Roundabouts: An Informational Guide

U.S. Department of Transportation
Federal Highway Administration
Publication No. FHWA-RD-00-067
Technical Report Documentation

1. Report No.
FHWA-RD-00-067

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
ROUNDABOUTS: An Informational Guide

5. Report Date
June 2000

6. Performing Organization Code

7. Author(s)
Principal Investigator: Bruce W. Robinson (brobinson@kittelson.com)
Co-Authors: Rod Troutsbeck, Werner Brellon, Lothar Bondzio, Ken Courage, Michael
Kyte, John Mason, Aimee Flannery, Edward Myers, Jonathan Bunker, Georges
Jacquemart.

8. Performing Organization Report No.
Project 2425

9. Performing Organization Name and Address
610 SW Alder Street, Suite 700
Portland, Oregon 97205 U.S.A.

Subconsultants: Queensland University of Technology (Australia); Ruhr-University
Bochum (Germany); University of Florida; University of Idaho; Pennsylvania State
University; Hurst-Rosche Engineers; Eppell Olsen & Partners (Australia); Buckhurst
Fish and Jacquemart.

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
DTFH61-97-R-00038

12. Sponsoring Agency Name and Address
Federal Highway Administration
Turner-Fairbank Highway Research Center
6500 Georgetown Pike, HSR 20, Room No. T301
McLean, Virginia 22101

13. Type of Report and Period Covered
Informational Guide Book
September 1997 to December 1999

14. Sponsoring Agency Code

15. Supplementary Notes
Joe G. Bared (Joe.Bared@fhwa.dot.gov) at the Turner-Fairbank Highway Research Center (http://www.tfhrc.gov) was the Technical Representative for the Federal Highway Administration.

16. Abstract
The guidance supplied in this document, *Roundabouts: An Informational Guide*, is based on established international and U.S. practices and is supplemented by recent research. The guide is comprehensive in recognition of the diverse needs of transportation professionals and the public for introductory material through design detail, as well as the wide range of potential applications of roundabout intersections. The following topics are addressed: definition of a roundabout and what distinguishes roundabouts from traffic circles; public acceptance and legal issues associated with roundabouts; consideration of all user modes, including heavy vehicles, buses, transit, bicycles, and pedestrians; a methodology for identifying appropriate sites for roundabouts and the range of conditions for which roundabouts offer optimal performance; methodologies for estimating roundabout capacity, delays, and queues with reference to the *Highway Capacity Manual*; design principles and guidance on safety and geometric design, with reference to applicable national standards such as the AASHTO Policy on Geometric Design of Highways and Streets; guidelines for control features such as signing and pavement markings, with reference to the *Manual on Uniform Traffic Control Devices*; illumination; and landscaping.

17. Key Word
Roundabout(s), Traffic Circle(s), Intersection, Traffic Control, Intersection Design,
Intersection Performance, Intersection Safety, Highway Capacity

18. Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22181.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
284

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized
Roundabouts
An Informational Guide

Kittelson & Associates, Inc.
Queensland University of Technology
Ruhr-University Bochum
University of Florida
University of Idaho
Pennsylvania State University
Hurst-Rosche Engineers
Eppell Olsen & Partners
Buckhurst Fish & Jacquemart

FHWA Project Manager:
Joe Bared
Joe.Bared@fhwa.dot.gov
202-493-3314
http://www.fhwa.dot.gov
Foreword

Roundabouts are a form of intersection control in common use throughout the world. Until recently, many transportation professionals and agencies in the United States have been hesitant to recommend and install roundabouts, however, due to a lack of objective nationwide guidelines on planning, performance, and design of roundabouts. Prior to the development of this guide, transportation professionals who were interested in roundabouts had to rely on foreign roundabout design guides, consultants with roundabout experience, or in some States, statewide roundabout design guides. To facilitate safe, optimal operation and designs that are both consistent at a national level and consequential for driver expectation and safety, the Federal Highway Administration (FHWA) developed this informational guide on roundabouts.

The information supplied in this document, *Roundabouts: An Informational Guide*, is based on established international and U.S. practices and is supplemented by recent research. The guide is comprehensive in recognition of the diverse needs of transportation professionals and the public for introductory material through design detail, as well as the wide range of potential applications of roundabout intersections.

Roundabout operation and safety performance are particularly sensitive to geometric design elements. Uncertainty regarding evaluation procedures can result in over-design and less safety. The “design problem” is essentially one of determining a design that will accommodate the traffic demand while minimizing some combination of delay, crashes, and cost to all users, including motor vehicles, pedestrians, and bicyclists. Evaluation procedures are suggested, or information is provided, to quantify and cost how well a design achieves each of these aims.

Since there is no absolutely optimum design, this guide is not intended as an inflexible “rule book,” but rather attempts to explain some principles of good design and indicate potential tradeoffs. In this respect, the “design space” consists of performance evaluation models and design principles such as those provided in this guide, combined with the expert heuristic knowledge of a designer. Adherence to these principles still does not ensure good design, which remains the responsibility of the designer.

Michael F. Trentacoste
Director, Office of Safety Research and Development

NOTICE

This publication is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The publication does not constitute a standard, specification, or regulation. Any trade or manufacturers’ names that appear herein are included solely because they are considered essential to the object of the publication.
Table of Contents

List of Exhibits viii

Photo Credits xiv

Chapter 1 - Introduction 1

1.1 Scope of Guide 2

1.2 Organization of Guide 3

1.3 Defining Physical Features 5

1.4 Key Dimensions 5

1.5 Distinguishing Roundabouts from Other Circular Intersections 8

1.6 Roundabout Categories 12

1.7 References 20

Chapter 2 - Policy Considerations 21

2.1 Characteristics 23

2.2 Multimodal Considerations 32

2.3 Costs Associated with Roundabouts 36

2.4 Legal Considerations 37

2.5 Public Involvement 40

2.6 Education 43

2.7 References 48

Chapter 3 - Planning 49

3.1 Planning Steps 51

3.2 Considerations of Context 53

3.3 Number of Entry Lanes 55

3.4 Selection Categories 58

3.5 Comparing Operational Performance of Alternative Intersection Types 64

3.6 Space Requirements 69
3.7 Economic Evaluation 70
3.8 References 76

Chapter 4 - Operation 79
4.1 Traffic Operation at Roundabouts 82
4.2 Data Requirements 83
4.3 Capacity 86
4.4 Performance Analysis 91
4.5 Computer Software for Roundabouts 96
4.6 References 98

