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Roundabouts produce both control

delay and geometric delay.

This chapter presents methods for analyzing the operation of an existing or planned
roundabout. The methods allow a transportation analyst to assess the operational
performance of a facility, given information about the usage of the facility and its
geometric design elements. An operational analysis produces two kinds of esti-
mates: (1) the capacity of a facility, i.e., the ability of the facility to accommodate
various streams of users, and (2) the level of performance, often measured in terms
of one or more measures of effectiveness, such as delay and queues.

The Highway Capacity Manual (1) (HCM) defines the capacity of a facility as “the
maximum hourly rate at which persons or vehicles can reasonably be expected to
traverse a point or uniform section of a lane or roadway during a given time period
under prevailing roadway, traffic, and control conditions.” While capacity is a spe-
cific measure that can be defined and estimated, level of service (LOS) is a qualita-
tive measure that “characterizes operational conditions within a traffic stream and
their perception by motorists and passengers.” To quantify level of service, the
HCM defines specific measures of effectiveness for each highway facility type.
Control delay is the measure of effectiveness that is used to define level of service
at intersections, as perceived by users. In addition to control delay, all intersections
cause some drivers to also incur geometric delays when making turns. A systems
analysis of a roadway network may include geometric delay because of the slower
vehicle paths required for turning through intersections. An example speed profile
is shown in Chapter 6 to demonstrate the speed reduction that results from geo-
metric delay at a roundabout.

While an operational analysis can be used to evaluate the performance of an exist-
ing roundabout during a base or future year, its more common function in the U.S.
may be to evaluate new roundabout designs.

This chapter:

• Describes traffic operations at roundabouts;

• Lists the data required to evaluate the performance of a roundabout;

• Presents a method to estimate the capacity of five of the six basic round-
about configurations presented in this guide;

• Describes the measures of effectiveness used to determine the performance
of a roundabout and a method to estimate these measures; and

• Briefly describes the computer software packages available to implement the
capacity and performance analysis procedures.

Appendix A provides background information on the various capacity relationships.

Chapter 4 Operation
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4.1  Traffic Operation at Roundabouts

4.1.1  Driver behavior and geometric elements

A roundabout brings together conflicting traffic streams, allows the streams to
safely merge and traverse the roundabout, and exit the streams to their desired
directions. The geometric elements of the roundabout provide guidance to drivers
approaching, entering, and traveling through a roundabout.

Drivers approaching a roundabout must slow to a speed that will allow them to
safely interact with other users of the roundabout, and to negotiate the round-
about. The width of the approach roadway, the curvature of the roadway, and the
volume of traffic present on the approach govern this speed. As drivers approach
the yield line, they must check for conflicting vehicles already on the circulating
roadway and determine when it is safe and prudent to enter the circulating stream.
The widths of the approach roadway and entry determine the number of vehicle
streams that may form side by side at the yield line and govern the rate at which
vehicles may enter the circulating roadway. The size of the inscribed circle affects
the radius of the driver’s path, which in turn determines the speed at which drivers
travel on the roundabout. The width of the circulatory roadway determines the
number of vehicles that may travel side by side on the roundabout.

The British (2), French (3), and German (4) analytical procedures are based on em-
pirical relationships that directly relate capacity to both traffic characteristics and
roundabout geometry. The British empirical relationships reveal that small sublane
changes in the geometric parameters produce significant changes in capacity.

For instance, if some approaches are flared or have additional short lanes, these
provide considerably more capacity for two reasons. First, wider entries require
wider circulatory roadway widths. This provides for more opportunities for the cir-
culatory traffic to bunch together, thus increasing the number of acceptable oppor-
tunities to enter, thereby increasing capacity. Second, the typical size of groups of
drivers entering into acceptable opportunities in the circulatory traffic is quite small,
so short lanes can be very effective in increasing group sizes, because the short
lane is frequently able to be filled.

The British (2) use the inscribed circle diameter, the entry width, the approach
(road) half width, the entry radius, and the sharpness of the flare to define the
performance of a roundabout. The sharpness of the flare, S, is a measure of the
rate at which the extra width is developed in the entry flare. Large values of S
correspond to short, severe flares, and small values of S correspond to long, gradual
flares (5).

