

Source: FHWA.

Figure 24. Chart. Longitudinal translation distribution for LTPP test sections in Arizona.

Source: FHWA.

		Horizontal		Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
4_0213	0.27	0.29	0.22	0.17	0.97	0.72	0.31	0.25
4_0214	0.44	0.51	0.19	0.22	0.87	0.59	0.42	0.27
4_0215	0.50	0.35	0.29	0.19	1.28	0.75	0.64	0.43
4_0216	0.50	0.49	0.38	0.25	1.56	0.71	0.64	0.46
4_0217	0.24	0.19	0.17	0.22	0.72	0.71	0.22	0.20
4_0218	0.31	0.25	0.15	0.12	0.80	0.54	0.46	0.31
4_0219	0.32	0.24	0.16	0.17	0.77	0.56	0.30	0.26
4_0220	0.27	0.25	0.28	0.20	0.94	0.63	0.91	0.40
4_0221	0.34	0.32	0.22	0.43	0.90	0.69	0.42	0.35
4_0222	0.61	0.34	0.16	0.16	0.66	0.44	0.39	0.29
4_0223	0.40	0.42	0.27	0.28	1.41	0.77	0.52	0.42
4_0224	0.29	0.26	0.27	0.40	1.22	0.69	0.89	0.38

Table 7. Dov	vel misalignment	summary for	LTPP test	sections in	Arizona.
10010 10 201	8	, summing 101		5000115 III	

Source: FHWA.

Table 8. Joint score and equivalent dow	l diameter for LTPP	test sections in Arizona.
---	---------------------	---------------------------

					Average	Equivalent	Effective
				Actual	Equivalent	Dowel Diameter	Reduction
		Joint Score	Average PCC	Dowel	Dowel	Standard	in Dowel
Test	Average	Standard	Thickness	Diameter	Diameter	Deviation	Diameter
Section	Joint Score	Deviation	(Inches)	(Inches)	(Inches)	(Inches)	(Percent)
4_0213	7	8	7.9	1.25	1.21	0.07	1.5
4 0214	9	7	8.3	1.25	1.18	0.21	6.6
4_0215	18	16	11.0	1.50	1.43	0.06	8.6
4_0216	22	12	11.2	1.50	1.39	0.21	4.8
4_0217	5	12	8.1	1.25	1.24	0.04	0.5
4_0218	6	7	8.3	1.25	1.23	0.02	6.4
4_0219	6	6	10.8	1.50	1.48	0.03	5.6
4_0220	8	8	11.2	1.50	1.42	0.06	4.3
4 0221	9	9	8.1	1.25	1.19	0.09	2.6
4_0222	20	13	8.6	1.25	1.17	0.08	7.9
4_0223	11	12	11.1	1.50	1.42	0.16	9.0
4_0224	7	8	10.6	1.50	1.38	0.18	6.5

Source: FHWA.

Figure 27. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in Arizona.

ARKANSAS

The dowel alignments of 12 SPS-2 test sections in Arkansas were evaluated using an MIT scanning device as part of this study. All test sections are in the westbound direction of I–30 and were constructed in 1995. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 9. Results of the MIT scanning analyses are shown in figure 28 through figure 31 and table 10.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
5_0214	8.4	1.25	09/29/2014	12
5 0215	11.5	1.50	09/29/2014	12
5_0216	11.0	1.50	10/01/2014	14
5 0217	8.3	1.25	09/30/2014	14
5_0218	8.2	1.25	09/30/2014	12
5 0219	11.1	1.50	09/30/2014	12
5 0220	10.7	1.50	09/30/2014	14
5_0221	8.3	1.25	10/01/2014	14
5_0222	8.3	1.25	09/29/2014	12
5_0223	10.9	1.50	09/29/2014	12
5 0224	10.9	1.50	09/30/2014	14

Table 9. Details of LTPP test sections in Arkansas.

MIT scanning results from Arkansas show that approximately 70, 83, and 62 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and only approximately 48 percent of dowels have side shift ranging between 0 and ± 0.5 inches.

The joint score distribution and equivalent dowel diameter are shown in figure 32 and table 11. Approximately 40 percent of transverse joints have a joint score less than 10, while 17 percent of transverse joints have a joint score greater than 30. Figure 33 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in Arkansas. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Source: FHWA.

Figure 29. Chart. Vertical tilt distribution for LTPP test sections in Arkansas.

Source: FHWA.

Figure 30. Chart. Longitudinal translation distribution for LTPP test sections in Arkansas.

Source: FHWA.

Figure 31. Chart. Vertical translation distribution for LTPP test sections in Arkansas.

	Average	Horizontal Skew Standard	Average	Vertical Tilt Standard	Average	Longitudinal Translation	Average	Vertical Translation
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
5 0214	0.53	0.46	0.38	0.36	0.92	0.99	0.50	0.30
5_0215	0.32	0.35	0.27	0.27	0.75	0.60	0.69	0.37
5_0216	0.43	0.40	0.35	0.34	0.67	0.59	0.54	0.42
5_0217	0.56	0.53	0.40	0.61	1.16	1.68	0.44	0.52
5 0218	0.59	1.01	0.49	0.98	1.19	1.50	0.73	0.58
5_0219	0.43	0.34	0.32	0.29	0.93	0.83	0.36	0.37
5 0220	0.36	0.58	0.28	0.58	0.82	0.81	0.55	0.36
5_0221	0.31	0.26	0.30	0.31	0.40	0.58	0.33	0.25
5 0222	0.32	0.26	0.22	0.23	0.45	0.65	0.22	0.20
5_0223	0.32	0.27	0.27	0.31	1.09	1.02	0.44	0.25
5_0224	0.37	0.30	0.25	0.27	0.81	0.68	0.32	0.28

Table 10. Dowel misalignment summary for LTPP test sections in Arkansas.

Figure 32. Chart. Joint score distribution for LTPP test sections in Arkansas.

Test	Average Joint	Joint Score Standard	Average PCC Thickness	Actual Dowel Diameter	Average Equivalent Dowel Diameter	Equivalent Dowel Diameter Standard Deviation	Effective Reduction in Dowel Diameter
Section	Score	Deviation	(Inches)	(Inches)	(Inches)	(Inches)	(Percent)
5 0214	27	15	8.4	1.25	1.14	0.07	8.4
5_0215	9	10	11.5	1.50	1.40	0.04	6.4
5 0216	21	15	11.0	1.50	1.42	0.09	5.6
5_0217	33	18	8.3	1.25	1.15	0.19	8.1
5 0218	27	24	8.2	1.25	0.97	0.31	22.6
5_0219	19	12	11.1	1.50	1.41	0.04	5.7
5_0220	13	14	10.7	1.50	1.39	0.25	7.1
5_0221	11	11	8.3	1.25	1.22	0.03	2.5
5 0222	9	11	8.3	1.25	1.18	0.03	5.3
5_0223	11	9	10.9	1.50	1.41	0.04	6.0
5_0224	14	9	10.9	1.50	1.47	0.05	2.1

Table 11. Joint score and equivalent dowel diameter for LTPP test sections in Arkansas.

Source: FHWA.

Figure 33. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in Arkansas.

CALIFORNIA

The dowel alignments of 12 SPS-2 test sections in California were evaluated using an MIT scanning device as part of this study. All test sections are in the northbound direction of SR 99 and were constructed in 1999. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 12. Results of the MIT scanning analyses are shown in figure 34 through figure 37 and table 13.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
6_0201	8.3	1.50	10/22/2014	12
6 0202	8.0	1.25	10/21/2014	13
6_0203	11.4	1.50	10/20/2014	13
6_0204	11.1	1.25	10/21/2014	12
6_0205	8.2	1.50	10/21/2014	12
6 0206	8.0	1.25	10/20/2014	13
6_0207	11.0	1.50	10/20/2014	13
6_0208	10.7	1.25	10/21/2014	12
6_0209	8.4	1.50	10/21/2014	12
6 0210	8.6	1.25	10/21/2014	13
6_0211	12.1	1.50	10/20/2014	13
6_0212	11.1	1.25	10/21/2014	12

Table 12. Details of LTPP test sections in California.

MIT scanning results from California show that approximately 53, 71, and 23 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 40 percent of dowels have greater than 2 inches (absolute) longitudinal translation.

The joint score distribution and equivalent dowel diameter are shown in figure 38 and table 14. Approximately 20 percent of transverse joints have a joint score less than 10, while 38 percent of transverse joints have a joint score greater than 30. Figure 39 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in California. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Source: FHWA.

Figure 35. Chart. Vertical tilt distribution for LTPP test sections in California.

Source: FHWA.

Figure 36. Chart. Longitudinal translation distribution for LTPP test sections in California.

Source: FHWA.

	Horizontal			Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
6_0201	0.90	0.54	0.47	0.68	2.18	1.29	0.78	0.57
6 0202	0.53	0.30	0.23	0.24	1.69	0.83	1.14	0.42
6_0203	0.47	0.55	0.48	0.51	1.92	2.20	1.33	0.90
6_0204	0.59	0.83	0.54	0.51	1.77	1.03	1.13	0.58
6_0205	0.57	0.43	0.33	0.60	1.60	1.03	0.68	0.49
6_0206	0.62	0.55	0.40	0.64	1.76	1.07	1.07	0.53
6_0207	0.38	0.60	0.53	0.45	2.15	1.13	0.84	0.72
6_0208	0.54	0.82	0.46	0.43	1.98	0.99	1.16	1.43
6 0209	0.47	0.34	0.36	0.48	1.49	1.56	0.71	1.37
6_0210	0.53	0.36	0.32	0.30	1.67	1.11	0.80	0.53
6_0211	0.83	1.64	0.62	0.86	2.00	0.96	1.37	0.68
6_0212	0.62	0.91	0.53	0.67	1.64	0.87	1.38	0.59

Table 13.	Dowel m	isalignment	summarv	for LTPP	test sections	in (California.
1 abic 10.	Doncim	isanginnene	Summary		test sections		

Source: FHWA.

					Average	Equivalent Dowel	Effective
			Average	Actual	Equivalent	Diameter	Reduction in
	Average	Joint Score	PCC	Dowel	Dowel	Standard	Dowel
Test	Joint	Standard	Thickness	Diameter	Diameter	Deviation	Diameter
Section	Score	Deviation	(Inches)	(Inches)	(Inches)	(Inches)	(Percent)
6 0201	44	25	8.3	1.50	1.14	0.23	24.1
6_0202	20	17	8.0	1.25	0.80	0.27	35.7
6_0203	28	18	11.4	1.50	1.22	0.13	18.4
6_0204	27	18	11.1	1.25	1.00	0.16	19.7
6 0205	23	20	8.2	1.50	1.29	0.22	13.7
6_0206	29	16	8.0	1.25	0.79	0.36	36.4
6_0207	23	19	11.0	1.50	1.31	0.15	12.7
6_0208	22	17	10.7	1.25	1.03	0.16	17.4
6 0209	21	18	8.4	1.50	1.29	0.20	13.8
6_0210	23	20	8.6	1.25	1.05	0.13	15.9
6 0211	37	26	12.1	1.50	1.21	0.38	19.4
6_0212	27	17	11.1	1.25	0.96	0.24	23.1

Source: FHWA.

Figure 39. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in California.