Chapter 5 - Safety 101
5.1 Introduction 103
5.2 Conflicts 104
5.3 Crash Statistics 111
5.4 Crash Prediction Models 122
5.5 References 125

Chapter 6 - Geometric Design 127
6.1 Introduction 130
6.2 General Design Principles 132
6.3 Geometric Elements 145
6.4 Double-Lane Roundabouts 172
6.5 Rural Roundabouts 176
6.6 Mini-Roundabouts 179
6.7 References 181
Chapter 7 - Traffic Design and Landscaping

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Signing</td>
<td>185</td>
</tr>
<tr>
<td>7.2</td>
<td>Pavement Markings</td>
<td>197</td>
</tr>
<tr>
<td>7.3</td>
<td>Illumination</td>
<td>202</td>
</tr>
<tr>
<td>7.4</td>
<td>Work Zone Traffic Control</td>
<td>205</td>
</tr>
<tr>
<td>7.5</td>
<td>Landscaping</td>
<td>207</td>
</tr>
<tr>
<td>7.6</td>
<td>References</td>
<td>209</td>
</tr>
</tbody>
</table>

Chapter 8 - System Considerations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Traffic Signals at Roundabouts</td>
<td>213</td>
</tr>
<tr>
<td>8.2</td>
<td>At-Grade Rail Crossings</td>
<td>215</td>
</tr>
<tr>
<td>8.3</td>
<td>Closely Spaced Roundabouts</td>
<td>217</td>
</tr>
<tr>
<td>8.4</td>
<td>Roundabout Interchanges</td>
<td>219</td>
</tr>
<tr>
<td>8.5</td>
<td>Roundabouts in an Arterial Network</td>
<td>223</td>
</tr>
<tr>
<td>8.6</td>
<td>Microscopic Simulation</td>
<td>227</td>
</tr>
<tr>
<td>8.7</td>
<td>References</td>
<td>229</td>
</tr>
</tbody>
</table>

Glossary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
</tr>
</tbody>
</table>

Bibliography

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
</tr>
</tbody>
</table>

Appendix A: Operations Analysis Formulas

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
</tr>
</tbody>
</table>

Appendix B: Example Roundabout Designs

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>257</td>
</tr>
</tbody>
</table>

Appendix C: MUTCD Recommendations

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
</tr>
</tbody>
</table>
List of Exhibits

Chapter 1 - Introduction

Exhibit 1-1	Drawing of key roundabout features.	6
Exhibit 1-2	Description of key roundabout features.	6
Exhibit 1-3	Drawing of key roundabout dimensions.	7
Exhibit 1-4	Description of key roundabout dimensions.	7
Exhibit 1-5	Comparison of roundabouts with traffic circles.	8
Exhibit 1-6	Common design elements at roundabouts.	10
Exhibit 1-7	Basic design characteristics for each of the six roundabout categories.	13
Exhibit 1-8	Typical mini-roundabout.	14
Exhibit 1-9	Typical urban compact.	15
Exhibit 1-10	Typical urban single-lane roundabout.	16
Exhibit 1-11	Typical urban double-lane roundabout.	17
Exhibit 1-12	Typical rural single-lane roundabout.	18
Exhibit 1-13	Typical rural double-lane roundabout	19

Chapter 2 - Policy Considerations

Exhibit 2-1	Average annual crash frequencies at 11 U.S. intersections converted to roundabouts.	23
Exhibit 2-2	Pedestrian's chances of death if hit by a motor vehicle.	25
Exhibit 2-3	Comparisons of vehicle-vehicle conflict points for intersections with four single-lane approaches.	26
Exhibit 2-4	Fastest vehicle path through a double-lane roundabout.	27
Exhibit 2-5	Examples of aesthetic treatments.	31
Exhibit 2-6	Examples of informational brochures.	42
Exhibit 2-7	Driving straight through a roundabout.	45
Exhibit 2-8	Turning left at a roundabout.	46

Chapter 3 - Planning

| Exhibit 3-1 | Maximum daily service volumes for a four-leg roundabout. | 57 |
| Exhibit 3-2 | Planning-level maximum daily service volumes for mini-roundabouts. | 57 |
Exhibit 3-3. Example of community enhancement roundabout. 59
Exhibit 3-4. Example of traffic calming roundabouts. 60
Exhibit 3-5. Comparison of predicted rural roundabout injury crashes with rural TWSC intersections. 61
Exhibit 3-6. Comparisons of predicted injury crashes for single-lane and double-lane roundabouts with rural or urban signalized intersections. 61
Exhibit 3-7. Average delay per vehicle at the MUTCD peak hour signal warrant threshold. 63
Exhibit 3-8. Comparison of TWSC and single-lane roundabout capacity. 65
Exhibit 3-9. Sample hourly distribution of traffic. 66
Exhibit 3-10. Annual savings in delay of single-lane roundabout versus AWSC, 50 percent of volume on the major street. 67
Exhibit 3-11. Annual savings in delay of single-lane roundabout versus AWSC, 65 percent of volume on the major street. 67
Exhibit 3-12. Delay savings for roundabouts vs. signal, 50 percent volume on major street. 69
Exhibit 3-13. Delay savings for roundabouts vs. signal, 65 percent volume on major street. 69
Exhibit 3-14. Assumptions for spatial comparison of roundabouts and comparable conventional intersections. 70
Exhibit 3-15. Area comparison: Urban compact roundabout vs. comparable signalized intersection. 71
Exhibit 3-16. Area comparison: Urban single-lane roundabout vs. comparable signalized intersection. 71
Exhibit 3-17. Area comparison: Urban double-lane roundabout vs. comparable signalized intersection. 72
Exhibit 3-18. Area comparison: Urban flared roundabouts vs. comparable signalized intersection. 72
Exhibit 3-19. Estimated costs for crashes of varying levels of severity. 74