The results of the extensive empirical British research indicate that approach half
width, entry width, average effective flare length and entry angle have the most
significant effect on entry capacity. Roundabouts fit into two general classes: those
with a small inscribed circle diameter of less than 50 m (165 ft.) and those with a
diameter above 50 m. The British relationships provide a means of including both of
these roundabout types. The inscribed circle diameter has a relatively small effect
for inscribed diameters of 50 m (165 ft) or less. The entry radius has little effect on
capacity provided that it is 20 m (65 ft) or more. The use of perpendicular entries (70

Approach speed is governed by:

•  Approach roadway width

•  Roadway curvature

•  Approach volume

Geometric elements that affect

entry capacity include:

•  Approach half width

•  Entry width

•  Entry angle

•  Average effective flare

length
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degrees or more) and small entry radii (less than 15 m [50 ft]) will reduce capacity.
The presence of the geometric parameters in the British and French models allow
designers to manipulate elements of their design to determine both their opera-
tional and safety effects. German research has not been able to find the same
influence of geometry, although this may be due to the relatively narrow range of
geometries in Germany (4).

Thus, the geometric elements of a roundabout, together with the volume of traffic
desiring to use a roundabout at a given time, may determine the efficiency with
which a roundabout operates.

4.1.2  Concept of roundabout capacity

The capacity of each entry to a roundabout is the maximum rate at which vehicles
can reasonably be expected to enter the roundabout from an approach during a
given time period under prevailing traffic and roadway (geometric) conditions. An
operational analysis considers a precise set of geometric conditions and traffic flow
rates defined for a 15-minute analysis period for each roundabout entry. While con-
sideration of Average Annual Daily Traffic volumes (AADT) across all approaches is
useful for planning purposes as provided in Exhibit 1-13 and Chapter 3, analysis of
this shorter time period is critical to assessing the level of performance of the
roundabout and its individual components.

The capacity of the entire roundabout is not considered, as it depends on many
terms. However, Exhibit 1-13 provides threshold average daily traffic volumes for
the various categories of roundabouts, assuming four legs. Below these thresh-
olds, a four-legged roundabout with roadways intersecting perpendicularly should
have adequate capacity (provided the traffic volumes are reasonably balanced and
the geometry does not deviate substantially from those shown on the design tem-
plates in Exhibits 1-7 through 1-12). The focus in this chapter on the roundabout
entry is similar to the operational analysis methods used for other forms of
unsignalized intersections and for signalized intersections. In each case, the capac-
ity of the entry or approach is computed as a function of traffic on the other (con-
flicting) approaches, the interaction of these traffic streams, and the intersection
geometry.

For a properly designed roundabout, the yield line is the relevant point for capacity
analysis. The approach capacity is the capacity provided at the yield line. This is
determined by a number of geometric parameters in addition to the entry width.
On multilane roundabouts it is important to balance the use of each lane, because
otherwise some lanes may be overloaded while others are underused. Poorly de-
signed exits may influence driver behavior and cause lane imbalance and conges-
tion at the opposite leg.

4.2 Data Requirements

The analysis method described in this chapter requires the specification of traffic
volumes for each approach to the roundabout, including the flow rate for each di-
rectional movement. Volumes are typically expressed in passenger car vehicles per
hour (vph), for a specified 15-minute analysis period. To convert other vehicle types
to passenger car equivalents (pce), use the conversion factors given in Exhibit 4-1.

Perpendicular entries and small

entry radii reduce capacity;

inscribed circle diameters of 50

m (165 ft) or less have little

effect on  capacity.

Roundabout capacity defined.

Operational analyses consider

15-minute volumes, as opposed

to the daily volumes used in

planning analyses.

The approach capacity is the

capacity provided at the yield

line.

Different size vehicles have

different capacity impacts;

passenger cars are used as the

basis for comparison.
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Car 1.0

Single-unit truck or bus 1.5

Truck with trailer 2.0

Bicycle or motorcycle 0.5

Source: (6), (7)

Passenger Car
Vehicle Type Equivalent (pce)

Exhibit 4-1. Conversion factors
for passenger car equivalents

(pce).