COLORADO

The dowel alignments of 12 SPS-2 test sections in Colorado were evaluated using an MIT scanning device as part of this study. All test sections are in the eastbound direction of I–76 and were constructed in 1993. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 15. Results of the MIT scanning analyses are shown in figure 40 through figure 43 and table 16.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
8_0213	8.6	1.25	09/10/2014	14
8 0214	8.4	1.25	09/10/2014	12
8_0215	11.5	1.50	09/11/2014	12
8_0216	11.9	1.50	09/10/2014	14
8_0217	8.6	1.25	09/11/2014	14
8 0218	7.6	1.25	09/11/2014	12
8_0219	9.9	1.50	09/11/2014	12
8 0220	11.2	1.50	09/12/2014	14
8_0221	8.3	1.25	09/12/2014	14
8 0222	8.5	1.25	09/12/2014	12
8_0223	11.7	1.50	09/12/2014	12
8 0224	11.6	1.50	09/12/2014	14

Table 15. Details of LTPP test sections in Colorado.

MIT scanning results from Colorado show that approximately 92, 81, and 79 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 41 percent of dowels have longitudinal translation ranging between 0 and ± 0.5 inches.

The joint score distribution and equivalent dowel diameter are shown in figure 44 and table 17. Approximately 65 percent of transverse joints have a joint score less than 10, while 12 percent of transverse joints have a joint score greater than 30. Figure 45 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in Colorado. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Figure 41. Chart. Vertical tilt distribution for LTPP test sections in Colorado.

Source: FHWA.

Figure 42. Chart. Longitudinal translation distribution for LTPP test sections in Colorado.

Source: FHWA.

Figure 43. Chart. Vertical translation distribution for LTPP test sections in Colorado.

	Average	Horizontal Skew Standard	Average	Vertical Tilt Standard	Average	Longitudinal Translation	Average	Vertical Translation
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
8 0213	0.12	0.09	0.16	0.12	0.36	0.37	0.29	0.26
8_0214	0.24	0.29	0.29	0.26	0.75	0.62	0.18	0.13
8_0215	0.30	0.77	0.33	0.61	0.79	0.91	0.32	0.27
8_0216	0.16	0.25	0.18	0.23	0.55	0.72	0.19	0.15
8 0217	0.44	0.67	0.61	0.81	1.85	2.08	0.36	0.54
8_0218	0.32	0.37	0.47	0.72	1.48	1.58	0.35	0.73
8 0219	0.25	0.40	0.60	0.83	1.81	1.56	0.74	0.60
8_0220	0.21	0.19	0.25	0.24	1.18	0.93	0.19	0.14
8 0221	0.21	0.18	0.34	0.30	1.70	1.11	0.42	0.33
8_0222	0.19	0.15	0.25	0.23	0.63	0.76	0.34	0.19
8 0223	0.21	0.28	0.36	0.32	1.30	1.14	0.22	0.27
8_0224	0.16	0.29	0.25	0.50	1.06	1.18	0.62	0.44

Table 16. Dowel misalignment summary for LTPP test sections in Colorado.

Figure 44. Chart. Joint score distribution for LTPP test sections in Colorado.

Test Section	Average Joint Score	Joint Score Standard Deviation	Average PCC Thickness (Inches)	Actual Dowel Diameter (Inches)	Average Equivalent Dowel Diameter (Inches)	Equivalent Dowel Diameter Standard Deviation (Inches)	Effective Reduction in Dowel Diameter (Percent)
8 0213	1	0	8.6	1.25	1.24	0.21	0.6
8 0214	9	9	8.4	1.25	1.22	0.05	2.2
8 0215	12	14	11.5	1.50	1.45	0.12	3.6
8_0216	5	7	11.9	1.50	1.48	0.07	1.2
8 0217	29	26	8.6	1.25	1.09	0.42	12.8
8_0218	21	26	7.6	1.25	1.05	0.42	16.0
8_0219	23	23	9.9	1.50	1.32	0.21	12.3
8_0220	6	7	11.2	1.50	1.48	0.04	1.2
8 0221	11	15	8.3	1.25	1.19	0.07	4.9
8_0222	4	8	8.5	1.25	1.24	0.02	0.6
8_0223	10	9	11.7	1.50	1.47	0.07	2.0
8 0224	9	19	11.6	1.50	1.43	0.12	4.8

Table 17. Joint score and equivalent dowel diameter for LTPP test sections in Colorado.

Source: FHWA.

Figure 45. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in Colorado.

DELAWARE

The dowel alignments of 14 SPS-2 test sections in Delaware were evaluated using an MIT scanning device as part of this study. All test sections are in the southbound direction of US 113 and were constructed in 1992. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 18. Results of the MIT scanning analyses are shown in figure 46 through figure 49 and table 19.

Test Section	PCC Thickness (Inches)	Dowel Diameter (Inches)	Scan Date	Lane Width (ft)
10 0201	8.3	1.25	05/28/2015	12
10_0202	8.8	1.25	05/27/2015	14
10_0203	11.7	1.50	05/28/2015	14
10_0204	11.0	1.50	05/26/2015	12
10 0205	9.2	1.25	05/28/2015	12
10_0206	8.9	1.25	05/27/2015	14
10_0207	11.3	1.50	05/27/2015	14
10_0208	12.1	1.50	05/26/2015	12
10 0209	8.2	1.25	05/28/2015	12
10_0210	8.3	1.25	05/27/2015	14
10_0211	11.8	1.50	05/28/2015	14
10 0212	12.4	1.50	05/26/2015	12
10_0259	10.2	1.50	05/26/2015	12
10_0260	10.2	1.25	05/28/2015	12

Table 18. Details of LTPP test sections in Delaware.

MIT scanning results from Delaware show that approximately 72, 83, and 59 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 59 percent of dowels have longitudinal translation ranging between 0 and ± 0.5 inches.

The joint score distribution and equivalent dowel diameter are shown in figure 50 and table 20. Approximately 50 percent of transverse joints have a joint score less than 10, while 25 percent of transverse joints have a joint score greater than 30. Figure 51 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in Delaware. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Source: FHWA.

Figure 47. Chart. Vertical tilt distribution for LTPP test sections in Delaware.

Source: FHWA.

Figure 48. Chart. Longitudinal translation distribution for LTPP test sections in Delaware.

Source: FHWA.

		Horizontal		Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
10_0201	0.94	0.45	0.25	0.21	0.52	0.42	0.60	0.33
$10 \ 0202$	0.56	0.41	0.29	0.30	0.49	0.44	0.47	0.29
10_0203	0.24	0.19	0.26	0.23	0.45	0.42	0.26	0.23
10 0204	0.23	0.20	0.27	0.26	0.66	1.13	0.41	0.44
10_0205	0.43	0.41	0.23	0.30	0.48	0.55	0.26	0.23
10 0206	0.55	0.45	0.29	0.35	0.43	0.40	0.69	0.38
10_0207	0.26	0.73	0.26	0.22	0.49	0.49	0.28	0.25
10_0208	0.27	0.37	0.33	0.42	0.72	0.89	0.55	0.45
10_0209	0.74	0.95	0.23	0.19	0.50	0.52	0.62	0.33
10 0210	0.22	0.16	0.19	0.30	0.54	0.52	0.37	0.30
10_0211	0.34	0.29	0.32	0.25	0.57	0.48	0.26	0.21
10_0212	0.30	0.26	0.36	0.30	0.71	0.79	0.55	0.34
10 0259	0.28	0.41	0.32	0.26	0.27	0.44	0.48	0.33
10_0260	0.74	0.93	2.37	2.71	9.64	12.43	3.95	2.70

Table 19.	. Dowel misalignment	summary for LTF	P test sections in Delaware.
1 4010 176	· Dower misungnmen	building for Life	

Source: FHWA.

Figure 50. Chart. Joint score distribution for LTPP	test sections in Delaware.
---	----------------------------

	Table 20. Joint score and ed	uivalent dowel	diameter for LTPP	test sections in Delaware.
--	------------------------------	----------------	-------------------	----------------------------

					Average	Equivalent Dowel	Effective
	Average	Joint Score	Average PCC	Actual Dowel	Equivalent Dowel	Diameter Standard	Reduction in Dowel
Test	Joint	Standard	Thickness	Diameter	Diameter	Deviation	Diameter
Section	Score	Deviation	(Inches)	(Inches)	(Inches)	(Inches)	(Percent)
10_0201	47	20	8.3	1.25	1.07	0.11	14.7
10_0202	24	16	8.8	1.25	1.19	0.06	5.1
10 0203	7	10	11.7	1.50	1.49	0.02	0.7
10_0204	8	10	11.0	1.50	1.48	0.03	1.1
10_0205	9	13	9.2	1.25	1.22	0.06	2.2
10_0206	26	17	8.9	1.25	1.10	0.17	12.0
10 0207	7	9	11.3	1.50	1.47	0.07	1.7
10_0208	11	15	12.1	1.50	1.42	0.17	5.5
10 0209	30	18	8.2	1.25	1.14	0.10	8.9
10_0210	4	7	8.3	1.25	1.23	0.05	1.6
10 0211	13	15	11.8	1.50	1.48	0.04	1.4
10_0212	13	15	12.4	1.50	1.47	0.05	2.2
10_0259	9	8	10.2	1.50	1.41	0.19	6.0
10_0260	68	22	10.2	1.25	0.30	0.43	76.0

Source: FHWA.

Figure 51. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in Delaware.

IOWA

The dowel alignments of 12 SPS-2 test sections in Iowa were evaluated using an MIT scanning device as part of this study. All test sections are in the northbound direction of US 65 and were constructed in 1994. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 21. Results of the MIT scanning analyses are shown in figure 52 through figure 55 and table 22.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
19_0213	8.9	1.25	11/19/2014	14
19 0214	8.4	1.25	11/19/2014	12
19_0215	11.4	1.50	11/18/2014	12
19_0216	11.4	1.50	11/18/2014	12
19 0217	8.1	1.25	11/18/2014	14
19_0218	8.4	1.25	11/18/2014	12
19_0219	11.5	1.50	11/17/2014	14
19_0220	11.5	1.50	11/18/2014	14
19 0221	9.4	1.25	11/20/2014	14
19_0222	8.3	1.25	11/20/2014	12
19_0223	12.5	1.50	11/20/2014	12
19_0224	10.0	1.50	11/20/2014	14

Table 21. Details of LTPP test sections in Iowa.

MIT scanning results from Iowa show that approximately 81, 78, and 76 percent of dowels have misalignments ranging between 0 and \pm 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 31 percent of dowels have longitudinal translation ranging between 0 and \pm 1.0 inch.

The joint score distribution and equivalent dowel diameter are shown in figure 56 and table 23. Approximately 55 percent of transverse joints have a joint score less than 10, while 14 percent of transverse joints have a joint score greater than 30. Figure 57 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in Iowa. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Figure 53. Chart. Vertical tilt distribution for LTPP test sections in Iowa.

Source: FHWA.

Figure 54. Chart. Longitudinal translation distribution for LTPP test sections in Iowa.

Source: FHWA.

Figure 55. Chart. Vertical translation distribution for LTPP test sections in Iowa.

		Horizontal		Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
19 0213	0.32	0.51	0.35	0.34	1.74	1.15	0.31	0.43
19_0214	0.26	0.22	0.41	0.34	1.82	1.35	0.19	0.27
19_0215	0.26	0.25	0.19	0.24	0.83	0.85	0.15	0.12
19_0216	0.22	0.23	0.27	0.36	1.34	1.07	0.20	0.26
19 0217	0.38	0.61	0.39	0.49	1.32	1.06	0.49	0.62
19_0218	0.42	0.58	0.35	0.39	1.25	0.94	0.17	0.24
19 0219	0.33	0.52	0.34	0.44	1.77	1.36	0.47	0.29
19_0220	0.41	0.33	0.64	0.80	2.79	2.07	0.43	0.97
19 0221	0.37	0.21	0.22	0.19	0.87	0.82	0.61	0.27
19_0222	0.41	0.31	0.49	0.48	2.25	1.53	0.26	0.37
19 0223	0.37	0.36	0.28	0.28	1.57	1.22	0.48	0.23
19_0224	0.28	0.26	0.28	0.23	1.46	1.08	0.42	0.24

Table 22. Dowel misalignment summary for LTPP test sections in Iowa.