Chapter 4 - Operation

Exhibit 4-1. Conversion factors for passenger car equivalents (pce). 84
Exhibit 4-2. Traffic flow parameters. 85
Exhibit 4-3. Approach capacity of a single-lane roundabout. 87
Exhibit 4-4. Approach capacity of a double-lane roundabout. 88
Exhibit 4-5. Capacity reduction factors for short lanes. 89
Exhibit 4-6. Capacity comparison of single-lane and double-lane roundabouts. 89
Exhibit 4-7. Capacity reduction factor M for a single-lane roundabout assuming pedestrian priority. 90
Exhibit 4-8. Capacity reduction factor M for a double-lane roundabout assuming pedestrian priority. 91
Exhibit 4-9. Control delay as a function of capacity and circulating flow. 93
Exhibit 4-10. 95th-percentile queue length estimation. 95
Exhibit 4-11. Summary of roundabout software products for operational analysis. 97

Chapter 5 - Safety

Exhibit 5-1. Vehicle conflict points for “T” Intersections with single-lane approaches. 105
Exhibit 5-2. Vehicle conflict point comparison for intersections with single-lane approaches. 106
Exhibit 5-3. Improper lane-use conflicts in double-lane roundabouts. 107
Exhibit 5-4. Improper turn conflicts in double-lane roundabouts. 108
Exhibit 5-5. Pedestrian-vehicle conflicts at signalized intersections. 109
Exhibit 5-6. Pedestrian-vehicle conflicts at single-lane roundabouts. 109
Exhibit 5-7. Bicycle conflicts at conventional intersections. 110
Exhibit 5-8. Bicycle conflicts at roundabouts. 111
Exhibit 5-9. Average annual crash frequencies at 11 U.S. intersections converted to roundabouts. 112
Exhibit 5-10. Mean crash reductions in various countries. 112
Exhibit 5-11. Reported proportions of major crash types at roundabouts. 113
Exhibit 5-12. Comparison of collision types at roundabouts. 114
Exhibit 5-13. Graphical depiction of collision types at roundabouts. 115
Exhibit 5-14. Accident percentage per type of user urban roundabouts in 15 towns in western France. 116
Exhibit 5-15. British crash rates for pedestrians at roundabouts and signalized intersections. 117
Exhibit 5-16. Percentage reduction in the number of accidents by mode at 181 converted Dutch roundabouts. 117
Exhibit 5-17. British crash rates (crashes per million trips) for bicyclists and motorcyclists at roundabouts and signalized intersections. 120
Exhibit 5-18. A comparison of crashes between signalized and roundabout intersections in 1998 in 15 French towns. 120

Chapter 6 - Geometric Design

Exhibit 6-1. Basic geometric elements of a roundabout. 131
Exhibit 6-2. Roundabout design process. 131
Exhibit 6-3. Sample theoretical speed profile (urban compact roundabout). 133
Exhibit 6-4. Recommended maximum entry design speeds. 133
Exhibit 6-5. Fastest vehicle path through single-lane roundabout. 134
Exhibit 6-6. Fastest vehicle path through double-lane roundabout. 135
Exhibit 6-7. Example of critical right-turn movement. 135
Exhibit 6-8. Side friction factors at various speeds (metric units). 137
Exhibit 6-9. Side friction factors at various speeds (U.S. customary units). 137
Exhibit 6-10. Speed-radius relationship (metric units). 138
Exhibit 6-11. Speed-radius relationship (U.S. customary units). 138
Exhibit 6-12. Vehicle path radii. 139
Exhibit 6-13. Approximated R_1 values and corresponding R_1 values (metric units). 141
Exhibit 6-14. Approximated R_1 values and corresponding R_1 values (U.S. customary units). 141
Exhibit 6-15. Through-movement swept path of WB-15 (WB-50) vehicle. 143
Exhibit 6-16. Left-turn and right-turn swept paths of WB-15 (WB-50) vehicle. 143
Exhibit 6-17. Key dimensions of nonmotorized design users. 144
Exhibit 6-18. Radial alignment of entries. 145
Exhibit 6-19. Recommended inscribed circle diameter ranges. 146
Exhibit 6-20. Approach widening by adding full lane. 148
Exhibit 6-21. Approach widening by entry flaring. 148
Exhibit 6-22. Minimum circulatory lane widths for two-lane roundabouts. 150
Exhibit 6-23. Example of central island with a traversable apron. 151
Exhibit 6-24. Single-lane roundabout entry design. 153
Exhibit 6-25. Single-lane roundabout exit design. 154
Exhibit 6-26. Minimum splitter island dimensions. 157
Exhibit 6-27. Minimum splitter island nose radii and offsets. 158
Exhibit 6-28. Design values for stopping sight distance. 159
Exhibit 6-29. Approach sight distance. 160
Exhibit 6-30. Sight distance on circulatory roadway. 160
Exhibit 6-31. Sign distance to crosswalk on exit. 161
Exhibit 6-32. Intersection sight distance. 162
Exhibit 6-33. Computed length of conflicting leg of intersection sight triangle. 163
Exhibit 6-34. Sample plan view. 164
Exhibit 6-35. Sample approach profile. 165
Exhibit 6-36. Sample central island profile. 165
Exhibit 6-37. Typical circulatory roadway section. 166
Exhibit 6-38. Typical section with a truck apron. 166
Exhibit 6-40. Sidewalk treatments. 169
Exhibit 6-41. Example of right-turn bypass lane. 170
Exhibit 6-42. Configuration of right-turn bypass lane with acceleration lane. 171
Exhibit 6-43. Configuration of right-turn bypass lane with yield at exit leg. 172
Exhibit 6-44. Sketched natural paths through a double-lane roundabout. 173
Exhibit 6-45. Path overlap at a double-lane roundabout. 174
Exhibit 6-46. One method of entry design to avoid path overlap at double-lane roundabouts. 175
Exhibit 6-47. Alternate method of entry design to avoid path overlap at double-lane roundabouts. 175
Exhibit 6-48. Extended splitter island treatment. 178
Exhibit 6-49. Use of successive curves on high-speed approaches. 179
Exhibit 6-50. Example of mini-roundabout. 180
Chapter 7 - Traffic Design and Landscaping

