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FOREWORD

This report documents fatigue and static testing of shear stud composite connections between
steel girders and precast (PC) concrete decks. The purpose of the testing was to assess American
Association of State Highway and Transportation Officials (AASHTO) shear stud—fatigue,
strength, and spacing design provisions and how they relate to using PC concrete decks on top of
steel girders as a means of accelerated bridge construction (ABC).( The static test results
suggest current AASHTO shear stud-strength design provisions are unconservative. However,
this is balanced by fatigue test results suggesting current AASHTO shear stud—fatigue provisions
are probably too conservative, which explains why there have not been widespread in-service
performance problems. The results from the testing regime also showed current AASHTO
minimum and maximum spacing limits for shear studs could be relaxed in both the longitudinal
and transverse directions. Relaxing these spacing requirements would greatly benefit the
constructability of the full-depth PC concrete deck panels needed in some ABC construction
techniques for steel superstructures.

This report will benefit those interested in the design, fabrication, and construction of steel
bridges and PC concrete decks, including State transportation departments, bridge design
consultants, and PC concrete facilities.
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APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in® square inches 645.2 square millimeters mm’?
ft? square feet 0.093 square meters m?
yd? square yard 0.836 square meters m?
ac acres 0.405 hectares ha
mi square miles 2.59 square kilometers km?
VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft® cubic feet 0.028 cubic meters m®
yd® cubic yards 0.765 cubic meters m?®
NOTE: volumes greater than 1000 L shall be shown in m®
MASS
oz ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5 (F-32)/9 Celsius ©
or (F-32)/1.8
ILLUMINATION
fc foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m? cd/m?
FORCE and PRESSURE or STRESS
Ibf poundforce 4.45 newtons N
Ibf/in? poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm? square millimeters 0.0016 square inches in®
m? square meters 10.764 square feet ft?
m? square meters 1.195 square yards yd?
ha hectares 2.47 acres ac
km? square kilometers 0.386 square miles mi®
VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m® cubic meters 35.314 cubic feet ft*
m® cubic meters 1.307 cubic yards yd®
MASS
s} grams 0.035 ounces 0z
kg kilograms 2.202 pounds b
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
" Celsius 1.8C+32 Fahrenheit °F
ILLUMINATION
Ix lux 0.0929 foot-candles fc
cd/m? candela/m? 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibf/in®

*Sl is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.
(Revised March 2003)
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INTRODUCTION

BACKGROUND

One increasingly common accelerated bridge construction (ABC) technique is the use of large
modular bridge components, which are fabricated offsite and then connected together onsite to
construct the bridge. One such method of this practice is the use of full-depth precast (PC)
concrete deck panels placed on top of steel girders and connected via shear studs. In this case,
the concrete panels have pockets cast into them so that they fit around the shear studs. Once the
deck panels have been placed on top of the steel girders, these pockets are filled with grout to
form a composite connection between the deck and the girders. Aside from the benefit of ABC,
using PC concrete deck panels can also provide better quality concrete since they are fabricated
at a PC plant rather than in the field.

On a typical bridge using a conventional cast-in-place (CIP) concrete deck, shear studs are
regularly spaced along the length of the girder top flange and have a maximum longitudinal
spacing of 24 inches per the current American Association of State Highway and Transportation
Officials (AASHTO) Load and Resistance Factor Design Bridge Design Specifications (LRFD
BDS).M When PC concrete deck panels are used, it is beneficial to cluster individual shear studs
to minimize the number of pockets that must be formed into the PC panel. This clustering
simplifies panel construction and increases constructability (e.g., fewer interference possibilities
during field fit-up).

To provide full composite action between the concrete deck and steel girder, the shear studs must
be designed for the fatigue and strength limit states while meeting minimum and maximum
spacing limits.) For short spans, such as 120 ft or less, and near the supports, the fatigue limit
state can govern the number of shear studs and lead to a significantly larger number of shear
studs than required for the strength limit state. In some cases, the number of shear studs required
along the length of a girder leads to a very small longitudinal spacing between shear studs.

Using shear studs spaced at close distances complicates the use of PC concrete deck panels
because it is not feasible to form pockets into a deck panel at such a small spacing. This study
was undertaken to investigate if improvements can be made to the current AASHTO shear stud
design provisions to better facilitate the use of PC deck panels. As such, a brief discussion
follows on the current AASHTO shear stud design provisions for the fatigue and strength limit
states, as well as the maximum and minimum spacing limits. When applicable, comparisons will
also be made to international shear stud design provisions.