Traffic volume data for an urban roundabout should be collected for each directional
movement for at least the morning and evening peak periods, since the various
movements, and thus approach and circulating volumes, may peak at different times.
At rural roundabouts, the analyst should check the requirements of the agency
with the jurisdiction of the site. The reader is referred to the Manual of Transporta-
tion Engineering Studies (8) for a complete discussion of traffic volume data collec-
tion methods. Typically, intersection volume counts are made at the intersection
stop bar, with an observer noting the number of cars that pass that point over a
specified time period. However, particularly with respect to cases in which de-
mand exceeds capacity (when queues do not dissipate within the analysis period),
it is important to note that the stop bar counts reflect only the volume that is
served, not the demand volume. In this case, care must be taken to collect data
upstream of the end of a queue so that true demand volumes are available for
analysis.

The relationship between the standard origin-to-destination turning movements at
an intersection and the circulating and entry flows at a roundabout is important, yet
is often complicated to compute, particularly if an intersection has more than four
approaches. For conventional intersctions, traffic flow data are accumulated by di-
rectional turning movement, such as for the northbound left turn. For roundabouts,
however, the data of interest for each approach are the entry flow and the circulat-
ing flow. Entry flow is simply the sum of the through, left, and right turn move-
ments on an approach. Circulating flow is the sum of the vehicles from different
movements passing in front of the adjacent uptstream splitter island. At existing
roundabouts, these flows can simply be measured in the field. Right turns are
included in approach volumes and require capacity, but are not included in the
circulating volumes downstream because they exit before the next entrance.

For proposed or planned four-legged roundabouts, Equations 4-1 through 4-4 can
be applied to determine conflicting (circulating) flow rates, as shown graphically in
Exhibit 4-2.

VEB,circ = VWB,LT + VSB,LT + V SB,TH  + VNB,U-turn + VWB,U-turn + VSB,U-turn (4-1)

VWB,circ = VEB,LT + VNB,LT + VNB,TH + VSB,U-turn + VEB,U-turn + VNB,U-turn (4-2)

VNB,circ = VEB,LT + VEB,TH + VSB,LT +  VWB,U-turn + VSB,U-turn + VEB,U-turn (4-3)

VSB,circ = VWB,LT + VWB,TH + VNB,LT + VEB,U-turn + VNB,U-turn + VWB,U-turn (4-4)

Determining circulating

volumes as a function of

turning movement volumes.

Entry flow and circulating flow

for each approach are the

volumes of interest for

roundabout capacity analysis,

rather than turning

movement volumes.
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Exhibit 4-2. Traffic flow
parameters.

While this method is mathematically correct, it is somewhat sensitive to errors and
inconsistencies in the input data. It is important that the counts at all of the loca-
tions in the roundabout be made simultaneously. Inconsistencies in the data from
counts taken on different days can produce meaningless results, including nega-
tive volumes. At a minimum, the sum of the entering and exiting volumes should
be checked and adjustments should be made if necessary to ensure that the same
amount of traffic enters and leaves the roundabout.

For existing roundabouts, when approach, right-turn, circulating, and exit flows are
counted, directional turning movements can be computed as shown in the follow-
ing example. Equation 4-5 shows the through movement flow rate for the east-
bound approach as a function of the entry flow rate for that approach, the exit flow
rate for the opposing approach, the right turn flow rate for the subject approach,
the right  turn flow rate for the approach on the right, and the circulating flow rate
for the approach on the right. Other through movement flow rates can be esti-
mated using a similar relationship.

VEB,TH  = VEB,entry  + VWB,exit   - VEB,RT  -  VNB,RT   - VNB,circ (4-5)

The left turn flow rate for an approach is a function of the entry flow rate, the
through flow rate, and the right turn flow rate for that same approach, as shown in
Equation 4-6. Again, other movements’ flows are estimated using similar equa-
tions.

VEB,LT  = VEB,entry  - VEB,TH  - VEB,RT (4-6)
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4.3 Capacity

The maximum flow rate that can be accommodated at a roundabout entry de-
pends on two factors: the circulating flow on the roundabout that conflicts with the
entry flow, and the geometric elements of the roundabout.

When the circulating flow is low, drivers at the entry are able to enter the round-
about without significant delay. The larger gaps in the circulating flow are more
useful to the entering drivers and more than one vehicle may enter each gap. As
the circulating flow increases, the size of the gaps in the circulating flow decrease,
and the rate at which vehicles can enter also decreases. Note that when comput-
ing the capacity of a particular leg, the actual circulating flow to use may be less
than demand flows, if the entry capacity of one leg contributing to the circulating
flow is less than demand on that leg.