Exhibit 7-1. YIELD sign (R1-2). 186
Exhibit 7-2. ONE WAY sign (R6-1R). 186
Exhibit 7-3. KEEP RIGHT sign (R4-7). 186
Exhibit 7-4. Lane-use control signing for roundabouts with double-lane entries. 188
Exhibit 7-5. Lane-use control signing for roundabouts with heavy turning traffic. 188
Exhibit 7-6. Circular Intersection sign (W2-6). 189
Exhibit 7-7. Advisory speed plate (W13-1). 189
Exhibit 7-8. Roundabout Ahead Sign. 189
Exhibit 7-9. YIELD AHEAD sign (W3-2a). 189
Exhibit 7-10. Large Arrow sign (W1-6). 190
Exhibit 7-11. Chevron plate (W1-8a). 190
Exhibit 7-12. Pedestrian Crossing sign (W11-2a). 190
Exhibit 7-13. Examples of advance destination guide signs. 191
Exhibit 7-14. Exit guide sign (D1-1). 192
Exhibit 7-15. Sample signing plan for an urban roundabout. 193
Exhibit 7-16. Sample signing plan for a rural roundabout. 194
Exhibit 7-17. Examples of speed reduction treatments. 195
Exhibit 7-18. Sample signing plan for a mini-roundabout. 196
Exhibit 7-19. Examples of yield lines. 198
Exhibit 7-20. Approach pavement markings. 199
Exhibit 7-21. Sample pavement marking plan for a mini-roundabout. 201
Exhibit 7-22. Illumination of a roundabout. 202
Exhibit 7-23. Recommended street illumination levels. 204
Exhibit 7-24. Landscaping of the central island. 208
Chapter 8 - System Considerations

Exhibit 8-1. Rail crossing treatments at roundabouts. 216
Exhibit 8-2. Methods for accommodating a rail crossing adjacent to a roundabout. 217
Exhibit 8-3. Example of closely spaced offset T-intersections with roundabouts. 218
Exhibit 8-4. Through bypass lanes at staggered T-intersections. 218
Exhibit 8-5. Two-bridge roundabout interchange. 219
Exhibit 8-6. Example of two-bridge roundabout interchanges. 220
Exhibit 8-7. Examples of one-bridge roundabout interchanges with circular central islands. 221
Exhibit 8-8. One-bridge roundabout interchange with raindrop-shaped central islands. 222
Exhibit 8-9. Roundabouts in an arterial network. 223
Exhibit 8-10. Wide nodes and narrow roads. 226
Exhibit 8-11. Summary of simulation models for roundabout analysis. 228

Photo Credits

Barry Crown: Exhibits 8-6, 8-7

Ken Courage: Exhibit 1-5 (g, Portland)

Lee Rodegerdts: Exhibits 1-5 (all except g, Portland), 1-6 (all except Fort Pierce), 2-4 (all except Fort Pierce), 3-3, 3-4, 6-23, 6-42, 7-10 (all), 7-11 (all), 7-14 (all), 7-16 (all), 7-22, 8-7, 8-8, 8-9, C-3 (a, d-i, k-n)

Paul Ryus: Exhibits 1-6 (Fort Pierce), 2-4 (Fort Pierce), C-3 (b, c, j)
Introduction

1.1 Scope of the Guide 2
1.2 Organization of the Guide 3
1.3 Defining Physical Features 5
1.4 Key Dimensions 5
1.5 Distinguishing Roundabouts from Other Circular Intersections 8
1.6 Roundabout Categories 12
1.6.1 Comparison of roundabout categories 13
1.6.2 Mini-roundabouts 14
1.6.3 Urban compact roundabouts 15
1.6.4 Urban single-lane roundabouts 16
1.6.5 Urban double-lane roundabouts 17
1.6.6 Rural single-lane roundabouts 18
1.6.7 Rural double-lane roundabouts 19
1.7 References 20

Exhibit 1-1. Drawing of key roundabout features. 6
Exhibit 1-2. Description of key roundabout features. 6
Exhibit 1-3. Drawing of key roundabout dimensions. 7
Exhibit 1-4. Description of key roundabout dimensions. 7
Exhibit 1-5. Comparison of roundabouts with traffic circles. 8
Exhibit 1-6. Common design elements at roundabouts. 10
Exhibit 1-7. Basic design characteristics for each of the six roundabout categories. 13
Exhibit 1-8. Typical mini-roundabout. 14
Exhibit 1-9. Typical urban compact roundabout. 15
Exhibit 1-10. Typical urban single-lane roundabout. 16
Exhibit 1-11. Typical urban double-lane roundabout. 17
Exhibit 1-12. Typical rural single-lane roundabout. 18
Exhibit 1-13. Typical rural double-lane roundabout. 19
Chapter 1 Introduction

Traffic circles have been part of the transportation system in the United States since 1905, when the Columbus Circle designed by William Phelps Eno opened in New York City. Subsequently, many large circles or rotaries were built in the United States. The prevailing designs enabled high-speed merging and weaving of vehicles. Priority was given to entering vehicles, facilitating high-speed entries. High crash experience and congestion in the circles led to rotaries falling out of favor in America after the mid-1950’s. Internationally, the experience with traffic circles was equally negative, with many countries experiencing circles that locked up as traffic volumes increased.

The modern roundabout was developed in the United Kingdom to rectify problems associated with these traffic circles. In 1966, the United Kingdom adopted a mandatory “give-way” rule at all circular intersections, which required entering traffic to give way, or yield, to circulating traffic. This rule prevented circular intersections from locking up, by not allowing vehicles to enter the intersection until there were sufficient gaps in circulating traffic. In addition, smaller circular intersections were proposed that required adequate horizontal curvature of vehicle paths to achieve slower entry and circulating speeds.

These changes improved the safety characteristics of the circular intersections by reducing the number and particularly the severity of collisions. Thus, the resultant modern roundabout is significantly different from the older style traffic circle both in how it operates and in how it is designed. The modern roundabout represents a substantial improvement, in terms of operations and safety, when compared with older rotaries and traffic circles (1, 2, 3). Therefore, many countries have adopted them as a common intersection form and some have developed extensive design guides and methods to evaluate the operational performance of modern roundabouts.

1.1 Scope of the Guide

This guide provides information and guidance on roundabouts, resulting in designs that are suitable for a variety of typical conditions in the United States. The scope of this guide is to provide general information, planning techniques, evaluation procedures for assessing operational and safety performance, and design guidelines for roundabouts.