Source: FHWA.

Figure 56. Chart. Joint score distribution for LTPP test sections in Iowa.

Test Section	Average Joint Score	Joint Score Standard Deviation	Average PCC Thickness (Inches)	Actual Dowel Diameter (Inches)	Average Equivalent Dowel Diameter (Inches)	Equivalent Dowel Diameter Standard Deviation (Inches)	Effective Reduction in Dowel Diameter (Percent)
19 0213	12	12	8.9	1.25	1.21	0.05	3.4
19 0214	14	14	8.4	1.25	1.21	0.07	3.0
19 0215	6	10	11.4	1.50	1.48	0.04	1.1
19_0216	5	5	11.4	1.50	1.46	0.08	2.7
19 0217	17	21	8.1	1.25	1.05	0.35	15.8
19_0218	15	13	8.4	1.25	1.17	0.18	6.1
19_0219	11	13	11.5	1.50	1.42	0.15	5.6
19_0220	31	25	11.5	1.50	1.31	0.29	12.8
19 0221	8	9	9.4	1.25	1.21	0.04	2.9
19_0222	25	23	8.3	1.25	1.15	0.18	8.1
19_0223	12	14	12.5	1.50	1.47	0.05	1.8
19 0224	8	9	10.0	1.50	1.47	0.05	2.0

Table 23. Joint score and equivalent dowel diameter for LTPP test sections in Iowa.

Source: FHWA.

Figure 57. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in Iowa.

KANSAS

The dowel alignments of 12 SPS-2 test sections in Kansas were evaluated using an MIT scanning device as part of this study. All test sections are in the westbound direction of I–70 and were constructed in 1992. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 24. Results of the MIT scanning analysis are shown in figure 58 through figure 61 and table 25.

Test Section	PCC Thickness (Inches)	Dowel Diameter (Inches)	Scan Date	Lane Width (ft)
20 0201	7.7	1.25	12/01/2015	12
20_0202	7.7	1.25	12/01/2015	14
20 0203	11.1	1.50	12/01/2015	14
20_0204	11.3	1.50	12/01/2015	12
20 0205	7.5	1.25	12/02/2015	12
20_0206	7.5	1.25	12/02/2015	14
20_0207	11.2	1.50	12/02/2015	14
20_0208	10.8	1.50	12/02/2015	12
20 0209	8.6	1.25	12/03/2015	12
20_0210	8.4	1.25	12/03/2015	14
20_0211	11.1	1.50	12/02/2015	14
20 0212	11.1	1.50	12/02/2015	12

Table 24. Details of LTPP test sections in Kansas.

MIT scanning results from Kansas show that approximately 69, 7, and 95 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 29 percent of dowels have longitudinal translation ranging greater than 2 inches.

The joint score distribution and equivalent dowel diameter are shown in figure 62 and table 26. Approximately 47 percent of transverse joints have a joint score less than 10, while 24 percent of transverse joints have a joint score greater than 30. Figure 63 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in Kansas. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Figure 58. Chart. Horizontal skew distribution for LTPP test sections in Kansas.

Source: FHWA.

Figure 59. Chart. Vertical tilt distribution for LTPP test sections in Kansas.

Source: FHWA.

Figure 60. Chart. Longitudinal translation distribution for LTPP test sections in Kansas.

Source: FHWA.

		Horizontal		Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
20_0201	0.35	0.79	0.41	0.76	1.30	1.33	0.57	0.50
$20 \ 0202$	0.32	0.19	0.26	0.38	0.83	0.71	0.61	0.35
20_0203	0.38	0.42	0.22	0.19	1.12	0.81	0.36	0.20
20 0204	0.47	0.28	0.24	0.23	1.05	0.73	0.30	0.17
20_0205	0.41	0.45	0.45	0.60	1.62	1.28	0.51	0.34
20 0206	0.31	0.23	0.40	0.42	1.74	1.59	0.56	0.52
20_0207	0.47	0.37	0.60	0.76	2.48	1.70	0.56	0.32
20_0208	0.46	0.30	0.30	0.26	1.66	1.25	0.40	0.29
20_0209	0.41	0.44	0.41	0.42	2.06	3.19	0.32	0.91
20 0210	0.29	0.24	0.37	0.33	1.77	1.40	0.37	0.24
20_0211	0.42	0.27	0.39	0.29	1.67	1.30	0.51	0.33
20_0212	0.58	0.31	0.33	0.38	1.32	1.23	0.46	0.33

Table 25. Dowel	misalignment	summary for	r LTPP	' test secti	ons in	Kansas.
		•/				

Source: FHWA.

Table 26. Chart. Joint score and equivalent dowel diameter for LTPP test sections in
Kansas.

					Average	Equivalent Dowel	Effective
			Average	Actual	Equivalent	Diameter	Reduction in
	Average	Joint Score	PCC	Dowel	Dowel	Standard	Dowel
Test	Joint	Standard	Thickness	Diameter	Diameter	Deviation	Diameter
Section	Score	Deviation	(Inches)	(Inches)	(Inches)	(Inches)	(Percent)
20_0201	16	22	7.7	1.25	1.09	0.22	12.6
20 0202	7	9	7.7	1.25	1.05	0.27	15.6
20_0203	10	11	11.1	1.50	1.48	0.03	1.6
20 0204	16	16	11.3	1.50	1.48	0.04	1.5
20_0205	21	20	7.5	1.25	1.19	0.11	5.0
20_0206	17	15	7.5	1.25	1.17	0.11	6.4
20_0207	28	31	11.2	1.50	1.35	0.17	10.0
20_0208	19	17	10.8	1.50	1.46	0.05	2.9
20_0209	22	21	8.6	1.25	1.13	0.18	9.4
20_0210	16	19	8.4	1.25	1.19	0.08	4.6
20 0211	20	17	11.1	1.50	1.43	0.07	4.6
20 0212	27	18	11.1	1.50	1.43	0.15	4.4

Source: FHWA.

Figure 63. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in Kansas.

NORTH CAROLINA

The dowel alignments of 8 SPS-2 test sections in North Carolina were evaluated using an MIT scanning device as part of this study. All test sections are in the southbound direction of US 52 and were constructed in 1992. Dowels were placed using a DBI for all test sections. Other details of the test sections are shown in table 27. Results of the MIT scanning analyses are shown in figure 64 through figure 67 and table 28.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
37 0203	11.4	1.50	03/09/2015	14
37_0204	11.2	1.50	03/12/2015	12
37 0207	11.6	1.50	03/09/2015	14
37_0208	11.2	1.50	03/11/2015	12
37_0211	11.4	1.50	03/10/2015	14
37_0212	10.9	1.50	03/10/2015	12
37 0259	10.2	1.25	03/09/2015	12
37 0260	11.5	1.50	03/10/2015	14

Table 27. Details of LTPP test sections in North Carolina.

MIT scanning results from North Carolina show that approximately 78, 89, and 76 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 53 percent of dowels have longitudinal translation ranging between 0 and ± 0.5 inches.

The joint score distribution and equivalent dowel diameter are shown in figure 68 and table 29. Approximately 62 percent of transverse joints have a joint score less than 10, while 9 percent of transverse joints have a joint score greater than 30. Figure 69 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in North Carolina. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Source: FHWA.

Figure 65. Chart. Vertical tilt distribution for LTPP test sections in North Carolina.

Source: FHWA.

Figure 66. Chart. Longitudinal translation distribution for LTPP test sections in North Carolina.

Source: FHWA.

Figure 67. Chart. Vertical translation distribution for LTPP test sections in North Carolina.

		Horizontal		Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
37 0203	0.41	0.24	0.23	0.21	1.04	0.91	0.44	0.39
37_0204	0.58	0.40	0.32	0.43	1.69	4.09	0.30	0.48
37_0207	0.35	0.43	0.35	0.82	0.59	0.88	0.41	0.43
37_0208	0.28	1.03	0.40	0.77	0.78	1.06	0.31	0.38
37 0211	0.35	0.38	0.24	0.54	0.64	0.93	0.45	1.96
37_0212	0.26	0.19	0.20	0.18	0.52	0.42	0.17	0.13
37 0259	0.30	0.25	0.26	0.28	0.29	0.52	0.69	0.23
37_0260	0.40	0.83	0.43	0.84	0.71	1.06	0.32	0.35

Table 28. Dowel misalignment summary for LTPP test sections in North Carolina.

Source: FHWA.

Figure 68. Chart. Joint score distribution for LTPP test sections in North Carolina.

Test Section	Average Joint Score	Joint Score Standard Deviation	Average PCC Thickness (Inches)	Actual Dowel Diameter (Inches)	Average Equivalent Dowel Diameter (Inches)	Equivalent Dowel Diameter Standard Deviation (Inches)	Effective Reduction in Dowel Diameter (Percent)
37_0203	11	11	11.4	1.50	1.45	0.06	3.1
37_0204	23	19	11.2	1.50	1.39	0.31	7.2
37 0207	12	14	11.6	1.50	1.39	0.37	7.3
37_0208	10	22	11.2	1.50	1.44	0.22	4.0
37_0211	9	9	11.4	1.50	1.42	0.27	5.3
37_0212	4	4	10.9	1.50	1.50	0.01	0.1
37 0259	7	10	10.2	1.25	1.20	0.14	3.8
37 0260	14	12	11.5	1.49	1.31	0.32	12.2

Table 29. Joint score and equivalent dowel diameter for LTPP test sections inNorth Carolina.

Figure 69. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in North Carolina.

NORTH DAKOTA

The dowel alignments of 12 SPS-2 test sections in North Dakota were evaluated using an MIT scanning device as part of this study. All test sections are in the eastbound direction of I–94 and were constructed in 1994. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 30. Results of the MIT scanning analyses are shown in figure 70 through figure 73 and table 31.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
38_0213	7.9	1.25	09/22/2015	14
38 0214	8.0	1.25	09/21/2015	12
38_0215	11.1	1.50	09/21/2015	12
38_0216	11.1	1.50	09/21/2015	14
38_0217	7.9	1.25	09/23/2015	14
38 0218	7.9	1.25	09/23/2015	12
38_0219	10.8	1.50	09/24/2015	12
38_0220	11.0	1.50	09/23/2015	14
38_0221	8.1	1.25	09/30/2015	14
38 0222	8.0	1.25	09/24/2015	12
38_0223	11.1	1.50	09/24/2015	12
38_0224	11.0	1.50	09/30/2015	14

Table 30. Details of LTPP test sections in North Dakota.

MIT scanning results from North Dakota show that approximately 82, 84, and 72 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 30 percent of dowels have longitudinal translation ranging between 0 and ± 0.5 inches.

The joint score distribution and equivalent dowel diameter are shown in figure 74 and table 32. Approximately 64 percent of transverse joints have a joint score less than 10, while 7 percent of transverse joints have a joint score greater than 30. Figure 75 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in North Dakota. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Figure 70. Chart. Horizontal skew distribution for LTPP test sections in North Dakota.

Source: FHWA.

Figure 71. Chart. Vertical tilt distribution for LTPP test sections in North Dakota.

Figure 72. Chart. Longitudinal translation distribution for LTPP test sections in North Dakota.

Source: FHWA.