The geometric elements of the roundabout also affect the rate of entry flow. The
most important geometric element is the width of the entry and circulatory road-
ways, or the number of lanes at the entry and on the roundabout. Two entry lanes
permit nearly twice the rate of entry flow as does one lane. Wider circulatory road-
ways allow vehicles to travel alongside, or follow, each other in tighter bunches and
so provide longer gaps between bunches of vehicles. The flare length also affects
the capacity. The inscribed circle diameter and the entry angle have minor effects
on capacity.

As at other forms of unsignalized intersection, when traffic flows on an approach
exceed approximately 85 percent of capacity, delays and queue lengths vary sig-
nificantly about their mean values (with standard deviations of similar magnitude
as the means). For this reason, the analysis procedures in some countries (Austra-
lia, Germany, and the United Kingdom), and this guide, recommend that round-
abouts be designed to operate at no more than 85 percent of their estimated ca-
pacity.

As performance data become available for roundabouts designed according to the
procedures in this guide in the United States, they will provide a basis for develop-
ment of operational performance procedures specifically calibrated for U.S. condi-
tions. Therefore, analysts should consult future editions of the Highway Capacity
Manual.

Roundabouts should be

designed to operate at no more

than 85 percent of their

estimated capacity. Beyond this

threshold, delays and queues

vary significantly from their

mean values.

4.3.1 Single-lane roundabout capacity

Exhibit 4-3 shows the expected capacity for a single-lane roundabout for both the
urban compact and urban/rural single-lane designs. The exhibit shows the variation
of maximum entry flow as a function of the circulating flow on the roundabout. The
calculation of the circulating flow was described previously. The capacity forecast
shown in the chart is valid for single-lane roundabouts with inscribed circle diam-
eters of 25 m to 55 m (80 ft to 180 ft). The capacity forecast is based on simplified
British regression relationships in Appendix A, which may also be derived with a
gap-acceptance model by incorporating limited priority behavior.

Roundabout approach capacity

is dependent on the conflicting

circulating flow and the

roundabout’s geometric

elements.
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Exhibit 4-3. Approach capacity
of a single-lane roundabout.

The slope of the upper line

changes because circulating

flow downstream from a

roundabout entry should not

exceed 1,800 veh/h.

Note that in any case, the flow rate downstream of the merge point (between the
entry and the next exit) should not be allowed to exceed 1,800 veh/h. Exceeding
this threshold may indicate the need for a double-lane entry.

The urban compact design is expected to have a reduced capacity, but has signifi-
cant benefits of reduced vehicle speeds through the roundabout (per the German
equations in Appendix A). This increases safety for pedestrians and bicyclists com-
pared with the larger single lane roundabouts. Mini-roundabout capacities may be
approximated using the daily maximum service volumes provided for them in Chap-
ter 3, but in any case should not exceed the capacity of the urban compact design.

Circulating flow should not

exceed 1,800 veh/h at any

point in a single-lane

roundabout. Exit flows

exceeding 1,200 veh/h may

indicate the need for a

double-lane exit.
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4.3.2 Double-lane roundabout capacity

Exhibit 4-4 shows the expected capacity of a double-lane roundabout that is based
on the design templates for the urban/rural double-lane roundabouts. The capacity
forecast shown in the chart is valid for double-lane roundabouts with inscribed
circle diameters of 40 m to 60 m (130 ft to 200 ft). The capacity forecast is based on
simplified British regression relationships in Appendix A, which may also be de-
rived with a gap-acceptance model by incorporating limited priority behavior. Larger
inscribed diameter roundabouts are expected to have slightly higher capacities at
moderate to high circulating flows.

Exhibit 4-4.  Approach
capacity of a double-lane

roundabout.

4.3.3 Capacity effect of short lanes at flared entries

By flaring an approach, short lanes may be added at the entry to improve the perfor-
mance. If an additional short lane is used, it is assumed that the circulatory road
width is also increased accordingly. The capacity of the entry is based on the as-
sumption that all entry lanes will be effectively used. The capacity is given by the
product of the appropriate factor in Exhibit 4-5 and the capacity of a two-lane round-
about in Exhibit 4-4. Refer to Appendix A for a derivation of these factors (9).