This guide has been developed with the input from transportation practitioners and researchers from around the world. In many cases, items from national and international practice and research indicate considerable consensus, and these items have been included in this guide. However, other items have generated considerable differences of opinion (e.g., methods of estimating capacity), and some practices vary considerably from country to country (e.g., marking of the circulatory roadway in multilane roundabouts). Where international consensus is not apparent, a reasoned approach is presented that the authors believe is currently most appropriate for the United States. As more roundabouts are built, the opportunity to conduct research to refine—or develop better—methods will enable future editions of this guide to improve.
Despite the comprehensive nature of this document, it cannot discuss every issue related to roundabouts. In particular, it does not represent the following topics:

- **Nonmountable traffic calming circles.** These are small traffic circles with raised central islands. They are typically used on local streets for speed and volume control. They are typically not designed to accommodate large vehicles, and often left-turning traffic is required to turn left in front of the circle. Mini-roundabouts, which are presented, may be an appropriate substitute.

- **Specific legal or policy requirements and language.** The legal information that is provided in this guide is intended only to make the reader aware of potential issues. The reader is encouraged to consult with an attorney on specific legal issues before adopting any of the recommendations contained herein. Similarly, regarding policy information, the guide refers to or encompasses applicable policies, such as those of the American Association of State Highway and Transportation Officials (AASHTO) (4). It does not, however, establish any new policies.

- **Roundabouts with more than two entry lanes on an approach.** While acknowledging the existence and potential of such large roundabouts, the guide does not provide specific guidance on the analysis or design of such roundabouts. However, the design principles contained in this document are also applicable to larger roundabouts. The relative safety advantages of roundabout intersections diminish at high traffic flows, particularly with regard to pedestrians and bicyclists. The advantages of larger roundabouts are their higher capacities that may make them attractive alternatives at sites with high traffic volumes. More intricate design is required to ensure adequate operational and safety performance. Therefore, expert operations and design advice should be sought and roundabout analysis software should be utilized in such circumstances. As users and designers in the United States become more familiar with roundabouts, this experience may then be extended to such applications.

1.2 Organization of the Guide

This guide has been structured to address the needs of a variety of readers including the general public, policy-makers, transportation planners, operations and safety analysts, conceptual and detailed designers. This chapter distinguishes roundabouts from other traffic circles and defines the types of roundabouts addressed in the remainder of the guide. The remaining chapters in this guide generally increase in the level of detail provided.

Chapter 2—Policy Considerations: This chapter provides a broad overview of the performance characteristics of roundabouts. The costs associated with roundabouts versus other forms of intersections, legal issues, and public involvement techniques are discussed.

Chapter 3—Planning: This chapter discusses general guidelines for identifying appropriate intersection control options, given daily traffic volumes, and procedures for evaluating the feasibility of a roundabout at a given location. Chapters 2 and 3 provide sufficient detail to enable a transportation planner to decide under which circumstances roundabouts are likely to be appropriate, and how they compare to alternatives at a specific location.
Chapter 4—Operational Analysis: Methods are presented for analyzing the operational performance of each category of roundabout in terms of capacity, delay, and queuing.

Chapter 5—Safety: This chapter discusses the expected safety performance of roundabouts.

Chapter 6—Geometric Design: Specific geometric design principles for roundabouts are presented. The chapter then discusses each design element in detail, along with appropriate parameters to use for each type of roundabout.

Chapter 7—Traffic Design and Landscaping: This chapter discusses a number of traffic design aspects once the basic geometric design has been established. These include signs, pavement markings, and illumination. In addition, the chapter provides discussion on traffic maintenance during construction and landscaping.

Chapter 8—System Considerations: This chapter discusses specific issues and treatments that may arise from the systems context of a roundabout. The material may be of interest to transportation planners as well as operations and design engineers. Signal control at roundabouts is discussed. The chapter then considers the issue of rail crossings through the roundabout or in close proximity. Roundabouts in series with other roundabouts are discussed, including those at freeway interchanges and those in signalized arterial networks. Finally, the chapter presents simulation models as supplementary operational tools capable of evaluating roundabout performance within an overall roadway system.

Appendices: Three appendices are provided to expand upon topics in certain chapters. Appendix A provides information on the capacity models in Chapter 4. Appendix B provides design templates for each of the categories of roundabout described in Chapter 1, assuming four perpendicular legs. Appendix C provides information on the alternative signing and pavement marking in Chapter 7.

Several typographical devices have been used to enhance the readability of the guide. Margin notes, such as the note next to this paragraph, highlight important points or identify cross-references to other chapters of the guide. References have been listed at the end of each chapter and have been indicated in the text using numbers in parentheses, such as: (3). New terms are presented in italics and are defined in the glossary at the end of the document.
1.3 Defining Physical Features

A roundabout is a type of circular intersection, but not all circular intersections can be classified as roundabouts. In fact, there are at least three distinct types of circular intersections:

- **Rotaries** are old-style circular intersections common to the United States prior to the 1960's. Rotaries are characterized by a large diameter, often in excess of 100 m (300 ft). This large diameter typically results in travel speeds within the circulatory roadway that exceed 50 km/h (30 mph). They typically provide little or no horizontal deflection of the paths of through traffic and may even operate according to the traditional “yield-to-the-right” rule, i.e., circulating traffic yields to entering traffic.

- **Neighborhood traffic circles** are typically built at the intersections of local streets for reasons of traffic calming and/or aesthetics. The intersection approaches may be uncontrolled or stop-controlled. They do not typically include raised channelization to guide the approaching driver onto the circulatory roadway. At some traffic circles, left-turning movements are allowed to occur to the left of (clockwise around) the central island, potentially conflicting with other circulating traffic.

- **Roundabouts** are circular intersections with specific design and traffic control features. These features include yield control of all entering traffic, channelized approaches, and appropriate geometric curvature to ensure that travel speeds on the circulatory roadway are typically less than 50 km/h (30 mph). Thus, roundabouts are a subset of a wide range of circular intersection forms.

To more clearly identify the defining characteristics of a roundabout, consistent definitions for each of the key features, dimensions, and terms are used throughout this guide. Exhibit 1-1 is a drawing of a typical roundabout, annotated to identify the key features. Exhibit 1-2 provides a description of each of the key features.

1.4 Key Dimensions

For operational analysis and design purposes, it is useful to define a number of key dimensions. Exhibit 1-3 shows a number of key dimensions that are described in Exhibit 1-4. Note that these exhibits do not present all of the dimensions needed in the detailed analysis and design of roundabouts; these will be presented and defined in later chapters as needed.
Exhibit 1-1. Drawing of key roundabout features.