Shear Stud-Fatigue Design Provisions

When this project began in 2012, the most recent version of the AASHTO LRFD BDS was the
sixth edition.® In 2014, AASHTO published the seventh edition of the AASHTO LRFD BDS.®
Between these two editions, there were no changes in the shear stud design provisions. Although
an eighth edition has now been published, most of this research project was conducted when the
seventh edition was the current version of the AASHTO LRFD BDS; therefore, it will be
referenced as the “current” version of the AASHTO LRFD BDS throughout this report.®



The current AASHTO shear stud—fatigue design provisions are based on results from

44 small-scale tests conducted in 1966.“ These tests, called push-out tests, are a common
alternative to large-scale tests conducted on shear studs. A schematic of these push-out test
specimens is shown in figure 1.
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Figure 1. Schematic. Test specimens used to develop AASHTO shear stud—fatigue
provisions.®

For these tests, both %- and 7z-inch-diameter shear studs were used. Studs were welded to one
side of the short steel beam and concrete was cast around the shear studs, resulting in a one-sided
push-out test. Once the specimens were completely constructed, cyclic load was applied to the
steel beam and concrete slab until the shear studs failed from fatigue. The small-scale test results
were compared to beam tests conducted at the same time. The lower limit of dispersion of the
beam tests (taken as twice the standard error of the estimate) was approximately equal to the
mean results of the push-out tests.®® Therefore, the mean results from the push-out tests were
used to develop shear stud—fatigue design equations.

A constant-amplitude fatigue threshold (CAFT) of 7.0 ksi was later added to the AASHTO
Interim Specifications for Highway Bridges in 1977, though no test results were cited for this
addition.(” The addition of the CAFT produced the provisions that are currently in use. The
AASHTO fatigue design resistance of a single shear stud is expressed in terms of a shear force
range rather than a stress range (which is typically used for the other AASHTO fatigue details)
and is determined using the equations in figure 2 and figure 3.



Z,=5.5d°
Figure 2. Equation. Current AASHTO infinite life shear stud design equation.®

Z, = (34.5 — 4.28log N)d >
Figure 3. Equation. Current AASHTO finite life shear stud design equation.®

Where:

Z, = shear force range (kips).

d = diameter of a shear stud (inches).
N = number of cycles.

When compared to some international shear stud—fatigue design provisions, the AASHTO
equations are quite different. Figure 4 shows the shear stud—fatigue design curves according to
AASHTO, the Eurocode 4, the Australian Standard, and the Japan Society of Civil Engineers
(JSCE).(#10 The AASHTO category C fatigue detail is included in the figure for reference. The
JSCE design equation depends on various geometric and material properties, so the following
were assumed: shear stud diameter of 7 inch, shear stud height of 6 inches, and concrete
compressive design strength of 4.0 ksi.
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Figure 4. Graph. Shear stud—fatigue design provisions from AASHTO and
international codes.



As shown in figure 4, the AASHTO fatigue design curve follows a semi-log format (i.e., it is
curved in the log-log space). The other international provisions follow a log-log format, with
slopes ranging from —8 to —9.5.€-9) These slopes are much shallower than the —3 slope for the
other AASHTO fatigue details. This difference in slope is because of the difference in mode of
cracking. Shear studs develop fatigue cracks because of shear stresses, whereas the other
AASHTO details develop cracks because of tensile stresses. Since the AASHTO shear
stud—fatigue design curve is semi-log, the design stress range reduces more drastically as the
number of design cycles increases. This is especially evident at approximately 6.0 million cycles,
where the infinite fatigue life equation begins to govern. At this point, the AASHTO design
stress range is approximately 1.6—1.8 times less than the international provisions shown,
requiring a greater number of shear studs. The AASHTO shear stud CAFT of 7.0 ksi also
appears somewhat conservative since the international provisions do not include CAFTSs.

Push-out tests conducted at the University of Auburn also suggest that the actual fatigue behavior
of shear studs may be closer to the international provisions than the current AASHTO LRFD
BDS.MV These tests were conducted on both %- and 1Ys-inch-diameter shear studs, though only
the results of the 7&-inch-diameter shear studs are discussed herein. The tests were cycled at
stress ranges of 18, 22, and 26 ksi. All of the fatigue tests produced fatigue failures, and no
runout tests were reported. A linear regression analysis was performed on the fatigue data, and
the slope of the regression line was found to be —8.7. This slope and the location of the lower
97.5 percent confidence-limit equation on the stress cycle (S-N) curve were shown to be very
similar to the three international shear stud—fatigue provisions.® 9

Additional push-out testing and analysis was conducted at the University of Arkansas; this
testing program consisted of six small-scale tests at relatively small stress ranges between 4.4
and 8.7 ksi.*?) One of these tests produced a fatigue failure, while the remaining five tests were
declared runouts after more than 12 million cycles. The S-N test results were analyzed using a
statistical method called maximum likelihood estimation (MLE). In a typical linear regression
analysis of fatigue data, runout tests are ignored in the analysis, and CAFT is determined through
a combination of the analysis and engineering judgement. Using MLE allows for runouts to be
included in the test data since they indicate the absence of a failure. The MLE method was used
to analyze historical shear stud—fatigue data and determined that a CAFT of 6.5 ksi was likely,
which is similar to the current AASHTO value of 7.0 ksi.® The analysis also showed that a slope
of —4 appropriately fit the existing shear stud—fatigue data.