When flared approaches are

used, the circulatory road width

must be widened.

See Appendix A for further

information on the effects of short

lanes at flared entries.
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4.3.4  Comparison of single-lane and double-lane roundabouts

Exhibit 4-6 shows a comparison of the expected capacity for both the single-lane
and double-lane roundabouts. Again, it is evident that the number of lanes, or the
size of the entry and circulating roadways, has a significant effect on the entry
capacity.

Exhibit 4-5.  Capacity reduction
factors for short lanes.

The use of short lanes can

nearly double approach

capacity, without requiring a

two-lane roadway prior to the

roundabout.

Exhibit 4-6.  Capacity
comparison of single-lane and
double-lane roundabouts.

0 * 0.500

1 0.707

2 0.794

4 0.871

6 0.906

8 0.926

10 0.939

Number of vehicle spaces in
the short lane, nf

Factor (applied to double-lane
approach capacity)

Source (10)

*Used for the case of a single lane entry  to a double-lane roundabout.
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Exhibit 4-7.  Capacity reduction
factor M  for a single-lane

roundabout assuming
pedestrian priority.

4.3.5 Pedestrian effects on entry capacity

Pedestrians crossing at a marked crosswalk that gives them priority over entering
motor vehicles can have a significant effect on the entry capacity. In such cases, if
the pedestrian crossing volume and circulating volume are known, the vehicular
capacity should be factored (multiply by M) according to the relationship shown in
Exhibit 4-7 or Exhibit 4-8 for single-lane and double-lane roundabouts, respectively.
Note that the pedestrian impedance decreases as the conflicting vehicle flow in-
creases. The Highway Capacity Manual (1) provides additional guidance on the ca-
pacity of pedestrian crossings and should be consulted if the capacity of the cross-
walk itself is an issue.

The effects of conflicting

pedestrians on approach

capacity decrease as conflicting

vehicular volumes increase, as

entering vehicles become more

likely to have to stop regardless

of whether pedestrians are

present.

Source: (10)
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4.3.6  Exit capacity

An exit flow on a single lane of more than 1,400 veh/h, even under good operating
conditions for vehicles (i.e., tangential alignment, and no pedestrians and bicyclists)
is difficult to achieve. Under normal urban conditions, the exit lane capacity is in the
range of 1,200 to 1,300 veh/h. Therefore, exit flows exceeding 1,200 veh/h may
indicate the need for a double-lane exit (11).

4.4 Performance Analysis

Three performance measures are typically used to estimate the performance of a
given roundabout design: degree of saturation, delay, and queue length. Each mea-
sure provides a unique perspective on the quality of service at which a roundabout
will perform under a given set of traffic and geometric conditions. Whenever pos-
sible, the analyst should estimate as many of these parameters as possible to
obtain the broadest possible evaluation of the performance of a given roundabout
design. In all cases, a capacity estimate must be obtained for an entry to the round-
about before a specific performance measure can be computed.

Exhibit 4-8.  Capacity
reduction factor M  for a
double-lane roundabout
assuming pedestrian priority.

Source: (10)

Key performance measures for

roundabouts:

• Degree of saturation

• Delay

• Queue length
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4.4.1 Degree of saturation

Degree of saturation is the ratio of the demand at the roundabout entry to the
capacity of the entry. It provides a direct assessment of the sufficiency of a given
design. While there are no absolute standards for degree of saturation, the Austra-
lian design procedure suggests that the degree of saturation for an entry lane should
be less than 0.85 for satisfactory operation. When the degree of saturation ex-
ceeds this range, the operation of the roundabout will likely deteriorate rapidly,
particularly over short periods of time. Queues may form and delay begins to in-
crease exponentially.

4.4.2 Delay

Delay is a standard parameter used to measure the performance of an intersec-
tion. The Highway Capacity Manual (1) identifies delay as the primary measure of
effectiveness for both signalized and unsignalized intersections, with level of ser-
vice determined from the delay estimate. Currently, however, the Highway Capac-
ity Manual only includes control delay, the delay attributable to the control device.
Control delay is the time that a driver spends queuing and then waiting for an
acceptable gap in the circulating flow while at the front of the queue. The formula
for computing this delay is given in Equation 4-7 (12, based on 13; see also 14).
Exhibit 4-9 shows how control delay at an entry varies with entry capacity and
circulating flow. Each curve for control delay ends at a volume-to-capacity ratio of
1.0, with the curve projected beyond that point as a dashed line.