Exhibit 1-2. Description of key roundabout features.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central island</td>
<td>The central island is the raised area in the center of a roundabout around which traffic circulates.</td>
</tr>
<tr>
<td>Splitter island</td>
<td>A splitter island is a raised or painted area on an approach used to separate entering from exiting traffic, deflect and slow entering traffic, and provide storage space for pedestrians crossing the road in two stages.</td>
</tr>
<tr>
<td>Circulatory roadway</td>
<td>The circulatory roadway is the curved path used by vehicles to travel in a counterclockwise fashion around the central island.</td>
</tr>
<tr>
<td>Apron</td>
<td>If required on smaller roundabouts to accommodate the wheel tracking of large vehicles, an apron is the mountable portion of the central island adjacent to the circulatory roadway.</td>
</tr>
<tr>
<td>Yield line</td>
<td>A yield line is a pavement marking used to mark the point of entry from an approach into the circulatory roadway and is generally marked along the inscribed circle. Entering vehicles must yield to any circulating traffic coming from the left before crossing this line into the circulatory roadway.</td>
</tr>
<tr>
<td>Accessible pedestrian crossings</td>
<td>Accessible pedestrian crossings should be provided at all roundabouts. The crossing location is set back from the yield line, and the splitter island is cut to allow pedestrians, wheelchairs, strollers, and bicycles to pass through.</td>
</tr>
<tr>
<td>Bicycle treatments</td>
<td>Bicycle treatments at roundabouts provide bicyclists the option of traveling through the roundabout either as a vehicle or as a pedestrian, depending on the bicyclist’s level of comfort.</td>
</tr>
<tr>
<td>Landscaping buffer</td>
<td>Landscaping buffers are provided at most roundabouts to separate vehicular and pedestrian traffic and to encourage pedestrians to cross only at the designated crossing locations. Landscaping buffers can also significantly improve the aesthetics of the intersection.</td>
</tr>
</tbody>
</table>

Splitter islands have multiple roles. They:
- Separate entering and exiting traffic
- Deflect and slow entering traffic
- Provide a pedestrian refuge
### Dimension	Description
Inscribed circle diameter | The **inscribed circle diameter** is the basic parameter used to define the size of a roundabout. It is measured between the outer edges of the circulatory roadway.
Circulatory roadway width | The **circulatory roadway width** defines the roadway width for vehicle circulation around the central island. It is measured as the width between the outer edge of this roadway and the central island. It does not include the width of any mountable apron, which is defined to be part of the central island.
Approach width | The **approach width** is the width of the roadway used by approaching traffic upstream of any changes in width associated with the roundabout. The approach width is typically no more than half of the total width of the roadway.
Departure width | The **departure width** is the width of the roadway used by departing traffic downstream of any changes in width associated with the roundabout. The departure width is typically less than or equal to half of the total width of the roadway.
Entry width | The **entry width** defines the width of the entry where it meets the inscribed circle. It is measured perpendicularly from the right edge of the entry to the intersection point of the left edge line and the inscribed circle.
Exit width | The **exit width** defines the width of the exit where it meets the inscribed circle. It is measured perpendicularly from the right edge of the exit to the intersection point of the left edge line and the inscribed circle.
Entry radius | The **entry radius** is the minimum radius of curvature of the outside curb at the entry.
Exit radius | The **exit radius** is the minimum radius of curvature of the outside curb at the exit.
1.5 Distinguishing Roundabouts from Other Circular Intersections

Since the purpose of this guide is to assist in the planning, design, and performance evaluation of roundabouts, not other circular intersections, it is important to be able to distinguish between them. Since these distinctions may not always be obvious, the negative aspects of rotaries or neighborhood traffic circles (hereafter referred to as “traffic circles”) may be mistaken by the public for a roundabout. Therefore, the ability to carefully distinguish roundabouts from traffic circles is important in terms of public understanding.

How then does one distinguish a roundabout from other forms of circular intersection? Exhibit 1-5 identifies some of the major characteristics of roundabouts and contrasts them with other traffic circles. Note that some of the traffic circles shown have many of the features associated with roundabouts but are deficient in one or more critical areas. Note also that these characteristics apply to yield-controlled roundabouts; signalized roundabouts are a special case discussed in Chapter 8.

Circular intersections that do not conform to the characteristics of modern roundabouts are called “traffic circles” in this guide.

Exhibit 1-5. Comparison of roundabouts with traffic circles.

<table>
<thead>
<tr>
<th>Roundabouts</th>
<th>Traffic Circles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Traffic control</td>
<td>Some traffic circles use stop control, or no control, on one or more entries.</td>
</tr>
<tr>
<td>Yield control is used on all entries. The circulatory roadway has no control.</td>
<td>Hagerstown, MD</td>
</tr>
<tr>
<td>Santa Barbara, CA</td>
<td></td>
</tr>
<tr>
<td>(b) Priority to circulating vehicles</td>
<td>Some traffic circles require circulating traffic to yield to entering traffic.</td>
</tr>
<tr>
<td>Circulating vehicles have the right-of-way. Santa Barbara, CA</td>
<td>Sarasota, FL</td>
</tr>
</tbody>
</table>
Roundabouts vs. Traffic Circles

<table>
<thead>
<tr>
<th>Roundabouts</th>
<th>Traffic Circles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) Pedestrian access</td>
<td>Some traffic circles allow pedestrian access to the central island. Sarasota, FL</td>
</tr>
<tr>
<td>Pedestrian access is allowed only across the legs of the roundabout, behind the yield line. Santa Barbara, CA</td>
<td></td>
</tr>
<tr>
<td>(d) Parking</td>
<td>Some traffic circles allow parking within the circulatory roadway. Sarasota, FL</td>
</tr>
<tr>
<td>No parking is allowed within the circulatory roadway or at the entries. Avon, CO</td>
<td></td>
</tr>
<tr>
<td>(e) Direction of circulation</td>
<td>Some neighborhood traffic circles allow left-turning vehicles to pass to the left of the central island. Portland, OR</td>
</tr>
<tr>
<td>All vehicles circulate counter-clockwise and pass to the right of the central island. Naples, FL</td>
<td></td>
</tr>
</tbody>
</table>
In addition to the design elements identified in Exhibit 1-5, roundabouts often include one or more additional design elements intended to enhance the safety and/or capacity of the intersection. However, their absence does not necessarily preclude an intersection from operating as a roundabout. These additional elements are identified in Exhibit 1-6.