Shear Stud-Strength Design Provisions

The strength of a shear stud embedded in concrete depends on two factors: the resistance of the
concrete around the shear stud and the resistance of the steel stud itself. The current AASHTO
shear stud-strength design provisions were developed based on 48 two-sided push-out tests
conducted in 1971.%% The specimens used in that study were constructed using %- and
%-inch-diameter shear studs and both normal and lightweight concrete mixes. An example of the
specimens used in the study is shown in figure 5.
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Figure 5. Schematic. Test specimens used to develop AASHTO shear stud-strength
provisions.3

Figure 6 shows the current AASHTO LRFD BDS provisions for predicting a shear stud’s
strength.Y) The left side of this equation represents the strength of the concrete surrounding the
stud, while the right side represents the strength of the steel shear stud itself. The aforementioned
small-scale test results were used to develop resistance equations for the strength of the concrete
surrounding a shear stud (left side of equation), but no recommendations were made regarding
the strength of the shear stud itself (right side of equation) until 1994. The resistance of a steel
shear stud was incorporated into the AASHTO LRFD BDS in its first edition in 1994 and into
the Standard Specifications for Highway Bridges in the 2000 interim revisions to the 16th
edition.®*19) No test results were cited as the basis for this addition in either specification. Those
provisions were the same as those currently in use and are shown in figure 6.

Q, =05Ag / f.E. < Asc Fy

Figure 6. Equation. Current AASHTO shear stud-strength design provisions.®

Where:

Qn = shear resistance of a shear connector (kips).
Asc = cross sectional area of a shear stud (inch?).

f'c = concrete design compressive strength (ksi).

Ec = modulus of elasticity of concrete (ksi).

Fu = Tensile strength of steel shear stud (ksi).

Since the shear stud’s strength (right side of equation) is written in terms of its tensile strength,
the equation implies that a shear stud resists pure tension force rather than shear force, which



seems unlikely. When other structural members, such as beams, are designed for shear, a

0.58 factor is multiplied by the member’s tensile strength to reflect shear strength via the von
Mises failure criteria. No such factor is included in the AASHTO shear stud-strength design
equation. However, both the Eurocode and Australian provisions include a 0.80 factor in the
portion of the equation concerning the resistance of the shear stud.®® This factor would imply
that shear studs fail somewhere in between pure shear and pure tension. Since the AASHTO
shear stud-strength equation does not include any such factor, a shear stud’s strength could be
overpredicted, making the current AASHTO LRFD BDS provisions unconservative.® This has
probably not resulted in any performance issues because the fatigue provisions are overly
conservative, such that they compensate for the unconservative strength provisions.

When shear studs are placed closely together in clusters, as they would be when used with PC
concrete deck panels, the strength of the surrounding concrete (left side of equation) also has the
potential to be unconservative. In this case, it is likely that the surrounding concrete would
experience overlapping stresses, thereby reducing its overall resistance. Since the tests used to
develop the surrounding concrete strength of a shear stud connection did not include closely
spaced shear studs, it is not known if the current strength provisions would be applicable to
clustered shear studs.

Research conducted at Auburn University also indicated that the AASHTO LRFD BDS shear
stud—strength design provisions may be unconservative.®) Their comparison between AASHTO
LRFD BDS, the Eurocode, JSCE, and British Standards showed that AASHTO provisions
predicted the greatest shear stud capacity. Large-scale tests were conducted on steel beams with
concrete decks using 7s-inch-diameter shear studs to provide composite action. The test results
showed that none of the beams tested reached their theoretical moment capacity as calculated
using the AASHTO LRFD BDS design provisions. The conclusions reached in the study
included that the AASHTO shear stud provisions were inconsistent with their international
counterparts and that AASHTO overestimates the static capacity of shear studs, making the
strength design limit state unconservative.

Shear Stud-Spacing Design Provisions

The current AASHTO LRFD BDS shear stud provisions provide limitations on the minimum
and maximum spacing between shear studs in both the longitudinal and transverse directions.®)
The longitudinal spacing, or pitch, of shear studs is limited to a minimum value of 6d. The
maximum allowable pitch of shear studs is 24 inches. No commentary is provided for the basis
of these values.(*71®

The transverse spacing of shear studs is limited to a value of 4d; no maximum transverse spacing
is provided. No basis for either the minimum longitudinal or transverse spacing provisions is
provided in the commentary of the AASHTO LRFD BDS.® A recent study on the use of shear
stud details in PC concrete decks provided a brief history of shear stud—spacing limitations,
mostly focused on the longitudinal spacing; a brief summary of that history is provided herein.®)

The first composite bridge beam in the United States was constructed in the 1930s in lowa, with
a concrete slab placed on a steel I-beam.®® Newmark and Seiss created a composite bridge
design example in 1943, which indicated that the spacing of shear connectors should not be more



than three to four times the depth of the slab.!® The design example was based on channel-type
shear connectors, which were common at that time. Though the design example was written in
accordance with the 1941 American Association of State Highway Officials (AASHO) Standard
Specifications for Highway Bridges, this spacing limitation does not appear in those
specifications.?? It appears that this limit was based more on a rule of thumb at the time rather
than a provision. However, the 24-inch maximum longitudinal spacing limit did appear for the
first time in the fourth edition of the AASHO Standard Specifications for Highway Bridges in
1944, though without commentary.@?