		Horizontal		Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
38_0213	0.25	0.20	0.25	0.21	1.06	0.75	0.16	0.13
38 0214	0.29	0.24	0.31	0.25	1.27	1.07	0.21	0.15
38_0215	0.29	0.27	0.77	0.44	1.96	1.11	0.53	0.29
38_0216	0.22	0.17	0.29	0.48	0.95	0.77	0.30	0.28
38_0217	0.34	0.23	0.19	0.17	0.75	0.65	0.50	0.34
38_0218	0.32	0.21	0.29	0.42	1.06	0.80	0.33	0.20
38_0219	0.41	0.21	0.20	0.24	1.08	0.79	0.95	0.23
38_0220	0.23	0.15	0.18	0.16	1.06	0.96	0.58	0.74
38 0221	0.23	0.18	0.19	0.28	0.90	0.78	0.24	0.18
38_0222	0.36	0.23	0.25	0.22	0.71	0.63	0.18	0.14
38_0223	0.40	0.25	0.21	0.18	1.12	1.01	0.22	0.14
38_0224	0.20	0.15	0.31	0.27	1.37	1.19	0.31	0.25

Table 31. Dowel misalignment summary for LTPP test sections in North Dakota.

Source: FHWA.

Table 32. Joint score and equivalent dowel diameter for LTPP test sections in
North Dakota.

						Equivalent	
					Average	Dowel	Effective
			Average	Actual	Equivalent	Diameter	Reduction in
	Average	Joint Score	PCC	Dowel	Dowel	Standard	Dowel
Test	Joint	Standard	Thickness	Diameter	Diameter	Deviation	Diameter
Section	Score	Deviation	(Inches)	(Inches)	(Inches)	(Inches)	(Percent)
38_0213	7	8	7.9	1.25	1.24	0.13	0.9
38 0214	12	12	8.0	1.25	1.22	0.05	2.7
38_0215	39	23	11.1	1.50	1.38	0.10	7.8
38 0216	6	6	11.1	1.50	1.48	0.04	1.6
38_0217	7	6	7.9	1.25	1.22	0.04	2.8
38_0218	10	9	7.9	1.25	1.21	0.13	3.6
38_0219	9	7	10.8	1.50	1.48	0.03	1.7
38_0220	3	5	11.0	1.50	1.47	0.05	1.7
38_0221	4	4	8.1	1.25	1.24	0.02	0.6
38_0222	11	7	8.0	1.25	1.24	0.01	0.5
38 0223	12	9	11.1	1.50	1.48	0.05	1.5
38_0224	9	13	11.0	1.50	1.47	0.07	2.3

Source: FHWA.

Figure 75. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in North Dakota.

SOUTH DAKOTA

The dowel alignment of one GPS-3 test section in South Dakota was evaluated using an MIT scanning device as part of this study. The test section is in the eastbound direction of US 14 and was constructed in 1988. Dowels were placed using dowel baskets. Other details of the test section are shown in table 33. Results of the MIT scan analysis are shown in figure 76 through figure 79 and table 34.

Test Section	PCC Thickness (Inches)	Dowel Diameter (Inches)	Scan Date	Lane Width (ft)
46 3052	9.0	1.25	10/07/2015	12

Table 33. Details of the LTPP test section in South Dakota.

MIT scanning results from South Dakota show that approximately 55, 93, and 97 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. Approximately 90 percent of dowels have longitudinal translation (absolute) less than 1.0 inch.

The joint score distribution and equivalent dowel diameter are shown in figure 80 and table 35. Approximately 8 percent of transverse joints have a joint score less than 10, and 8 percent of transverse joints have a joint score greater than 30. Figure 81 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in South Dakota. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Source: FHWA.

Figure 76. Chart. Horizontal skew distribution for the LTPP test section in South Dakota.

Source: FHWA.

Figure 77. Chart. Vertical tilt distribution for the LTPP test section in South Dakota.

Source: FHWA.

Figure 78. Chart. Longitudinal translation distribution for the LTPP test section in South Dakota.

Source: FHWA.

Table 34. Dowel misalignment summary for the LTPP test section in South Dakota.

		Horizontal		Vertical		Longitudinal		Vertical
	Average	Skew	Average	Tilt	Average	Translation	Average	Translation
	Horizontal	Standard	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
46_3052	0.53	0.37	0.23	0.16	0.20	0.26	0.19	0.13

Source: FHWA.

Table 35. Joint score and equivalent dowel diameter for the LTPP test section in
South Dakota.

						Equivalent	
					Average	Dowel	Effective
			Average	Actual	Equivalent	Diameter	Reduction in
	Average	Joint Score	PCC	Dowel	Dowel	Standard	Dowel
Test	Joint	Standard	Thickness	Diameter	Diameter	Deviation	Diameter
Section	Score	Deviation	(Inches)	(Inches)	(Inches)	(Inches)	(Percent)
46 3052	18	8	9.0	1.25	1.21	0.03	3.45

Source: FHWA.

Figure 81. Chart. Joint score versus effective reduction in dowel diameter for the LTPP test section in South Dakota.

WISCONSIN

The dowel alignments of 11 SPS-2 test sections in Wisconsin were evaluated using an MIT scanning device as part of this study. All test sections are in the westbound direction of SR 29 and were constructed in 1997. Dowels were placed using dowel baskets for all test sections. Other details of the test sections are shown in table 36. Results of the MIT scanning analyses are shown in figure 82 through figure 85 and table 37.

	PCC Thickness	Dowel Diameter		Lane Width
Test Section	(Inches)	(Inches)	Scan Date	(ft)
55 0213	8.5	1.25	11/04/2015	14
55_0215	10.9	1.50	11/05/2015	12
55 0217	8.5	1.25	11/04/2015	14
55_0219	11.8	1.50	11/05/2015	12
55 0221	8.2	1.25	11/03/2015	14
55_0223	11.2	1.50	11/04/2015	12
55 0259	10.6	1.50	11/03/2015	12
55_0261	8.2	1.25	11/04/2015	12
55_0262	8.3	1.25	11/05/2015	12
55_0263	10.0	1.25	11/03/2015	12
55_0265	10.7	1.50	11/09/2015	12

MIT scanning results from Wisconsin show that approximately 65, 79, and 66 percent of dowels have misalignments ranging between 0 and ± 0.5 inches for horizontal skew, vertical tilt, and vertical translation, respectively. There is more variation in the longitudinal translation data, and approximately 39 percent of dowels have longitudinal translation ranging between 0 and ± 0.5 inches.

The joint score distribution and equivalent dowel diameter are shown in figure 86 and table 38. Approximately 36 percent of transverse joints have a joint score less than 10, and 22 percent of transverse joints have a joint score greater than 30. Figure 87 shows the relationship between the joint score and effective reduction in dowel diameter for each transverse joint tested in Wisconsin. Whereas the joint score considers only vertical tilt and horizontal skew, equivalent dowel diameter considers vertical tilt, horizontal skew, vertical translation, and longitudinal translation.

Figure 82. Chart. Horizontal skew distribution for LTPP test sections in Wisconsin.

Source: FHWA.

Figure 83. Chart. Vertical tilt distribution for LTPP test sections in Wisconsin.

Source: FHWA.

Figure 84. Chart. Longitudinal translation distribution for LTPP test sections in Wisconsin.

Source: FHWA.

Figure 85. Chart. Vertical translation distribution for LTPP test sections in Wisconsin.

	Auguago	Horizontal Skow	Avanaga	Vertical	Avanaga	Longitudinal	Avanaga	Vertical Translation
	Horizontal	Skew	Vertical	Standard	Longitudinal	Standard	Vertical	Standard
Test	Skew	Deviation	Tilt	Deviation	Translation	Deviation	Translation	Deviation
Section	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)
55 0213	0.72	0.51	0.30	0.28	0.92	1.13	0.24	0.19
55_0215	0.39	0.29	0.32	0.25	1.30	1.14	0.28	0.21
55_0217	0.49	0.31	0.34	0.79	1.00	0.88	0.82	0.26
55_0219	0.44	0.54	0.63	0.98	1.33	1.34	0.36	0.49
55 0221	0.32	0.22	0.29	0.20	0.82	0.82	0.31	0.18
55_0223	0.28	0.46	0.28	0.30	1.08	0.89	0.26	0.19
55 0259	0.40	0.34	0.31	0.23	0.87	0.71	0.27	0.22
55_0261	0.38	0.20	0.19	0.20	0.45	0.44	0.34	0.15
55 0262	0.43	0.34	0.31	0.28	1.46	1.10	0.21	0.19
55_0263	0.45	0.37	0.25	0.21	0.64	0.57	1.16	0.40
55_0265	0.64	1.00	1.07	1.13	2.12	2.09	1.25	0.73

Table 37. Dowel misalignment summary for LTPP test sections in Wisconsin.

Figure 86. Chart. Joint score distribution for LTPP test sections in Wisconsin.

Test Section	Average Joint Score	Joint Score Standard Deviation	Average PCC Thickness (Inches)	Actual Dowel Diameter (Inches)	Average Equivalent Dowel Diameter (Inches)	Equivalent Dowel Diameter Standard Deviation (Inches)	Effective Reduction in Dowel Diameter (Percent)
55 0213	35	24	8.5	1.25	1.17	0.23	6.8
55 0215	17	12	10.9	1.50	1.45	0.09	3.4
55 0217	20	15	8.5	1.25	0.99	0.33	20.6
55_0219	27	29	11.8	1.50	1.37	0.29	8.6
55 0221	9	9	8.2	1.25	1.24	0.02	1.0
55_0223	10	11	11.2	1.50	1.48	0.03	1.6
55_0259	17	15	10.6	1.50	1.47	0.02	2.0
55_0261	8	8	8.2	1.25	1.24	0.01	0.4
55 0262	20	12	8.3	1.25	1.20	0.05	4.3
55_0263	17	8	10.0	1.25	1.05	0.06	16.3
55_0265	57	27	10.7	1.50	1.18	0.29	21.6

Table 38. Joint score and equivalent dowel diameter for LTPP test sections in Wisconsin.

Figure 87. Chart. Joint score versus effective reduction in dowel diameter for LTPP test sections in Wisconsin.

CHAPTER 6. JOINT SCORE ANALYSES

The chi-square test of independence was used to determine any potential relationship between the joint score and cracking/spalling for the LTPP test sections. The chi-square test of independence is considered an appropriate statistical test for analysis of any two categorical variables. The presence and absence of cracking or spalling for each slab was determined by evaluating available LTPP distress maps and data from the LTPP database. Joint score data were divided into three categories for analysis, as shown in table 39.

Joint Score	Category
≤12	Low
$12 < \text{joint score} \le 30$	Medium
>30	High

Table 39. Joint score category.

The following null and alternative hypotheses, respectively, were assumed:

- H₀—joint score and cracking/spalling are independent.
- H_A—joint score and cracking/spalling are dependent.

The null hypothesis was rejected if the calculated probability (*p*-value) was less than 0.05. For the LTPP test sections analyzed, rejection of H_0 implied that the joint score was related to the presence of cracking/spalling. Summary results of the analyses are shown in table 40. The *p*-value is broken down by State because each State represents a site with one GPS-3 test section or multiple SPS-2 test sections. Thus, breaking down *p*-values by State are a way to control for traffic, climate, and subgrade while maintaining a large enough sample size for the analyses. This analysis is not appropriate using the full dataset as the conditions (i.e., traffic, climate, and subgrade) change substantially from one location to another. While there are many factors responsible for cracking and spalling in PCC pavement, if the joint score has an impact on spalling or cracking at any specific site, it can be expected to show up in the analyses results shown in table 40 provided a sufficiently large sample size (i.e., number of transverse joints) is used. Figure 87 through figure 109 show the number of transverse joints exhibiting cracking/spalling compared to the total number of transverse joints for each of the three joint score categories.