Exhibit 1-6. Common design elements at roundabouts.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Adequate speed reduction</td>
<td>Good roundabout design requires entering vehicles to negotiate a small enough radius to slow speeds to no greater than 50 km/h (30 mph). Once within the circulatory roadway, vehicles’ paths are further deflected by the central island. West Boca Raton, FL</td>
</tr>
<tr>
<td></td>
<td>Some roundabouts allow high-speed entries for major movements. This increases the risk for more severe collisions for vehicles, bicycles, and pedestrians. Bradenton Beach, FL</td>
</tr>
</tbody>
</table>
Good roundabout design makes accommodation for the appropriate design vehicle. For small roundabouts, this may require the use of an apron. Lothian, MD

Some roundabouts are too small to accommodate large vehicles that periodically approach the intersection. Naples, FL

Flare on an entry to a roundabout is the widening of an approach to multiple lanes to provide additional capacity and storage at the yield line. Long Beach, CA

Exhibit 1-6 (continued). Common design elements at roundabouts.

Aprons can be used in small roundabouts to accommodate the occasional large vehicle that may use the intersection.
Exhibit 1-6 (continued).
Common design elements at roundabouts.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) Splitter island</td>
<td>All except mini-roundabouts have raised splitter islands. These are designed to separate traffic moving in opposite directions, deflect entering traffic, and to provide opportunities for pedestrians to cross in two stages. Mini-roundabouts may have splitter islands defined only by pavement markings. Tavares, FL</td>
</tr>
<tr>
<td>(e) Pedestrian crossing locations</td>
<td>Pedestrian crossings are located at least one vehicle length upstream of the yield point. Fort Pierce, FL</td>
</tr>
</tbody>
</table>

1.6 Roundabout Categories

For the purposes of this guide, roundabouts have been categorized according to size and environment to facilitate discussion of specific performance or design issues. There are six basic categories based on environment, number of lanes, and size:

- Mini-roundabouts
- Urban compact roundabouts
- Urban single-lane roundabouts
- Urban double-lane roundabouts
- Rural single-lane roundabouts
- Rural double-lane roundabouts

Multilane roundabouts with more than two approach lanes are possible, but they are not covered explicitly by this guide, although many of the design principles contained in this guide would still apply. For example, the guide provides guidance on the
design of flaring approaches from one to two lanes. Although not explicitly discussed, this guidance could be extended to the design of larger roundabout entries.

Note that separate categories have not been explicitly identified for suburban environments. Suburban settings may combine higher approach speeds common in rural areas with multimodal activity that is more similar to urban settings. Therefore, they should generally be designed as urban roundabouts, but with the high-speed approach treatments recommended for rural roundabouts.

In most cases, designers should anticipate the needs of pedestrians, bicyclists, and large vehicles. Whenever a raised splitter island is provided, there should also be an at-grade pedestrian refuge. In this case, the pedestrian crossing facilitates two separate moves: curb-to-island and island-to-curb. The exit crossing will typically require more vigilance from the pedestrian and motorist than the entry crossing. Further, it is recommended that all urban crosswalks be marked. Under all urban design categories, special attention should be given to assist pedestrian users who are visually impaired or blind, through design elements. For example, these users typically attempt to maintain their approach alignment to continue across a street in the crosswalk, since the crosswalk is often a direct extension of the sidewalk. A roundabout requires deviation from that alignment, and attention needs to be given to providing appropriate informational cues to pedestrians regarding the location of the sidewalk and the crosswalk, even at mini-roundabouts. For example, appropriate landscaping is one method of providing some information. Another is to align the crosswalk ramps perpendicular to the pedestrian’s line of travel through the pedestrian refuge.

1.6.1 Comparison of roundabout categories

Exhibit 1-7 summarizes and compares some fundamental design and operational elements for each of the six roundabout categories developed for this guide. The following sections provide a qualitative discussion of each category.

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Mini-Roundabout</th>
<th>Urban Compact</th>
<th>Urban Single-Lane</th>
<th>Urban Double-Lane</th>
<th>Rural Single-Lane</th>
<th>Rural Double-Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended maximum entry</td>
<td>25 km/h (15 mph)</td>
<td>25 km/h (15 mph)</td>
<td>35 km/h (20 mph)</td>
<td>40 km/h (25 mph)</td>
<td>40 km/h (25 mph)</td>
<td>50 km/h (30 mph)</td>
</tr>
<tr>
<td>maximum design speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum number of entering</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>lanes per approach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical inscribed circle diameter</td>
<td>13 m to 25 m (45 ft to 80 ft)</td>
<td>25 to 30 m (80 to 100 ft)</td>
<td>30 to 40 m (100 to 130 ft)</td>
<td>45 to 55 m (150 to 180 ft)</td>
<td>35 to 40 m (115 to 130 ft)</td>
<td>55 to 60 m (180 to 200 ft)</td>
</tr>
<tr>
<td>Splitter island treatment</td>
<td>Raised if possible, crosswalk cut if raised</td>
<td>Raised, with crosswalk cut</td>
<td>Raised, with crosswalk cut</td>
<td>Raised, with crosswalk cut</td>
<td>Raised and extended, with crosswalk cut</td>
<td>Raised and extended, with crosswalk cut</td>
</tr>
<tr>
<td>Typical daily service volumes on 4-leg roundabout (veh/day)</td>
<td>10,000</td>
<td>15,000</td>
<td>20,000</td>
<td>Refer to Chapter 4 procedures</td>
<td>20,000</td>
<td>Refer to Chapter 4 procedures</td>
</tr>
</tbody>
</table>

1. Assumes 90-degree entries and no more than four legs.

Suburban roundabouts incorporate elements of both urban and rural roundabouts.