In 1954, Viest and Seiss published a paper detailing results of some experimental testing on
component and composite beam tests, both constructed with channel-type shear connectors.??
Tests were conducted on beams with spacings of 18 and 36 inches. The beams with 18-inch
spacing performed adequately, but the beams with 36-inch spacing experienced uplift between
the concrete deck and steel beam. This motivated the authors to recommend a maximum spacing
of no greater than four times the thickness of the slab, or 24 inches. The slabs tested in the study
were 6 inches thick, which could explain where the recommendation of 24 inches came from.

Minimum shear stud—spacing limits did not appear in AASHTO publications until the 1990
interim revisions to the Standard Specifications for Highway Bridges adopted a minimum shear
stud spacing of 4d, both longitudinally and transversely.?®® The current minimum pitch of 6d
first appeared in the 1994 interim revisions to the Standard Specifications for Highway
Bridges.®” No commentary was included in these versions of the Standard Specifications for
Highway Bridges, so there was no medium in which to provide rationale for these additions to
the code.

Each of the international specifications discussed previously also provides minimum and
maximum limitations for both the longitudinal and transverse spacing. These specifications,
along with those from AASHTO, are provided in the following tables. Table 1 provides
limitations on the longitudinal shear stud spacing, while table 2 is focused on transverse spacing.
Where spacing limitations were originally provided in metric units in the international
provisions, these values have been converted to U.S. units and rounded to the nearest inch for
ease in quickly comparing values.

Table 1. Minimum and maximum longitudinal shear stud—spacing provisions.

Minimum Maximum

Specification Longitudinal Spacing Longitudinal Spacing

AASHTO LRFD BDS,

seventh edition® 6d 24 inches
Lesser of
(8)
Eurocode 5d 32 inches or 4t
) Lesser of Lesser of
9)
Australian Standard 5d, 3 inches, or hs 24 inches, 3ts, or 4hs
JSCEMO Greater of Lesser of
5d or 4 inches 24 inches or 3ts

ts = thickness of concrete slab (inches); hs = height of shear stud (inches).



Table 2. Minimum and maximum transverse shear stud-spacing provisions.

. . Minimum Maximum
Specification . )
Transverse Spacing  Transverse Spacing
AASHTO LRFD BDS,
4d None

seventh edition®

Eurocode® 2.5d in solid slabs or None
4d in other cases

Australian Standard® 3inches None

Greater of
(10
JSCE 5d or 4 inches None

In general, the AASHTO provisions are similar to the international provisions; however, there
are some interesting observations when comparing the spacing limits between codes. The
Eurocode has the greatest limit on longitudinal spacing at 32 inches, while each of the other three
specifications limit it to 24 inches.2:819 AASHTO has the greatest minimum longitudinal
spacing limit at 6d, while the others require at least a 5d spacing.#1% The minimum transverse
spacing varies between 2.5d and 5d among the codes.®#19 None of the specifications provide a
limit on the maximum transverse spacing, though this would probably only become applicable
on bridges with extremely wide top flanges. 10

These spacing limitations are relevant when employing the use of PC concrete deck panels. In
order to more easily facilitate the use of deck panels, shear studs can be clustered closely
together in both longitudinal and transverse directions, and clusters of shear studs can be placed
at greater distances between one another. This means fewer and smaller pockets need to be
formed in the deck panels during fabrication. It also allows for easier fit-up when placing deck
panels on top of steel girders at a job site. Currently, the AASHTO LRFD BDS does not provide
any guidance for grouping clusters of shear studs close together.(t) However, the three
international specifications do include guidance on this topic.® % Summaries of these
specifications are provided in table 3.



Table 3. Comparison of shear stud—clustering provisions.

Specification Shear Stud—Clustering Provisions

AASHTO LRFD BDS,

seventh edition® None

Provided that spacing between groups is greater than for individual
connectors, connectors may be placed in groups if consideration is
given to the following:

Nonuniform longitudinal shear flow.

Greater possibility of slip and uplift between slab and beam.
Buckling of steel flange.

Local resistance of slab owing to concentrated force from
connectors (could require additional reinforcement in slab)

Eurocode®

Provided that spacing between groups is greater than for individual
connectors, connectors may be placed in groups if consideration is
Australian Standard®  given to the following:
e Nonuniform longitudinal shear flow.
e Greater possibility of slip and uplift between slab and beam.

When shear studs are placed in grouped arrangements, consideration
should be given to the following:

e Nonuniform longitudinal shear flow.

e Greater possibility of slip and uplift between slab and beam.

e Buckling of steel flange.

e Local resistance of slab owing to concentrated force from

connectors.

e Shape of the pocket in a PC deck.

e Distance between face of pocket and shank of shear stud.
When shear studs are arranged close together, reduction of the
strength of a shear stud should be considered because of the overlap
of concrete stress near the shear studs.