Summary results of the LTPP test sections analyzed shown in table 40 indicate no definitive relationship between the joint score and transverse cracking or spalling of PCC slabs, except for three instances. Arizona and Arkansas have a *p*-value of less than 0.05, indicating a relationship between the joint score and slab cracking. Similarly, Iowa has a *p*-value of less than 0.05, indicating a relationship between the joint score and spalling. These results suggest other factors have a stronger effect on transverse cracking and spalling, but there may be some project-specific situations where dowel alignment (as measured using the joint score) has some influence on transverse cracking and spalling. Thus, dowel alignment may be a contributing factor, but not necessarily the primary factor, for these distresses. More detailed analyses of the data may be required to identify other contributing factors. LTPP test sections in North Carolina,

South Dakota, and Wisconsin did not exhibit any slab cracking and were eliminated from the cracking statistical analyses.

State	Number of Transverse Joints for Analyses	Cracking <i>p</i> -Value	Spalling <i>p</i> -Value
Arizona	390	0.015*	0.470
Arkansas	357	0.035*	0.823
California	388	0.769	0.589
Colorado	386	0.128	0.682
Delaware	449	0.425	0.750
Iowa	387	0.782	0.001*
Kansas	390	0.126	0.192
North Carolina	248	N/A	0.191
North Dakota	383	0.653	0.451
South Dakota	25	N/A	0.052
Wisconsin	346	N/A	0.097

	Table 40.	Summary	results	of	statistical	analy	vses.
--	-----------	---------	---------	----	-------------	-------	-------

*Significant at p = 0.05.

N/A = not applicable.

Figure 88. Chart. Joint score and presence of cracking for LTPP test sections in Arizona.

Source: FHWA.

Figure 89. Chart. Joint score and presence of spalling for LTPP test sections in Arizona.

Source: FHWA.

Figure 90. Chart. Joint score and presence of cracking for LTPP test sections in Arkansas.

Figure 91. Chart. Joint score and presence of spalling for LTPP test sections in Arkansas.

Source: FHWA.

Figure 92. Chart. Joint score and presence of cracking for LTPP test sections in California.

Source: FHWA.

Figure 93. Chart. Joint score and presence of spalling for LTPP test sections in California.

Source: FHWA.

Figure 94. Chart. Joint score and presence of cracking for LTPP test sections in Colorado.

Source: FHWA.

Figure 95. Chart. Joint score and presence of spalling for LTPP test sections in Colorado.

Source: FHWA.

Figure 96. Chart. Joint score and presence of cracking for LTPP test sections in Delaware.

Figure 97. Chart. Joint score and presence of spalling for LTPP test sections in Delaware.

Figure 98. Chart. Joint score and presence of cracking for LTPP test sections in Iowa.

Source: FHWA.

Figure 99. Chart. Joint score and presence of spalling for LTPP test sections in Iowa.

Source: FHWA.

Figure 100. Chart. Joint score and presence of cracking for LTPP test sections in Kansas.

Source: FHWA.

Figure 101. Chart. Joint score and presence of spalling for LTPP test sections in Kansas.

Source: FHWA.

Figure 102. Chart. Joint score and presence of cracking for LTPP test sections in North Carolina.

Source: FHWA.

Figure 103. Chart. Joint score and presence of spalling for LTPP test sections in North Carolina.

Source: FHWA.

Figure 104. Chart. Joint score and presence of cracking for LTPP test sections in North Dakota.

Source: FHWA.

Source: FHWA.

Figure 106. Chart. Joint score and presence of cracking for the LTPP test section in South Dakota.

Source: FHWA.

Figure 107. Chart. Joint score and presence of spalling for the LTPP test section in South Dakota.

Source: FHWA.

Figure 108. Chart. Joint score and presence of cracking for LTPP test sections in Wisconsin.

Figure 109. Chart. Joint score and presence of spalling for LTPP test sections in Wisconsin.

CHAPTER 7. JOINT-OPENING ANALYSES

Arizona LTPP test section 4_0215, which was selected for MIT scanning and analysis, was part of the LTPP Seasonal Monitoring Program (SMP). Joint-opening data for five transverse joints on Arizona LTPP test section 4_0215 (i.e., joint 29 through joint 33) collected over approximately 13 yr were extracted from the LTPP database for analysis. Joint-opening data for Arizona LTPP test section 4_0215 are shown in figure 110. Each datapoint represents the average gage reading of three locations (i.e., pavement edge, middle of lane, and inside lane edge) relative to the smallest average gage reading at the transverse joint. A similar analysis was performed for Arizona LTPP test section 4_0215 in NCHRP Report 637 for joint-opening data measured over 10 yr.

Figure 110 shows that all transverse joints opened and closed over the analysis period due to thermal expansion and contraction of the PCC slabs and were not inhibited from doing so by misaligned dowels. Table 41 shows the maximum joint opening, average horizontal skew, average vertical tilt, average longitudinal translation, joint score, and effective reduction in dowel diameter for the five transverse joints from Arizona LTPP test section 4_0215. Data in table 41 do not indicate any correlation between dowel misalignment and joint opening for joint 29 through joint 33. The sample size presented in figure 110 and table 41 is limited, and analysis of other joint-opening data is needed to further understand the effect of dowel misalignment on joint opening and the potential for joint lockup.

Source: FHWA.

Figure 110. Chart. Joint-opening data from five instrumented transverse joints at Arizona LTPP test section 4 0215.

Table 41. Maximum joint opening, dowel alignment data, and joint score for five instrumented transverse joints with joint-opening data at Arizona LTPP test section 4_0215.

Transverse Joint Number	Maximum Joint Opening (Thousandths of Inches)	Average Horizontal Skew (Inches)	Average Vertical Tilt (Inches)	Average Longitudinal Translation (Inches)	Joint Score	Effective Reduction in Dowel Diameter (Percent)
29	293	0.18	0.36	1.33	1	3.5
30	210	0.36	0.15	0.29	1	0.0
31	154	0.09	0.29	2.12	1	2.7
32	182	0.21	0.42	0.86	14	3.0
33	166	0.21	0.37	1.37	7	0.3

CHAPTER 8. AASHTOWARE PAVEMENT ME DESIGN ANALYSES USING EQUIVALENT DOWEL DIAMETER

To identify any relationship between the equivalent dowel diameter and LTPP field distress data, analyses were conducted using data from all test sections. Pavement distress information was extracted from the LTPP database and compared with predicted performance from AASHTOWare Pavement ME Design using both the actual and computed equivalent dowel diameter. The goal of these analyses was to consider the effects of dowel misalignment through the use of the equivalent dowel diameter in terms of performance criteria, such as faulting and cracking, in the context of other compounding factors (e.g., climate, traffic, materials, support conditions), which allows data from all sections to be used together as the impact of these factors is considered in AASHTOWare Pavement ME Design performance models.

Default global calibration coefficients and actual relevant site information available in the LTPP database (e.g., subgrade, materials, traffic, and climate) for each test section were used to develop the AASHTOWare Pavement ME Design files for the analyses. Although some States developed local calibration coefficients, they were not used for consistency between all LTPP test sections analyzed. Results of the analyses for various test sections are shown in table 42 through table 52. The AASHTOWare Pavement ME Design runs were executed from the actual construction month to the field-data-collection month as shown in table 42 through table 52. Table 53, figure 111, and figure 112 summarize the results of the analyses.

The results of the analyses show that using the average equivalent, instead of actual, dowel diameter produces a reduced bias of the in-service LTE as modeled using AASHTOWare Pavement ME Design. This result is consistent for both 1.25- and 1.5-inch-diameter dowels, and the effect is stronger when LTE is greater than 60 percent. Figure 111 shows that, when the actual dowel diameter is used, AASHTOWare Pavement ME Design generally models higher LTE than is observed in the field; some of this bias is removed when the average equivalent dowel diameter is used. For LTE, table 53 shows lower mean residuals when comparing as-predicted distresses versus actual distresses using the average equivalent, as opposed to actual, dowel diameter. Thus, using the equivalent dowel diameter is a less-biased estimator of long-term pavement LTE as modeled using AASHTOWare Pavement ME Design than using the actual dowel diameter.

The results of the analyses are reversed when evaluating faulting. The results of faulting analyses show that using the average equivalent, instead of actual, dowel diameter produces a greater bias of faulting as modeled using AASHTOWare Pavement ME Design. Figure 112 shows that when the actual dowel diameter is used, AASHTOWare Pavement ME Design models are generally unbiased; some bias (i.e., asymmetry) is introduced when the average equivalent dowel diameter is used. For faulting, table 53 shows lower mean residuals when comparing as-predicted distresses versus actual distresses using the actual, as opposed to average equivalent dowel diameter. Thus, using the actual dowel diameter is a less-biased estimator of faulting as modeled using AASHTOWare Pavement ME Design than using the average equivalent dowel diameter.

The two results of the analyses seem contradictory because faulting correlates with LTE. However, the results make sense when the following two factors are considered:

- Faulting correlates with LTE, but low LTE does not always correspond to high faulting.
- Factors such as traffic, support conditions, climate, and age all affect faulting independent of LTE.

The results of the analyses also show the effect of calibration on the faulting models in AASHTOWare Pavement ME Design, which was calibrated using LTPP test sections. As such, the research team for the current study hypothesize that dowel misalignment in LTPP test sections is accounted for in the calibration. The calibration process for faulting may have removed some of the bias in faulting models but not necessarily in LTE models because LTE models are not calibrated with field-measured LTE data.

Taken together, the data suggest that dowel misalignment affects long-term LTE of a concrete pavement because using the average equivalent, instead of actual, dowel diameter reduces bias in the AASHTOWare Pavement ME Design LTE model. This result is consistent with the lab results conducted in NCHRP Report 637. However, figure 111 and figure 112 exhibit a considerable amount of scatter in LTE and faulting modeled using AASHTOWare Pavement ME Design versus actual LTE and faulting. The remaining bias and scatter suggests that the two models (i.e., the equivalent dowel diameter model from NCHRP Report 637 and the LTE model in AASHTOWare Pavement ME Design) can be improved using the data collected as part of this study. More thorough analyses and adjustments to the models may be warranted to improve the equivalent dowel diameter model and the LTE model in AASHTOWare Pavement ME Design, which is beyond the scope of this study.

Analyses of LTE and faulting as independent variables with the joint score and average equivalent dowel diameter as dependent variables were not undertaken in this study. LTE and faulting are significantly impacted by other parameters (e.g., traffic, dowel size, base type, subgrade type, climate, PCC thickness, and age of pavement). For example, a test section experiencing 5 million trucks over 20 yr will have lower LTE and far more faulting than a test section experiencing 200,000 trucks over 20 yr with the same extent of misalignment. Likewise, a test section with—a heavy clay subgrade and an aggregate base will have lower LTE and more faulting than a test section with a sandy gravel subgrade and a treated base for the same average joint score. These types of analyses have to be performed on a section-by-section basis by comparing the well-aligned transverse joints within a test section to the poorly aligned transverse joints within the same test section. However, there is too much inherent variability between slabs and transverse joints within any test section to perform this analysis on a section-by-section basis. These analyses for each test section were also beyond the scope of this study. As such, in this study, a 500-foot LTPP test section was analyzed as a single unit and AASHTOWare Pavement ME Design used to account for the effects of other variables by comparing LTE and faulting using the actual and average equivalent dowel diameter to the pavement age.