Roundabout design should generally accommodate pedestrian, bicycle, and large vehicle use.
1.6.2 Mini-roundabouts

Mini-roundabouts are small roundabouts used in low-speed urban environments, with average operating speeds of 60 km/h (35 mph) or less. Exhibit 1-8 provides an example of a typical mini-roundabout. They can be useful in low-speed urban environments in cases where conventional roundabout design is precluded by right-of-way constraints. In retrofit applications, mini-roundabouts are relatively inexpensive because they typically require minimal additional pavement at the intersecting roads—for example, minor widening at the corner curbs. They are mostly recommended when there is insufficient right-of-way for an urban compact roundabout. Because they are small, mini-roundabouts are perceived as pedestrian-friendly with short crossing distances and very low vehicle speeds on approaches and exits. The mini-roundabout is designed to accommodate passenger cars without requiring them to drive over the central island. To maintain its perceived compactness and low speed characteristics, the yield lines are positioned just outside of the swept path of the largest expected vehicle. However, the central island is mountable, and larger vehicles may cross over the central island, but not to the left of it. Speed control around the mountable central island should be provided in the design by requiring horizontal deflection. Capacity for this type of roundabout is expected to be similar to that of the compact urban roundabout. The recommended design of these roundabouts is based on the German method, with some influence from the United Kingdom.

Exhibit 1-8. Typical mini-roundabout.
1.6.3 Urban compact roundabouts

Like mini-roundabouts, urban compact roundabouts are intended to be pedestrian- and bicyclist-friendly because their perpendicular approach legs require very low vehicle speeds to make a distinct right turn into and out of the circulatory roadway. All legs have single-lane entries. However, the urban compact treatment meets all the design requirements of effective roundabouts. The principal objective of this design is to enable pedestrians to have safe and effective use of the intersection. Capacity should not be a critical issue for this type of roundabout to be considered. The geometric design includes raised splitter islands that incorporate at-grade pedestrian storage areas, and a nonmountable central island. There is usually an apron surrounding the nonmountable part of the compact central island to accommodate large vehicles. The recommended design of these roundabouts is similar to those in Germany and other northern European countries. Exhibit 1-9 provides an example of a typical urban compact roundabout.

Urban compact roundabouts are intended to be pedestrian-friendly; capacity should not be a critical issue when considering this type.

Exhibit 1-9. Typical urban compact roundabout.
1.6.4 Urban single-lane roundabouts

Urban single-lane roundabouts have slightly higher speeds and capacities than urban compact roundabouts. The design focuses on consistent entering and exiting speeds.

Exhibit 1-10. Typical urban single-lane roundabout.

This type of roundabout is characterized as having a single lane entry at all legs and one circulatory lane. Exhibit 1-10 provides an example of a typical urban single-lane roundabout. They are distinguished from urban compact roundabouts by their larger inscribed circle diameters and more tangential entries and exits, resulting in higher capacities. Their design allows slightly higher speeds at the entry, on the circulatory roadway, and at the exit. Notwithstanding the larger inscribed circle diameters than compact roundabouts, the speed ranges recommended in this guide are somewhat lower than those used in other countries, in order to enhance safety for bicycles and pedestrians. The roundabout design is focused on achieving consistent entering and circulating vehicle speeds. The geometric design includes raised splitter islands, a nonmountable central island, and preferably, no apron. The design of these roundabouts is similar to those in Australia, France, and the United Kingdom.
1.6.5 Urban double-lane roundabouts

Urban double-lane roundabouts include all roundabouts in urban areas that have at least one entry with two lanes. They include roundabouts with entries on one or more approaches that flare from one to two lanes. These require wider circulatory roadways to accommodate more than one vehicle traveling side by side. Exhibit 1-11 provides an example of a typical urban multilane roundabout. The speeds at the entry, on the circulatory roadway, and at the exit are similar to those for the urban single-lane roundabouts. Again, it is important that the vehicular speeds be consistent throughout the roundabout. The geometric design will include raised splitter islands, no truck apron, a nonmountable central island, and appropriate horizontal deflection.

Alternate routes may be provided for bicyclists who choose to bypass the roundabout. Bicycle and pedestrian pathways must be clearly delineated with sidewalk construction and landscaping to direct users to the appropriate crossing locations and alignment. Urban double-lane roundabouts located in areas with high pedestrian or bicycle volumes may have special design recommendations such as those provided in Chapters 6 and 7. The design of these roundabouts is based on the methods used in the United Kingdom, with influences from Australia and France.

The urban double-lane roundabout category includes roundabouts with one or more entries that flare from one to two lanes.

See Chapters 6 and 7 for special design considerations for pedestrians and bicycles.

Exhibit 1-11. Typical urban double-lane roundabout.
1.6.6 Rural single-lane roundabouts

Because of their higher approach speeds, rural single-lane roundabouts require supplementary geometric and traffic control device treatments on the approaches.

Rural single-lane roundabouts generally have high average approach speeds in the range of 80 to 100 km/h (50 to 60 mph). They require supplementary geometric and traffic control device treatments on approaches to encourage drivers to slow to an appropriate speed before entering the roundabout. Rural roundabouts may have larger diameters than urban roundabouts to allow slightly higher speeds at the entries, on the circulatory roadway, and at the exits. This is possible if few pedestrians are expected at these intersections, currently and in future. There is preferably no apron because their larger diameters should accommodate larger vehicles. Supplemental geometric design elements include extended and raised splitter islands, a nonmountable central island, and adequate horizontal deflection. The design of these roundabouts is based primarily on the methods used by Australia, France, and the United Kingdom. Exhibit 1-12 provides an example of a typical rural single-lane roundabout.

Rural roundabouts that may one day become part of an urbanized area should be designed as urban roundabouts, with slower speeds and pedestrian treatments. However, in the interim, they should be designed with supplementary approach and entry features to achieve safe speed reduction.

Exhibit 1-12. Typical rural single-lane roundabout.
1.6.7 Rural double-lane roundabouts

Rural double-lane roundabouts have speed characteristics similar to rural single-lane roundabouts with average approach speeds in the range of 80 to 100 km/h (50 to 60 mph). They differ in having two entry lanes, or entries flared from one to two lanes, on one or more approaches. Consequently, many of the characteristics and design features of rural double-lane roundabouts mirror those of their urban counterparts. The main design differences are designs with higher entry speeds and larger diameters, and recommended supplementary approach treatments. The design of these roundabouts is based on the methods used by the United Kingdom, Australia, and France. Exhibit 1-13 provides an example of a typical rural double-lane roundabout. Rural roundabouts that may one day become part of an urbanized area should be designed for slower speeds, with design details that fully accommodate pedestrians and bicyclists. However, in the interim they should be designed with approach and entry features to achieve safe speed reduction.

Exhibit 1-13. Typical rural double-lane roundabout.
1.7 References