JSCE1®

Each of the three international specifications provides similar clustering provisions, and all
mention that nonuniform longitudinal shear flow and the increased possibility of slip and uplift
should be considered.® 19 As noted, these provisions include design considerations for clustered
shear studs but do not contain specifics on how to mitigate the considerations. Although
Eurocode and the Australian Standard do not provide citations for the basis of their clustering
provisions, the JSCE references a study in Japan in which experimental and analytical tests were
used to estimate the concrete strength reduction when clustering shear studs in both the
transverse and longitudinal directions.® Another study conducted in Korea provided similar
recommendations; if shear studs are grouped close together longitudinally, a concrete strength
reduction factor must be applied.®® One study in the United States noted that, when more shear
studs are placed in a cluster, the concrete strength increases but not proportional to the number of
shear studs added.®”



OBJECTIVE

The objective of this project was to evaluate the current AASHTO LRFD BDS shear
stud—fatigue and strength design provisions, primarily as they relate to the use of PC concrete
decks placed on top of steel girders and connected via grouted shear studs.® There are limited
test data on the use of shear studs placed at a longitudinal spacing greater than 24 inches and
even fewer data on composite beams tested with shear studs placed closely together in clusters.
Testing composite beams with shear studs placed in clusters at extended spacings will determine
if the current AASHTO LRFD BDS shear stud—fatigue and strength design provisions are
applicable or if revisions are warranted.® Topics the experimental testing will address include
the overly conservative nature of the fatigue limit, the appropriateness of the current CAFT, and
the unconservative nature of the strength limit.

APPROACH

In the Background section discussion on the fatigue and strength of shear studs, it was apparent
that the majority of historical test data were based on push-out tests, including those used to
develop the current shear stud provisions. While push-out tests have been shown to be a
cost-effective means of testing shear studs, questions still exist about how they simulate
large-scale behavior. This study focused on large-scale testing to address a gap in the literature.
Large-scale testing allows tests to be conducted on shear stud spacings greater than the current
maximum limit of 24 inches; conducting push-out tests with such large spacings would be
difficult. Push-out tests were also conducted to increase the sample size of tests. Although
channels have been used historically as shear connectors in bridges and in the research used to
develop the current AASHTO LRFD BDS provisions, this study will focus on the use of shear
stud connectors because that is the typical current practice.!!) Shear studs with a diameter of

% inch were chosen for this study since this is the common size used in U.S. bridges.
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EXPERIMENTAL DESIGN AND TESTING

SPECIMEN DESIGN AND CONSTRUCTION
Large-Scale Fatigue and Static Tests

This study tested 17 large-scale composite beams. The fatigue and static tests were constructed
in the same fashion and are thus discussed together. Each beam consisted of a 30-foot-long
W27x84 rolled steel beam and two concrete deck panels fabricated by a Precast Concrete
Institute (PCI)-certified precaster. To ease in storage and handling of the panels, two deck panels
were placed end to end longitudinally with a grouted closure pour at the midspan rather than
using a single deck panel. The rebar in the deck panels was designed using the empirical deck
design in AASHTO LRFD BDS, and the concrete was a typical bridge deck mix with a
compressive design strength of 6.0 ksi.(!) Shear pockets were cast into the deck panels and sized
depending on the number of shear studs in each cluster and the spacing between clusters.
Detailed drawings of the deck panels can be found in appendix A. The shear stud—cluster spacing
and corresponding number of studs per cluster varied between sets of beams to evaluate how the
different spacings affect both the strength and fatigue resistance of the shear studs. Table 4
presents the experimental test matrix for the large-scale fatigue and static tests.

Table 4. Large-scale experimental test matrix.

Stud Number of Number of  Number of Total
Cluster Clusters  Longitudinal Transverse Number of
Spacing  per Shear Studs per Studs per Studs per

Number Number
of Fatigue of Static

(Inches) Span Cluster Cluster Shear Span Tests Tests
12 12 1 2 o 0 1
12 12 1 1 12 3 1
24 6 2 1 12 3 1
36 4 3 1 12 3 1
48 3 4 1 12 3 1

The first column of the table shows the shear stud—cluster spacings selected for testing: 12, 24,
36, and 48 inches. The 12-inch spacing was chosen to represent a typical shear stud
configuration, with shear studs placed at regular intervals (i.e., no clustering) over the length of a
shear span. The 24-inch spacing beams had groups of two shear studs clustered in the
longitudinal direction with 24 inches between clusters, which satisfies the current AASHTO
shear stud maximum spacing limit. The 36- and 48-inch spacing specimens were selected to
determine how the strength and fatigue resistance of the beams changed when the maximum
spacing limit was exceeded.

Of the 17 large-scale tests, 12 were tested under fatigue loads, while the remaining 5 were tested
statically. For each cluster spacing, a total of three replicate fatigue specimens were tested. The
naming convention for the large-scale fatigue test specimens is shown in table 5.
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Table 5. Large-scale fatigue test naming convention.
Stud Cluster

Specimen Name Spacing l;elf’;i;iie
(Inches)
1F1 12 1
1F2 12 )
1F3 12 3
2F1 24 1
2F2 24 2
2F3 24 3
3F1 36 1
3F2 36 2
3F3 36 3
4F1 48 1
4F2 48 2
4F3 48 3

Of the five static test specimens, two were tested at a shear stud spacing of 12 inches, while the
remaining three specimens were tested at spacings of 24, 36, and 48 inches. The difference
between the two 12-inch spacing specimens was that one beam had two shear studs placed
transversely across the flange for each shear stud cluster, while the other beam had a single shear
stud per cluster. The naming convention for the large-scale static test specimens can be found in
table 6.