Temperature affects the field-measured LTE but is not considered in the LTE generated by AASHTOWare Pavement ME Design using the actual and average equivalent dowel diameter. The LTE generated using AASHTOWare Pavement ME Design represents an average LTE at the pavement age (corresponding to the date of field data collection) rather than a temperature-dependent LTE affected by daily opening and closing of transverse joints due to temperature cycling. Because the temperature dependence of LTE cannot be modeled in AASHTOWare Pavement ME Design, it is not considered in analyses. It is assumed that, because of the large number of transverse joints analyzed in this study, the temperature effects on transverse joint LTE average out.

Table 42. Comparison of AASHTOWare Pavement ME Design analyses results with actual
LTPP distress data using the average equivalent and actual dowel diameter for LTPP test
sections in Arizona.

		Predicted LTE	Predicted faulting	Predicted Slabs Cracked	Actual LTE	Actual Faulting	Actual Slabs Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(12/2014)	(12/2014)	(12/2014)	(12/2014)	(12/2014)	(12/2014)
213	1.23 (equivalent)	90.1	0.002	51.04	66	0.027	0.0
215	1.25 (actual)	90.7	0.001	51.04	66	0.027	0.0
214	1.17 (equivalent)	86.1	0.804	3.42	61	0.051	3.0
214	1.25 (actual)	89.7	0.498	3.42	61	0.051	3.0
215	1.37 (equivalent)	87.8	0.297	5.28	73	0.023	0.0
213	1.50 (actual)	91.6	0.161	5.28	73	0.023	0.0
216	1.43 (equivalent)	89.1	0.032	0.00	57	0.011	0.0
210	1.50 (actual)	91.0	0.017	0.00	57	0.011	0.0
217	1.24 (equivalent)	91.6	0.026	99.92	53	0.012	63.6
217	1.25 (actual)	91.8	0.024	99.92	53	0.012	63.6
219	1.17 (equivalent)	87.9	0.926	99.93	83	0.009	51.5
218	1.25 (actual)	91.1	0.624	99.93	83	0.009	51.5
210	1.42(equivalent)	92.1	0.152	99.48	48	0.007	57.5
219	1.50 (actual)	93.6	0.127	99.48	48	0.007	57.5
220	1.44 (equivalent)	91.1	0.011	0.00	82	0.006	0.0
220	1.50 (actual)	92.4	0.006	0.00	82	0.006	0.0
221	1.22 (equivalent)	90.6	0.000	1.42	38	0.021	0.0
221	1.25 (actual)	91.5	0.000	1.42	38	0.021	0.0
222	1.15 (equivalent)	85.5	0.511	0.10	39	0.012	21.2
LLL	1.25 (actual)	90.4	0.245	0.10	39	0.012	21.2
222	1.37 (equivalent)	88.9	0.191	0.08	54	0.013	0.0
223	1.50 (actual)	92.4	0.093	0.08	54	0.013	0.0
224	1.40 (equivalent)	91.0	0.008	0.00	57	0.004	0.0
224	1.50 (actual)	93.1	0.003	0.00	57	0.004	0.0

Table 43. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsections in Arkansas.

		Predicted	Predicted	Predicted Slabs	Actual	Actual	Actual Slabs
		LTE	Faulting	Cracked	LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(08/2013)	(08/2013)	(08/2013)	(08/2013)	(08/2013)	(08/2013)
214	1.14 (equivalent)	85.1	0.166	32.02	67	0.10	3.03
214	1.25 (actual)	90.6	0.097	32.02	67	0.10	3.03
215	1.40 (equivalent)	95.0	0.012	0.01	93	0.14	0.00
213	1.50 (actual)	95.0	0.009	0.01	93	0.14	0.00
216	1.42 (equivalent)	89.7	0.002	0.00	51	0.04	0.00
210	1.50 (actual)	91.7	0.001	0.00	51	0.04	0.00
217	1.15 (equivalent)	89.4	0.002	11.40	52	0.02	24.20
217	1.25 (actual)	92.8	0.000	11.40	52	0.02	24.20
218	0.97 (equivalent)	53.7	1.030	96.23	44	0.01	100.00
210	1.25 (actual)	91.8	0.121	96.23	44	0.01	100.00
210	1.41 (equivalent)	94.1	0.006	0.01	32	0.01	0.00
219	1.50 (actual)	95.0	0.005	0.01	32	0.01	0.00
220	1.39 (equivalent)	95.0	0.001	0.00	84	0.02	0.00
220	1.50 (actual)	95.0	0.001	0.00	84	0.02	0.00
221	1.22 (equivalent)	95.0	0.000	1.05	81	0.05	6.06
221	1.25 (actual)	95.0	0.000	1.05	81	0.05	6.06
222	1.18 (equivalent)	89.6	0.129	30.62	84	0.09	0.00
	1.25 (actual)	91.9	0.103	30.62	84	0.09	0.00
222	1.41 (equivalent)	95.0	0.007	0.06	91	0.02	0.00
223	1.50 (actual)	95.0	0.006	0.06	91	0.02	0.00
224	1.47 (equivalent)	94.7	0.001	0.00	39	0.04	0.00
224	1.50 (actual)	95.0	0.001	0.00	39	0.04	0.00

Table 44. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsites in Colorado.

				Predicted			Actual
		Predicted	Predicted	Slabs		Actual	Slabs
		LTE	Faulting	Cracked	Actual LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(09/2013)	(09/2014)	(09/2014)	(09/2013)	(09/2014)	(09/2014)
213	1.24 (equivalent)	91.0	0.005	0.70	79	0.0	0.0
215	1.25 (actual)	91.3	0.004	0.70	79	0.0	0.0
214	1.22 (equivalent)	89.5	0.042	0.00	80	0.0	3.0
214	1.25 (actual)	90.5	0.038	0.00	80	0.0	3.0
215	1.45 (equivalent)	95.0	0.011	0.00	88	0.0	0.0
215	1.50 (actual)	95.0	0.009	0.00	88	0.0	0.0
216	1.48 (equivalent)	93.6	0.002	0.00	95	0.0	18.1
210	1.50 (actual)	94.0	0.001	0.00	95	0.0	18.1
217	1.09 (equivalent)	83.3	0.008	0.00	88	0.1	21.2
217	1.25 (actual)	92.9	0.000	0.00	88	0.1	21.2
218	1.05 (equivalent)	84.9	0.173	12.74	78	0.0	9.1
210	1.25 (actual)	93.6	0.098	12.74	78	0.0	9.1
210	1.32 (equivalent)	95.0	0.012	0.00	89	0.0	0.0
219	1.50 (actual)	95.0	0.009	0.00	89	0.0	0.0
220	1.48 (equivalent)	95.0	0.000	0.00	91	0.1	0.0
220	1.50 (actual)	95.0	0.000	0.00	91	0.1	0.0
221	1.19 (equivalent)	90.4	0.000	0.17	92	0.0	0.0
221	1.25 (actual)	92.5	0.000	0.17	92	0.0	0.0
222	1.24 (equivalent)	90.6	0.022	0.00	89	0.0	0.0
	1.25 (actual)	90.9	0.021	0.00	89	0.0	0.0
222	1.47 (equivalent)	93.2	0.009	0.00	28	0.0	12.1
223	1.50 (actual)	93.7	0.009	0.00	28	0.0	12.1
224	1.43 (equivalent)	91.0	0.001	0.00	95	0.0	0.0
224	1.50 (actual)	92.6	0.001	0.00	95	0.0	0.0

Table 45. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsections in California.

				Predicted			Actual
		Predicted	Predicted	Slabs	Actual	Actual	Slabs
		LTE	Faulting	Cracked	LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(10/2014)	(10/2014)	(10/2014)	(10/2014)	(10/2014)	(10/2014)
201	1.14 (equivalent)	84.1	0.061	53.11	78	0.01	75.75
201	1.50 (actual)	94.4	0.007	53.11	78	0.01	75.75
202	0.80 (equivalent)	43.7	0.193	8.50	87	0.01	81.80
202	1.25 (actual)	90.9	0.000	8.50	87	0.01	81.80
202	1.22 (equivalent)	67.9	0.015	1.21	83	0.01	0.00
203	1.50 (actual)	90.9	0.000	1.21	83	0.01	0.00
204	1.00 (equivalent)	44.0	0.169	0.05	94	0.02	0.00
204	1.25 (actual)	77.1	0.037	0.05	94	0.02	0.00
205	1.29 (equivalent)	92.5	0.004	0.00	79	0.03	69.69
203	1.50 (actual)	95.0	0.001	0.00	79	0.03	69.69
206	0.79 (equivalent)	51.2	0.067	0.00	88	0.00	69.69
200	1.25 (actual)	92.0	0.000	0.00	88	0.00	69.69
207	1.31(equivalent)	87.3	0.000	0.00	72	0.04	9.09
207	1.50 (actual)	93.4	0.000	0.00	72	0.04	9.09
208	1.03 (equivalent)	52.0	0.092	0.00	74	0.03	6.06
208	1.25 (actual)	82.9	0.013	0.00	74	0.03	6.06
200	1.29 (equivalent)	91.9	0.011	25.22	85	0.03	3.03
209	1.50 (actual)	95.0	0.003	25.22	85	0.03	3.03
210	1.05 (equivalent)	67.1	0.035	1.24	88	0.01	0.00
210	1.25 (actual)	91.5	0.000	1.24	88	0.01	0.00
211	1.21 (equivalent)	53.0	0.023	0.04	87	0.02	0.00
211	1.50 (actual)	91.1	0.000	0.04	87	0.02	0.00
212	0.96 (equivalent)	51.0	0.115	0.03	96	0.00	0.00
212	1.25 (actual)	79.9	0.024	0.03	96	0.00	0.00

Table 46. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsection in Delaware.

				Predicted			Actual
		Predicted	Predicted	Slabs		Actual	Slabs
		LTE	Faulting	Cracked	Actual LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(05/2012)	(05/2012)	(05/2012)	(05/2012)	(05/2012)	(05/2012)
201	1.07 (equivalent)	90.1	0.026	0.01	88	0.0	0.0
201	1.25 (actual)	93.3	0.009	0.01	88	0.0	0.0
202	1.19 (equivalent)	89.8	0.001	0.00	85	0.0	0.0
202	1.25 (actual)	91.5	0.001	0.00	85	0.0	0.0
202	1.49 (equivalent)	92.1	0.000	0.00	88	0.0	0.0
205	1.50 (actual)	92.3	0.000	0.00	88	0.0	0.0
204	1.48 (equivalent)	91.2	0.005	0.00	87	0.0	0.0
204	1.50 (actual)	91.6	0.004	0.00	87	0.0	0.0
205	1.22 (equivalent)	88.9	0.005	0.00	80	0.0	12.1
203	1.25 (actual)	90.1	0.004	0.00	80	0.0	12.1
206	1.10 (equivalent)	90.4	0.000	0.00	85	0.0	0.0
200	1.25 (actual)	94.0	0.000	0.00	85	0.0	0.0
207	1.47 (equivalent)	94.2	0.000	0.00	90	0.0	3.0
207	1.50 (actual)	94.5	0.000	0.00	90	0.0	3.0
208	1.42 (equivalent)	91.0	0.001	0.00	91	0.0	0.0
208	1.50 (actual)	92.4	0.001	0.00	91	0.0	0.0
200	1.14 (equivalent)	87.5	0.010	0.00	83	0.0	0.0
209	1.25 (actual)	91.8	0.006	0.00	83	0.0	0.0
210	1.23 (equivalent)	93.4	0.000	0.00	81	0.0	0.0
210	1.25 (actual)	93.8	0.000	0.00	81	0.0	0.0
211	1.48 (equivalent)	93.0	0.000	0.00	70	0.0	0.0
211	1.50 (actual)	93.3	0.000	0.00	70	0.0	0.0
212	1.47 (equivalent)	90.4	0.002	0.00	74	0.0	0.0
212	1.50 (actual)	91.2	0.002	0.00	74	0.0	0.0
250	1.41 (equivalent)	90.8	0.007	0.00	71	0.0	0.0
239	1.50 (actual)	92.7	0.006	0.00	71	0.0	0.0
260	0.30 (equivalent)	46.1	0.055	0.00	77	0.0	0.0
200	1.25 (actual)	83.8	0.010	0.00	77	0.0	0.0

Table 47. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsections in Iowa.