(4-7)

where: d = average control delay, sec/veh;
v x = flow rate for movement x, veh/h;
cmx = capacity of movement x, veh/h; and
T = analysis time period, h (T = 0.25 for a 15-minute period).
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Note that as volumes approach capacity, control delay increases exponentially,
with small changes in volume having large effects on delay. An accurate analysis of
delay under conditions near or over saturation requires consideration of the follow-
ing factors:

• The effect of residual queues. Roundabout entries operating near or over capac-
ity can generate significant residual queues that must be accounted for be-
tween consecutive time periods. The method presented above does not ac-
count for these residual queues. These factors are accounted for in the delay
formulae developed by Kimber and Hollis (15); however, these formulae are
difficult to use manually.

• The metering effect of upstream oversaturated entries. When an upstream en-
try is operating over capacity, the circulating volume in front of a downstream
entry is less than the true demand. As a result, the capacity of the downstream
entry is higher than what would be predicted from analyzing actual demand.

For most design applications where target degrees of saturation are no more than
0.85, the procedures presented in this section are sufficient. In cases where it is
desired to more accurately estimate performance in conditions near or over capac-
ity, the use of software that accounts for the above factors is recommended.

Geometric delay is the additional time that a single vehicle with no conflicting
flows spends slowing down to the negotiation speed, proceeding through the in-
tersection, and accelerating back to normal operating speed. Geometric delay may

Exhibit 4-9. Control delay as a
function of capacity and
entering flow.
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be an important consideration in network planning (possibly affecting route travel
times and choices) or when comparing operations of alternative intersection types.
While geometric delay is often negligible for through movements at a signalized or
stop-controlled intersection, it can be more significant for turning movements such
as those through a roundabout. Calculation of geometric delay requires an esti-
mate of the proportion of vehicles that must stop at the yield line, as well as knowl-
edge of the roundabout geometry as it affects vehicle speeds during entry, nego-
tiation, and exit. Procedures for calculating the number of stops and geometric
delay are given in the Australian design guide (16).

4.4.3  Queue length

Queue length is important when assessing the adequacy of the geometric design
of the roundabout approaches.

The average queue length (L vehicles) can be calculated by Little’s rule, as shown in
Equation 4-8 (17):

L = v   •  d / 3600 (4-8)

where: v = entry flow, veh/h
d = average delay, seconds/veh

Average queue length is equivalent to the vehicle-hours of delay per hour on an
approach. It is useful for comparing roundabout performance with other intersec-
tion forms, and other planning procedures that use intersection delay as an input.

For design purposes, Exhibit 4-10 shows how the 95th-percentile queue length
varies with the degree of saturation of an approach (18, 19). The x-axis of the graph
is the degree of saturation, or the ratio of the entry flow to the entry capacity.
Individual lines are shown for the product of T and entry capacity. To determine the
95th-percentile queue length during time T, enter the graph at the computed de-
gree of saturation. Move vertically until the computed curve line is reached. Then
move horizontally to the left to determine the 95th-percentile queue length. Alter-
natively, Equation 4-8 can be used to approximate the 95th-percentile queue. Note
that the graph and equation are only valid where the volume-to-capacity ratio im-
mediately before and immediately after the study period is no greater than 0.85 (in
other words, the residual queues are negligible).
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Exhibit 4-10. 95th-percentile
queue length estimation.

(4-9)

where: Q95= 95th percentile queue, veh,
vx  = flow rate for movement x, veh/h,
cm,x= capacity of movement x, veh/h, and
T = analysis time period, h (0.25 for 15-minute period).

Source: (19)
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4.4.4 Field observations

The analyst may evaluate an existing roundabout to determine its performance and
whether changes to its design are needed. Measurements of vehicle delay and
queuing can be made using standard traffic engineering techniques. In addition,
the analyst can perform a qualitative assessment of the roundabout performance.
The following list indicates conditions for which corrective design measures should
be taken (20). If the answers to these questions are negative, no corrective actions
need be taken.