Table 6. Large-scale static test naming convention.

Stud Cluster Number of
Specimen Name Spacing Transverse Studs
(Inches) per Cluster
1S2 12 2
151 12 1
2S1 24 1
3S1 36 1
4S1 48 1

Beam 1S2 (first row of both table 4 and table 6) contained 24 shear studs per shear span, whereas
all of the other beams contained 12 shear studs per shear span. This beam was constructed and
tested prior to constructing any of the other beams; its purpose was to serve as a trial to evaluate
the horizontal shear force needed to cause a horizontal shear failure in the shear studs. As is
discussed in the Large-Scale Static Test Results section of this report, the beam failed because of
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concrete crushing at the midspan, and thus the number of shear studs for the rest of the beams
was reduced in the rest of the testing program to ensure shear failure of the shear studs.

The remaining beams in table 4 all contained 12 shear studs per shear span, which corresponds to
approximately 38 percent composite action. At each of the four cluster spacings, one static test
and three fatigue tests were conducted. Since AASHTO does not encourage partially composite
beams, the American Institute of Steel Construction (AISC) specifications were used to
determine the flexural resistance and rigidity of the beams.®® As stated previously, partially
composite beams were needed to produce the desired horizontal shear failure in the shear studs.

Each of the shear studs on the beams had a diameter of 7 inch and a height of 6 inches; this size
was selected because of its use in typical bridge construction. The shear studs were detailed to
penetrate 5 inches into the concrete deck and maintain a cover of at least 3 inches, which satisfies
AASHTO LRFD BDS.® When shear studs were clustered longitudinally, they were spaced at a
pitch of 3.5 inches, or 4d, which is less than the minimum AASHTO spacing of 6d. The research
team chose the smaller pitch to minimize the length of the pockets as desired when using PC
concrete decks. The Texas Department of Transportation specified this minimum spacing of 4d
in their bridge design manual when the test matrix was conceived.®® The team welded shear
studs onto the steel beams in accordance with AASHTO/American Welding Society (AWS)
D1.5 Bridge Welding Code.C%

Before placing the PC deck panels on the steel beams, the top flange of each beam was coated
with a thin layer of grease; this was done to drive all horizontal shear force into the shear studs
by eliminating any bond between the top flange and the grouted haunch. The research used to
develop the current AASHTO shear stud—fatigue provisions also used this process of greasing
the top flange.® Once the deck panels were set in place on top of the steel beams, the team used
leveling bolts to form a 1-inch haunch. Formwork was then constructed to form the haunch and
the midspan transverse joint between the two deck panels. Prebagged, nonshrink grout was then
mixed with enough water to create a flowable mixture per the manufacturer’s recommendations.
Researchers used a grout pump to transport the grout and fill the pockets, haunch, and transverse
joint, starting from one end of the beam and ending at the opposite end. After grouting was
complete, wet burlap was placed over the grout pockets to aid in the curing process.

Figure 7 through figure 12 show plan and elevation views for each of the large-scale beams
tested in this study. Typical sections for each of the beams, except for beam 2S1, are also shown
in figure 12. Beam 2S1 has the same sections, except rather than a single shear stud across the
width of the flange, there are two shear studs spaced at 4% inches apart, symmetrically located
about the center of the beam web, as shown in figure 8.
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Figure 13 shows a photo of beam 4F1 before the deck panels were grouted in place on top of the
steel beams, and figure 14 shows a photo after this has taken place.

Source: FHWA.
Figure 13. Photo. Before grouting large-scale beam specimen 4F1.

Source: FHWA.

Figure 14. Photo. After grouting large-scale beam specimen 4F1.
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Small-Scale Fatigue Tests

There were 14 small-scale fatigue specimens in this study. Each of the specimens was
constructed using the same design; the test variable between specimens was the stress range that
was cyclically applied during testing. For this reason, no test matrix is presented. The specimen
naming convention was in the form of PO-Fx, where PO-F represents “push-out fatigue” and the
letter “x” represents a number between 1 and 14 for all of the replicates.

Each of the small-scale fatigue tests was constructed with a 24-inch long W10x60 steel beam
with a small PC concrete deck panel on each side. All of these PC deck panels were constructed
and cast in the Federal Highway Administration’s (FHWA’s) Turner-Fairbank Highway
Research Center (TFHRC) Structures Laboratory by laboratory staff. This included forming the
shear pockets and placing the No. 4 reinforcing steel bars. All reinforcement was placed such
that it would not interfere with the shear pockets.

A single shear stud was welded to each flange, and the PC decks were connected to the shear
studs via a grouted pocket. The team constructed the specimens by laying the steel beam on its
side and setting one of the PC concrete deck panels in place. The same prebagged grout that was
used in the large-scale tests was then placed in the pocket to connect the beam and concrete deck.
To aid in the curing process, the researchers placed wet burlap on the grout. After 3 days, the
grout was sufficiently hardened. The specimens were flipped over and the process was repeated,
placing the second deck panel on the opposite flange. Figure 15 shows a drawing of the test
specimens after construction.
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Figure 15. Schematic. Plan and elevation views for small-scale fatigue test specimens.