		Dradiated	Dradiated	Predicted		Actual	Actual
		I TF	Feulcieu	Cracked	Actual LTF	Actual Faulting	Siaus Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(11/2014)	(11/2014)	(11/2014)	(11/2014)	(11/2014)	(11/2014)
010	1.21 (equivalent)	89.9	0.000	0.01	73	0.0	0.0
213	1.25 (actual)	91.2	0.000	0.01	73	0.0	0.0
214	1.21 (equivalent)	88.9	0.025	0.01	83	0.0	6.1
214	1.25 (actual)	90.2	0.022	0.01	83	0.0	6.1
215	1.48 (equivalent)	90.9	0.009	0.00	89	0.0	0.0
215	1.50 (actual)	91.4	0.008	0.00	89	0.0	0.0
216	1.46 (equivalent)	90.3	0.012	0.00	88	0.0	0.0
210	1.50 (actual)	95.0	0.011	0.00	88	0.0	0.0
217	1.05 (equivalent)	87.2	0.002	0.07	82	0.0	0.0
217	1.25 (actual)	93.9	0.002	0.07	82	0.0	0.0
218	1.17 (equivalent)	89.7	0.009	0.00	67	0.0	6.1
210	1.25 (actual)	92.1	0.007	0.00	67	0.0	6.1
210	1.42 (equivalent)	94.3	0.000	0.00	86	0.0	0.0
219	1.50 (actual)	95.0	0.000	0.00	86	0.0	0.0
220	1.31 (equivalent)	91.6	0.000	0.00	79	0.0	0.0
220	1.50 (actual)	94.2	0.000	0.00	79	0.0	0.0
221	1.21 (equivalent)	92.0	0.000	0.00	83	0.0	0.0
221	1.25 (actual)	92.9	0.000	0.00	83	0.0	0.0
222	1.15 (equivalent)	88.7	0.014	0.00	87	0.0	0.0
	1.25 (actual)	92.0	0.010	0.00	87	0.0	0.0
223	1.47 (equivalent)	90.6	0.003	0.00	88	0.0	0.0
223	1.50 (actual)	91.4	0.003	0.00	88	0.0	0.0
224	1.47 (equivalent)	94.6	0.000	0.00	85	0.0	0.0
224	1.50 (actual)	94.8	0.000	0.00	85	0.0	0.0
Table 48. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsections in Kansas.

				Predicted			Actual
		Predicted	Predicted	Slabs	Actual	Actual	Slabs
		LTE	Faulting	Cracked	LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(09/2012)	(09/2012)	(09/2012)	(09/2012)	(09/2012)	(09/2012)
201	1.09 (equivalent)	84.9	0.136	45.32	95	0.0	15.2
201	1.25 (actual)	91.9	0.077	45.32	95	0.0	15.2
202	1.05 (equivalent)	81.3	0.055	13.42	86	0.0	24.2
202	1.25 (actual)	92.2	0.000	13.42	86	0.0	24.2
202	1.48 (equivalent)	91.6	0.002	0.00	82	0.0	0.0
203	1.50 (actual)	92.0	0.002	0.00	82	0.0	0.0
204	1.48 (equivalent)	90.4	0.072	0.01	71	0.0	3.0
204	1.50 (actual)	90.9	0.069	0.01	71	0.0	3.0
205	1.19 (equivalent)	91.8	0.035	9.50	70	0.0	0.0
203	1.25 (actual)	93.2	0.027	9.50	70	0.0	0.0
206	1.17 (equivalent)	91.0	0.000	0.45	86	0.0	0.0
200	1.25 (actual)	93.4	0.000	0.45	86	0.0	0.0
207	1.35 (equivalent)	91.5	0.002	0.00	89	0.0	0.0
207	1.50 (actual)	94.7	0.000	0.00	89	0.0	0.0
208	1.46 (equivalent)	92.2	0.034	0.00	87	0.0	0.0
208	1.50 (actual)	92.9	0.030	0.00	87	0.0	0.0
200	1.13 (equivalent)	84.2	0.087	0.28	84	0.0	0.0
209	1.25 (actual)	90.7	0.052	0.28	84	0.0	0.0
210	1.19 (equivalent)	88.6	0.004	0.03	86	0.0	0.0
	1.25 (actual)	91.1	0.000	0.03	86	0.0	0.0
011	1.43 (equivalent)	91.5	0.002	0.00	86	0.0	0.0
211	1.50 (actual)	93.0	0.001	0.00	86	0.0	0.0
212	1.43 (equivalent)	90.7	0.050	0.00	92	0.0	0.0
212	1.50 (actual)	92.3	0.041	0.00	92	0.0	0.0

Table 49. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsections in North Carolina.

				Predicted			Actual
		Predicted	Predicted	Slabs		Actual	Slabs
		LTE	Faulting	Cracked	Actual LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(10/2012)	(10/2012)	(10/2012)	(10/2012)	(10/2012)	(10/2012)
202	1.45 (equivalent)	90.1	0.000	0.0	76	0.0	0.0
205	1.50 (actual)	91.3	0.000	0.0	76	0.0	0.0
204	1.39 (equivalent)	87.6	0.013	0.0	89	0.0	0.0
204	1.50 (actual)	90.9	0.009	0.0	89	0.0	0.0
207	1.39 (equivalent)	91.0	0.000	0.0	96	0.0	0.0
207	1.50 (actual)	93.6	0.000	0.0	96	0.0	0.0
200	1.44 (equivalent)	91.1	0.004	0.0	32	0.0	0.0
208	1.50 (actual)	92.5	0.003	0.0	32	0.0	0.0
011	1.42 (equivalent)	90.3	0.001	0.0	66	0.0	0.0
211	1.50 (actual)	92.3	0.001	0.0	66	0.0	0.0
212	1.50 (equivalent)	92.5	0.004	0.0	59	0.0	0.0
212	1.50 (actual)	92.5	0.004	0.0	59	0.0	0.0
259	1.20 (equivalent)	80.6	0.017	0.0	56	0.0	0.0
	1.25 (actual)	85.4	0.011	0.0	56	0.0	0.0
260	1.31 (equivalent)	87.2	0.001	0.0	84	0.0	0.0
	1.50 (actual)	92.4	0.000	0.0	84	0.0	0.0

Table 50. Comparison of AASHTOWare Pavement ME Design analyses results with actualLTPP distress data using the average equivalent and actual dowel diameter for LTPP testsections in North Dakota.

		_		Predicted			Actual
		Predicted	Predicted	Slabs		Actual	Slabs
-		LTE	Faulting	Cracked	Actual LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(08/2012)	(08/2012)	(08/2012)	(08/2012)	(08/2012)	(08/2012)
213	1.24 (equivalent)	94.4	0.000	5.86	80	0.0	0.0
215	1.25 (actual)	94.5	0.000	5.75	80	0.0	0.0
214	1.22 (equivalent)	91.0	0.055	1.00	89	0.0	0.0
214	1.25 (actual)	91.8	0.051	0.98	89	0.0	0.0
215	1.38 (equivalent)	95.0	0.023	0.00	92	0.0	0.0
215	1.50 (actual)	95.0	0.022	0.00	92	0.0	0.0
216	1.48 (equivalent)	95.0	0.000	0.00	96	0.0	0.0
216	1.50 (actual)	93.9	0.000	0.00	96	0.0	0.0
217	1.22 (equivalent)	94.7	0.000	0.00	73	0.0	9.1
217	1.25 (actual)	95.0	0.000	0.00	73	0.0	9.1
210	1.21 (equivalent)	93.7	0.021	0.00	87	0.0	0.0
210	1.25 (actual)	94.4	0.020	0.00	87	0.0	0.0
210	1.48 (equivalent)	95.0	0.016	0.00	91	0.1	0.0
219	1.50 (actual)	95.0	0.016	0.00	91	0.1	0.0
220	1.47 (equivalent)	95.0	0.000	0.00	85	0.0	0.0
220	1.50 (actual)	95.0	0.000	0.00	85	0.0	0.0
221	1.24 (equivalent)	93.7	0.000	0.00	83	0.0	0.0
221	1.25 (actual)	93.8	0.000	0.00	83	0.0	0.0
222	1.24 (equivalent)	92.0	0.026	0.01	90	0.0	0.0
	1.25 (actual)	92.2	0.025	0.01	90	0.0	0.0
223	1.48 (equivalent)	95.0	0.017	0.00	91	0.0	0.0
	1.50 (actual)	95.0	0.017	0.00	91	0.0	0.0
224	1.47 (equivalent)	94.1	0.000	0.00	92	0.0	0.0
224	1.50 (actual)	94.4	0.000	0.00	92	0.0	0.0

Table 51. Comparison of AASHTOWare Pavement ME Design analysis results with actualLTPP distress data using the average equivalent and actual dowel diameter for the LTPPtest section in South Dakota.

				Predicted			Actual
		Predicted	Predicted	Slabs		Actual	Slabs
		LTE	Faulting	Cracked	Actual LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(05/2011)	(05/2011)	(05/2011)	(05/2011)	(05/2011)	(05/2011)
3052	1.21 (equivalent)	90.5	0.020	0.1	92	0.0	0.0
	1.25 (actual)	91.4	0.018	0.1	92	0.0	0.0

Table 52. Comparison of AASHTOWare Pavement ME Design analyses results with actual
LTPP distress data using the average equivalent and actual dowel diameter for LTPP test
sections in Wisconsin.