• Do drivers stop unnecessarily at the yield point?

• Do drivers stop unnecessarily within the circulating roadway?

• Do any vehicles pass on the wrong side of the central island?

• Do queues from an external bottleneck back up into the roundabout from an exit
road?

• Does the actual number of entry lanes differ from those intended by the de-
sign?

• Do smaller vehicles encroach on the truck apron?

• Is there evidence of damage to any of the signs in the roundabout?

• Is there any pedestrian activity on the central island?

• Do pedestrians and cyclists fail to use the roundabout as intended?

• Are there tire marks on any of the curb surfaces to indicate vehicle contact?

• Is there any evidence of minor accidents, such as broken glass, pieces of rim,
etc., on the approaches or the circulating roadway?

• Is there any gravel or other debris collected in nontraveled areas that could be a
hazard to bicycles or motorcyclists?

• Are the vehicle speeds appropriate?

4.5 Computer Software for Roundabouts

While the analytical procedures of different countries are not very complex, they
are repetitive and time consuming, so most of these procedures have been imple-
mented in software. A summary of current (as of 1999) software products and the
analytical procedures that they implement is presented in Exhibit 4-11. The reader is
also advised to consult the latest version of the U.S. Highway Capacity Manual.
While the procedures provided in this chapter are recommended for most applica-
tions covered by this guide, models such as ARCADY, RODEL, SIDRA, KREISEL, or
GIRABASE may be consulted to determine the effects of geometric parameters,
particularly for multilane roundabouts outside the realm of this guide, or for fine-
tuning designs to improve performance. Note that many of these models repre-
sent different underlying data or theories and will thus produce different results.
Chapter 8 provides some information on microscopic simulation modeling which
may be useful alternatives analysis in systems context.

Points to consider for a qualitative

assessment of roundabout

performance.
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Name Scope Application and Qualities (1999 versions)
Exhibit 4-11.
Summary of
roundabout
software products
for operational
analysis.

British method (50 percent confidence limits). Capacity, delay, and
queuing. Includes projected number of crashes per year. Data were
collected at extensive field studies and from experiments involving
drivers at temporary roundabouts. Empirical relationships were de-
veloped from the data and incorporated into ARCADY. This model
reflects British driving behavior and British roundabout designs. A
prime attribute is that the capacities it predicts have been measured.

British method (user-specified confidence limits). Capacity, delay, and
queuing. Includes both an evaluation mode (geometric parameters
specified) and a design mode (performance targets specified). Includes
a crash prediction model. RODEL uses the British empirical equa-
tions. It also assists the user in developing an appropriate roundabout
for the traffic conditions.

Australian method, with analytical extensions. Capacity, delay, queue,
fuel, and environmental measures. Also evaluates two-way stop-con-
trolled, all-way stop controlled, and signalized intersections. It also
gives roundabout capacities from U.S. HCM 1997 and German pro-
cedures. SIDRA is based on gap acceptance processes. It uses field
data for the gap acceptance parameters to calibrate the model. There
has been limited field evaluation of the results although experience
has shown that the results fit Australian and U.S. single-lane (21) round-
about conditions satisfactorily. An important attribute is that the user
can alter parameters to easily reflect local driving.

U.S. HCM 1997 method. Limited to capacity estimation based on
entering and circulating volume. Optional gap acceptance parameter
values provide both a liberal and conservative estimate of capacity.
The data used to calibrate the models were recorded in the U.S. The
two curves given reflect the uncertainty from the results. The upper-
bound average capacities are anticipated at most roundabouts. The
lower bound results reflect the operation that might be expected until
roundabouts become more common.

Developed in Germany. Offers many user-specified options to imple-
ment the full range of procedures found in the literature from U.S.
(including this chapter), Europe, Britain, and Australia. KREISEL gives
the average capacity from a number of different procedures. It pro-
vides a means to compare these procedures.

French method. Capacity, delay, and queuing projections based on
regression. Sensitive to geometric parameters. Gives average val-
ues.

All configurations

All configurations

Single-lane
roundabouts
with a limited
range of
volumes

All configurations
and other control
types

All configurations

All configurations
including multiple
roundabout
interactions

ARCADY

RODEL

SIDRA

HCS-3

KREISEL

GIRABASE
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