The small-scale fatigue specimens used in this study were similar to historical push-out tests but
with a few differences. Firstly, this study used PC concrete slabs with grouted pockets rather
than CIP concrete decks; there have been studies that used PC decks, but the majority of them
have utilized CIP concrete.*®27) Since the use of ABC was a large focus of this study, PC decks
were used for these tests. No large difference in the fatigue performance of the shear studs was
expected, whether they were embedded in CIP concrete decks or in PC concrete decks with
grouted shear pockets. Also, the large-scale tests were all constructed with PC concrete decks;
utilizing the same strategy for the small-scale fatigue tests would allow for a simple comparison
between the two scales of testing.

A second difference between the small-scale fatigue tests in this project and those used to
develop the current AASHTO provisions was the presence of shear studs welded to both sides of
the steel beam. Although the majority of historical push-out tests were constructed with shear
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studs welded to both flanges of a steel beam, those referenced in the development of the
AASHTO shear stud—fatigue provisions only had shear studs welded to one flange. An analytical
study showed that conducting push-out fatigue tests in such a fashion can induce up to 20 percent
more tensile forces in the shear studs, causing a reduction in the fatigue life.®" For this reason,
the team decided to construct small-scale fatigue tests with shear studs and concrete deck panels
connected to each flange of the steel beam.

The third difference in the small-scale fatigue tests in this study is that only one shear stud was
welded to each side of the steel beam. In most push-out tests, there are either two or four shear
studs per side. For those tests, failure is typically defined as the time at which one of two slabs
becomes completely separated from the steel beam, which means either two or four shear studs
have failed. For this study, only one shear stud was welded to each flange so that the failure of a
specimen would represent the fatigue life of a single shear stud.

Small-Scale Static Tests

A total of 24 small-scale static tests were conducted in this study. The primary motivation for the
small-scale static tests was to evaluate how closely shear studs can be placed together, both
longitudinally and transversely, and determine how these different spacings affect the strength of
the connection. These specimens were designed and constructed in a similar fashion to historical
push-out tests. All specimens were constructed with a 24-inch-long W10x60 steel beam. Each of
the specimens had a total of four shear studs. The team welded two shear studs onto each flange,
oriented either longitudinally or transversely at variable spacings. Of the 24 small-scale static
tests, 12 were constructed with CIP concrete decks, and 12 were constructed with PC decks with
grouted pockets; both types of deck connections were tested to determine if there was a
difference between them.

The longitudinal spacing static tests were designed to determine if concrete or grout can develop
its full strength when shear studs are placed closely together. As shown in table 7, the
longitudinal shear stud spacing varied between 3d and 6d. The upper limit of 6d was chosen
because it is the current AASHTO maximum spacing limit and could serve as a baseline for
comparison to the lesser spacings. The lower limit of 3d was selected because, for practical
purposes, it is probably the smallest possible pitch. At a center-to-center spacing of 3d, the clear
distance between the shanks of 74-inch-diameter shear studs is 1% inch, which is probably larger
than the vast majority of aggregates used in a typical concrete mix. If the spacing of shear studs
is decreased to 2d, the clear distance between shanks becomes 7 inch, which would make it
difficult for larger aggregates to fit between the shear studs. A 74-inch-diameter shear stud also
typically has a 13s-inch head. At a pitch of 2d, the clear distance between adjacent shear stud
heads is only % inches; such a small clearance could pose problems when welding shear studs.

The purpose of the transverse spacing static tests was to determine if the concrete failure zones
overlap when shear studs are spaced closer together. The transverse shear stud spacing of the
tests varied from 3d to 4d. The rationale for these limits was similar to that for determining
longitudinal spacing limits. The upper limit of 4d is the current minimum transverse spacing
allowed by AASHTO. The lower limit of 3d is probably the smallest possible transverse spacing
for the same practical reasons discussed for the longitudinal spacing limits. The test matrix and
naming convention for the small-scale static tests are shown in table 7.
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Table 7. Small-scale static test matrix and naming convention.