				Predicted			Actual
		Predicted	Predicted	Slabs		Actual	Slabs
		LTE	Faulting	Cracked	Actual LTE	Faulting	Cracked
Test	Dowel Diameter	(Percent)	(Inches)	(Percent)	(Percent)	(Inches)	(Percent)
Section	(Inches)	(07/2012)	(07/2012)	(07/2012)	(07/2012)	(07/2012)	(07/2012)
213	1.17 (equivalent)	93.2	0.000	0.0	90	0.0	0.0
215	1.25 (actual)	94.1	0.000	0.0	90	0.0	0.0
215	1.45 (equivalent)	95.0	0.011	0.0	92	0.0	0.0
215	1.50 (actual)	95.0	0.010	0.0	92	0.0	0.0
217	0.99 (equivalent)	94.9	0.000	0.0	91	0.0	0.0
217	1.25 (actual)	95.0	0.000	0.0	91	0.0	0.0
210	1.37 (equivalent)	95.0	0.006	0.0	90	0.0	0.0
219	1.50 (actual)	95.0	0.006	0.0	90	0.0	0.0
221	1.24 (equivalent)	95.0	0.000	0.0	90	0.0	0.0
221	1.25 (actual)	95.0	0.000	0.0	90	0.0	0.0
222	1.48 (equivalent)	95.0	0.008	0.0	84	0.0	0.0
223	1.50 (actual)	95.0	0.007	0.0	84	0.0	0.0
250	1.47 (equivalent)	94.8	0.013	0.0	95	0.0	0.0
239	1.50 (actual)	95.0	0.013	0.0	95	0.0	0.0
261	1.24 (equivalent)	95.0	0.003	0.0	88	0.0	0.0
201	1.25 (actual)	95.0	0.003	0.0	88	0.0	0.0
262	1.20 (equivalent)	92.5	0.000	0.0	78	0.0	0.0
	1.25 (actual)	93.3	0.000	0.0	78	0.0	0.0
263	1.05 (equivalent)	71.8	0.044	0.0	93	0.0	0.0
	1.25 (actual)	89.6	0.015	0.0	93	0.0	0.0
265	1.18 (equivalent)	87.0	0.043	0.0	90	0.0	0.0
265	1.50 (actual)	95.0	0.023	0.0	90	0.0	0.0

Test Sections	Distress	Mean Residual (As-Predicted Distress versus Actual Distress) Using Actual Dowel Diameter	Mean Residual (As-Predicted Distress versus Actual Distress) Using Average Equivalent Dowel Diameter
	LTE (percent)	13.30	8.46**
All $(N = 117)$	Faulting (inches)	0.01**	0.04
	Slab cracking (percent)	-0.65	-0.65
	LTE (percent)	14.44	12.00**
1.50-inch-diameter dowels $(N = 61)$	Faulting (inches)	0.00	0.00
	Slab cracking (percent)	-1.09	-1.09
	LTE (percent)	12.07	4.62**
1.25-inch-diameter dowels ($N = 56$)	Faulting (inches)	0.03**	0.08
	Slab cracking (percent)	-0.17	-0.17
	LTE (percent)	8.12	3.19**
Trimmed* $(N = 101)$	Faulting (inches)	0.01**	0.03
	Slab cracking (percent)	-1.05	-1.05
1.50 inch diamatar dawala trimmad*	LTE (percent)	7.96	5.32**
(N-51)	Faulting (inches)	0.00	0.00
(N - 31)	Slab cracking (percent)	-1.90	-1.90
1.25 inch diamotor dowals trimmod*	LTE (percent)	8.29	1.01**
(N = 50)	Faulting (inches)	0.02**	0.06
	Slab cracking (percent)	-0.19	-0.19

Table 53. Summary of AASHTOWare Pavement ME Design analyses results with actual LTPP distress data using the average equivalent and actual dowel diameter.

*Trimmed test sections represent only those that have measured LTE > 60 percent.

**Lower residual value.

N = number of sections used in the analyses.

Source: FHWA.

Source: FHWA.

Figure 112. Chart. Predicted and actual LTE Using AASHTOWare-Pavement ME Design from the LTPP database for 117 test sections using the actual and average equivalent dowel diameter.

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

Dowel-alignment data were collected from 3 GPS-3 and 121 SPS-2 LTPP test sections using an MIT scanning device in various States to evaluate the effects of dowel misalignment on JPCP performance. Dowel-alignment data were analyzed using the software provided with the MIT scanning device to calculate various dowel-alignment parameters, including horizontal skew, vertical tilt, longitudinal translation, and vertical translation. In addition, the joint score and equivalent dowel diameter were calculated for every transverse joint tested. These data were uploaded to the LTPP database.

The results of the analyses indicate that approximately 50 percent of transverse joints have a joint score of less than 10 and 19 percent of transverse joints have joint scores greater than 30. The average effective reduction in dowel diameter for 1.25- and 1.5-inch-diameter dowels ranged from 0.1 to 76 percent.

Only 8 SPS-2 test sections from North Carolina had dowels placed using a DBI. Dowels for the other 116 test sections were placed using dowel baskets. Because of the small sample size of test sections with dowels placed using a DBI, placement of dowels using a DBI versus dowel baskets was not meaningful and was not compared.

Chi-square tests were performed to determine if there was a relationship between the joint score and slab cracking or spalling. Results of the statistical analyses did not indicate any definitive relationship between the joint score and transverse cracking or spalling of concrete slabs for most States—except for three instances (transverse cracking in Arizona and Arkansas and spalling in Iowa). These results suggest other factors have a stronger effect on transverse cracking and spalling but there may be some project-specific situations where dowel misalignment (as measured using the joint score) has some influence on transverse cracking and spalling. These results also suggest that dowel alignment may not be a primary factor affecting transverse cracking and spalling but may be a contributing factor exacerbating transverse cracking and spalling. Detailed analyses of the dataset were beyond the scope of this study and should be undertaken as a followup to this study.

Joint openings on five transverse joints of Arizona LTPP test section 04_0215, which was an SMP test site, were analyzed. The data did not indicate any correlation between dowel misalignment/joint score and joint opening. However, as the sample size was limited, analysis of additional SMP sites is recommended by the researchers of the current study.

The results of AASHTOWare Pavement ME Design runs using the actual and average equivalent dowel diameter show that using the average equivalent, instead of actual, dowel diameter produces a reduced bias of the in-service LTE as modeled using AASHTOWare Pavement ME Design. It is likely that using the average equivalent dowel diameter as specified in NCHRP Report 637 is a less-biased estimator of long-term pavement LTE as modeled using AASHTOWare Pavement ME Design than using actual dowel diameter. However, the results were reversed when evaluating faulting. The results of the analyses show that using the average, instead of actual, dowel diameter produces a greater bias of faulting as modeled using AASHTOWare Pavement ME Design.

The two results of the analyses seem contradictory because faulting is correlated with LTE. However, the results may make sense when considering AASHTOWare Pavement ME Design was calibrated using LTPP test sections. The researchers of the current study hypothesize that dowel misalignment in LTPP test sections is accounted for in the calibration. The calibration process for faulting may have removed some of the bias in faulting models but not necessarily in LTE models since LTE models are not calibrated with field-measured LTE data.

Taken together, the data suggest that dowel misalignment affects long-term LTE of a concrete pavement. This result is consistent with the lab results conducted in NCHRP Report 637. However, the results show considerable scatter in LTE and faulting modeled using AASHTOWare Pavement ME Design versus actual LTE and faulting. The remaining bias and scatter suggests that the two models (i.e., the equivalent dowel diameter model from NCHRP Report 637 and the LTE model in AASHTOWare Pavement ME Design) can be improved using the data collected as part of this study.

MIT scanning data collected as a part of this study provide a platform for future analyses to establish effective construction specifications based on field performance. Some potential future analyses include the following:

- Understanding the effects of the joint score and dowel misalignment on LTE.
- Reviewing, validating, and improving current joint score methodology.
- Conducting project-level analyses comparing the joint score/dowel misalignment of transverse joints adjacent to slabs exhibiting cracking/spalling and slabs not exhibiting cracking/spalling.
- Using local calibration factors for each State in AASHTOWare Pavement ME Design to better determine the use of the average equivalent dowel diameter as a measure of dowel misalignment.
- Surveying SMP sites to understand any potential correlation between the joint score/dowel misalignment and joint opening.
- Enhancing the equivalent dowel diameter and AASHTOWare Pavement ME Design LTE models.

REFERENCES

- AASHTOWare® Pavement ME Design, Version 2.2. (2014). American Association of State Highway and Transportation Officials, Washington, DC.
- ACPA. (2006). *Evaluating and Optimizing Dowel Bar Alignment*, Report No. SR999P, American Concrete Pavement Association, Skokie, IL.
- CDOT. (2015). Revision of Sections 105, 106, 412, 601, and 709: Conformity to the Contract of PCC Pavement and Dowel Bars and Tie Bars for Joints, Colorado Department of Transportation, Denver, CO.
- Federal Highway Administration. (2014). "Long-Term Pavement Performance Program Database Standard Data Release 28." (website) Washington, DC. Available online: <u>https://infopave.fhwa.dot.gov/Data/StandardDataRelease</u>, last accessed May 1, 2015.
- Fowler, G. and Gulden, W. (1983). *Investigation of Location of Dowel Bars Placed by Mechanical Implantation*, Report No. DTFH-36D2-704, Federal Highway Administration, Washington, DC.
- Gancarz, D.J., Tayabji, S.D., and Vavrik, W.R. (2015). "Testing of Dowel Alignment and Development of a Dowel Bar Alignment Specification for the Illinois Tollways." *Transportation Research Record*, 2504, pp. 117–123, Transportation Research Board, Washington, D.C.
- Hoerner, T.E., Darter, M.I., Khazanovich, L., Titus-Glover, L., and Smith, K.L. (2000). Improved Prediction Models for PCC Pavement Performance-Related Specifications, Volume I: Final Report, Report No. FHWA-RD-00-130, Federal Highway Administration, Washington, DC.
- Hossain, S. and Elfino, M.K. (2006). Field Demonstration of Magnetic Tomography Technology for Determination of Dowel Bar Position in Concrete Pavement, Report No. FHWA/VTRC 06-R40, Virginia Transportation Research Council, Charlottesville, VA.
- Khazanovich, L., Darter, M.I., Bartlett, R., and McPeak, T. (1998). Common Characteristics of Good and Poorly Performing PCC Pavements, Report No. FHWA-RD-97-131, Federal Highway Administration, Washington, DC.
- Khazanovich, L., Hoegh, K., and Snyder, M. (2009). *Guidelines for Dowel Alignment in Concrete Pavements*, NCHRP Report 637, National Cooperative Highway Research Program, Washington, D.C.
- Lechner, B. (2005). "Joint Design and Joint Performance of Plain Concrete Pavements (JPCP): Investigations and Experiences in Germany." *Proceedings, 8th International Conference on Concrete Pavements*, Colorado Springs, CO.

- Leong, P., Tighe, S., Rothenburg, L., and Hein, D.K. (2006). "Finite Difference Modeling of Misaligned Dowel Bars and Their Effects on Joint Performance." *Transportation Research Record*, 1946(1), pp. 101–110, Transportation Research Board, Washington, DC.
- Mallela, J., Rao, S., and Littleton, P. (2012). "Field Investigation of Dowel Misalignment and Potential for Joint Lock-Up." *Proceedings 10th International Conference on Concrete Pavements*, Quebec City, Quebec, Canada.
- Prabhu, M., Buch, N., Varma, A.H., and Thandaveswara, D. (2006). "Experimental Investigation of Effects of Dowel Misalignment on Joint Opening Behavior in Rigid Pavements." *Transportation Research Record*, 1947(1), pp. 15–27, Transportation Research Board, Washington, DC.
- Rao, S., Hoegh, K, Yu, H.T., and Khazanovich, L. (2009). "Evaluation of Dowel Alignment Constructability in Portland Cement Concrete Pavements." *Transportation Research Record*, 2098, pp. 86–93, Transportation Research Board, Washington, DC.
- Tayabji, S.D. (1986). "Dowel Placement Tolerances for Concrete Pavements." *Transportation Research Record*, *1062*, pp. 47–54, Transportation Research Board, Washington, DC.
- Yu, H.T. and Khazanovich, L. (2005). Use of Magnetic Tomography Technology to Evaluate Dowel Placement, Report No. FHWA-IF-06-006, Federal Highway Administration, Washington, DC.
- Yu, H.T., Smith, K.D., Darter, M.I., Jiang, J., and Khazanovich, L. (1998). Performance of Concrete Pavements, Volume III: Improving Concrete Pavement Performance, Report No. FHWA-RD-95-111, Federal Highway Administration, Washington, DC.
- Yu, H.T. and Tayabji, S.D. (2007). *Best Practices for Dowel Placement Tolerances*, Report No. FHWA-HIF-07-021, Federal Highway Administration, Washington, DC.