Specimen Name l;ﬁﬁﬂ;itre Sg:"(iielslfz?tci::lg Stud Spacing Deck Type
PO-S1-L3D-CIP 1 Longitudinal 3d CIP
PO-S2-L3D-CIP 2 Longitudinal 3d CIP
PO-S1-L3D-PC 1 Longitudinal 3d PC
PO-S2-L3D-PC 2 Longitudinal 3d PC
PO-S1-L4D-CIP 1 Longitudinal 4d CIP
PO-S2-L4D-CIP 2 Longitudinal 4d CIP
PO-S1-L4D-PC 1 Longitudinal 4d PC
PO-S2-L4D-PC 2 Longitudinal 4d PC
PO-S1-L5D-CIP 1 Longitudinal 5d CIP
PO-S2-L5D-CIP 2 Longitudinal 5d CIP
PO-S1-L5D-PC 1 Longitudinal 5d PC
PO-S2-L5D-PC 2 Longitudinal 5d PC
PO-S1-L6D-CIP 1 Longitudinal 6d CIP
PO-S2-L6D-CIP 2 Longitudinal 6d CIP
PO-S1-L6D-PC 1 Longitudinal 6d PC
PO-S2-L6D-PC 2 Longitudinal 6d PC
PO-S1-T3D-CIP 1 Transverse 3d CIP
PO-S2-T3D-CIP 2 Transverse 3d CIP
PO-S1-T3D-PC 1 Transverse ad PC
PO-S2-T3D-PC 2 Transverse ad PC
PO-S1-T4D-CIP 1 Transverse 4d CIP
PO-S2-T4D-CIP 2 Transverse 4d CIP
PO-S1-L4D-PC 1 Transverse 4d PC
PO-S2-L4D-PC 2 Transverse 4d PC

Both the CIP and PC deck specimens were constructed in the Structures Laboratory at TFHRC.
For the CIP specimens, the team built a formwork and placed rebar so that both concrete decks
for a given specimen could be cast at the same time in the vertical direction. The team
constructed the PC deck specimens in a similar way as for the small-scale fatigue tests by first
constructing the PC slabs and then connecting them to the steel beam one at a time via
prebagged, nonshrink grout. Researchers used the same rebar layout for both the CIP and PC
specimens, with No. 4 rebar oriented such that it would not interfere with the shear pockets.
Figure 16 shows a drawing of the small-scale static test specimens.
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Figure 16. Schematic. Plan and elevation views for small-scale static test specimens.
INSTRUMENTATION AND LOADING

All of the large- and small-scale tests were conducted in the Structures Laboratory at TFHRC.
The following subsections describe the experimental test setup and testing procedure for each of
the tests conducted.

Large-Scale Fatigue Tests

All 12 large-scale fatigue tests were loaded in four-point bending, with the load points placed to
form an 11.5-foot shear span on each end of the beam. The researchers chose four-point bending
to create a constant shear force in the shear span because it should create uniform shear stress
ranges in the shear studs. To maximize the length of each shear span, the load points were placed
as close together as the load frame allowed. Load was applied at each load point using a 220-kip
servo-hydraulic actuator, as shown in figure 17. Figure 18 and figure 19 show the test setup.
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Figure 17. Schematic. Plan and elevation views for large-scale fatigue loading.
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Source: FHWA.
Figure 18. Photo. Southwest view of large-scale fatigue test setup.

Source: FHWA.

Figure 19. Photo. East view of large-scale fatigue test setup.
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To produce the desired average stress range at the base of all shear studs in each shear span while
still maintaining elastic behavior in the composite beam, the actuators were cycled under a
constant load range for each test. Load was applied cyclically until it was apparent that at least
one of the PC concrete decks had completely separated from the beam. The research team
recorded load and displacement readings from both actuators during testing, along with various
other types of data.

A total of 54 strain gauges were installed on the south side of the steel beam and concrete deck
for each test. Six strain gauges were used at each of the four cross sections on each shear span
and one cross section at the midspan. Each of these cross sections contained three strain gauges
installed on the steel beam and three gauges on the concrete deck. Of the four cross sections
within each shear span, two were located at a shear stud cluster, and two were located halfway
between clusters.

An additional 32 strain gauges were used for 8 of the 12 large-scale fatigue tests; for these tests,
the team installed the additional strain gauges on all 12 of the shear studs in the east shear span
and the 4 shear studs closest to the west end of the beam in the west shear span. Strain gauges
were only installed on four of the shear studs in the west shear span, owing to a lack of channel
availability in the data acquisition system. Rather than evenly split up the remaining available
data channels between the east and west shear spans, the team decided to record data from all of
the shear studs in the east shear span in hopes of extrapolating behavior to the limited number of
gauges in the west shear span. For each of these shear studs, the team installed strain gauges on
the east and west sides near the base of the shear stud. Since the strains should decrease as
fatigue cracks grow, these strain gauges were installed in hopes of determining the order in
which shear studs failed in fatigue during testing.

A total of 12 linear variable differential transducers (LVDTSs) were also used on each beam. Nine
were used to measure the relative horizontal slip between the top flange of the steel beam and the
bottom of the concrete deck panel. Two LVDTs were used to measure the relative vertical uplift
between the steel beam and the deck. These two LVVDTs were located at the midpoint of each
shear span. The remaining LVDT was used to measure vertical deflection of the beam at the
midspan.

Detailed instrumentation plan drawings for each of the specimen types are shown in figure 20
through figure 29.
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Figure 20. Schematic. Plan and elevation views for instrumentation on a large-scale specimen with 12-inch shear stud spacing.
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Figure 21. Schematic. Plan and elevation views for instrumentation on a large-scale specimen with 24-inch shear stud spacing.
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Source: FHWA.

ELEVATION VIEW FOR LVDTS

Note: Measurements are in inches.
Figure 22. Schematic. Plan and elevation views for instrumentation on a large-scale specimen with 36-inch shear stud spacing.
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