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FOREWORD 

Pedestrian and bicycle safety is a focus area under the Federal Highway Administration’s 
Focused Approach to Safety. Pedestrian and bicycle crashes, along with roadway departure and 
intersection crashes, comprise almost 90 percent of U.S. traffic fatalities. One of the challenges 
for measuring pedestrian and bicycle safety is the availability of exposure data for pedestrians 
and bicycles. Agencies often do not have the resources to collect pedestrian and bicycle volumes. 
There is a need for innovative approaches to acquiring these data. 

This study, conducted under the Highway Safety Information System Program, leveraged 
existing geospatial, pedestrian count, and integrated speed information from probe data to 
supplement other roadway and contextual transportation data from several agencies. The 
researchers developed a pedestrian count model to predict pedestrian volumes at locations 
without pedestrian counts. This study continued the exploration of expanding the utility of 
existing data resources, as started with Photographic Data Extraction Feasibility and Pilot Study 
in Support of Roadside Safety and Roadway Departure Research (Eigen, Valdivieso, and Ahrari 
2014). 

The results of this research will benefit safety professionals and State and local transportation 
engineers. This report provides a method for estimating pedestrian volumes that can be used for 
pedestrian exposure and demonstrates the use of nontraditional data sources when traditionally 
used data are not available. 
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Symbol When You Know Multiply By To Find Symbol 
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in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 
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in2 square inches 645.2 square millimeters mm2 
ft2 square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
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fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1,000 L shall be shown in m3 
MASS 

oz ounces 28.35 grams g 
lb pounds 0.454 kilograms kg 
T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”) 

TEMPERATURE (exact degrees) 
°F Fahrenheit 5 (F-32)/9 Celsius °C or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf poundforce 4.45 newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 
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Symbol When You Know Multiply By To Find Symbol 
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mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 
m2 square meters 10.764 square feet ft2 
m2 square meters 1.195 square yards yd2 
ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 
m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz 
kg kilograms 2.202 pounds lb 
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lb) T 

TEMPERATURE (exact degrees) 
°C Celsius 1.8C+32 Fahrenheit °F 

ILLUMINATION 
lx lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N newtons 2.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2 
*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. 
(Revised March 2003) 
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CHAPTER 1. INTRODUCTION 

BACKGROUND AND OBJECTIVES 

Pedestrian safety is a growing concern for transportation planners and safety engineers at both 
the local and State levels. The National Highway Traffic Safety Administration (NHTSA) 
reported that annual pedestrian fatalities grew by 50 percent between 2009 and 2018 (figure 1), 
far exceeding the rate of growth in motorist and bicyclist fatalities (NHTSA 2019). Previously 
published studies have explored contributing factors that lead to more severe or more frequent 
pedestrian crashes. These studies often focused on proxies or surrogates for some of the principle 
contributing factors, including speed (e.g., posted speed limit rather than actual vehicle speed) 
and exposure (e.g., land-use characteristics rather than actual or predicted counts). 

 
Source: FHWA. 

Figure 1. Graph. Annual pedestrian fatalities nationwide (based on data from 
NHTSA 2019). 

Continued advancements in data availability, data integration abilities, and analysis 
methodologies offer new opportunities to identify factors influencing pedestrian safety and 
quantify their effects to inform data-driven road safety management. Direct measures of 
pedestrian activity, typically in the form of pedestrian counts, offer the most relevant metrics for 
pedestrian volumes and crash risk, but these are often expensive and difficult to implement over 
a large study area (e.g., a city or region). Research efforts in California and Michigan, as well as 
National Cooperative Highway Research Program project 17-84, indicate a growing interest in 
surrogate measures of pedestrian volumes and scalable crash risk assessments at the State level 
(Griswold et al. 2019; Hampshire et al. 2017). Furthermore, emerging data sources, such as 
vehicular probe data, have demonstrated their suitability as transportation performance 
monitoring tools. As these sources become more ubiquitous in transportation planning and safety 
modeling, the ability to integrate these data with more traditional safety data (e.g., crash, 
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roadway) will be paramount for safety data systems. A recent proof-of-concept pilot study of a 
geospatial data delivery tool by the Federal Highway Administration (FHWA) Highway Safety 
Information System (HSIS) is an example of this evolution in practice. 

Building on this initial geospatial pilot effort by HSIS using data from Charlotte, NC, the main 
objective of this study was to spatially integrate HSIS data with multi-jurisdictional and 
emerging datasets to analyze two measures of pedestrian safety performance: the severity of a 
pedestrian crash that has occurred, and the probability that a crash will occur. To meet the 
objective, this study explored several emerging areas of interest in the safety data and analysis 
research community: 

• Estimation of pedestrian volumes and pedestrian crash analysis. 
• Integration and analysis of probe data to characterize vehicular travel speeds. 
• Use of geospatial HSIS data as a tool for addressing critical safety research priorities. 

Pedestrian safety, particularly the relationship between a road’s characteristics and the likelihood 
of a pedestrian crash, highly depends on pedestrian activity as a measure of exposure. In general, 
literature on the topic of pedestrian activity and safety reflects two possible trends: the likelihood 
of a crash involving a pedestrian is expected to increase with the number of pedestrian crossings 
(i.e., an exposure effect), or more pedestrian crossings may not increase the likelihood of a 
pedestrian crash and may actually decrease it when pedestrian activity increases above a certain 
level due to changes in driver behavior induced by the higher pedestrian activity (i.e., a 
safety-in-numbers effect). To explore pedestrian exposure effects as part of this study, the project 
team developed a pedestrian count model before investigating pedestrian safety models. This 
model allowed the project team to assess the effects of various features on pedestrian safety—
such as infrastructure characteristics, traffic volumes, and vehicular speed—while 
simultaneously considering the level of expected pedestrian activity. 

This study collected data from several sources that cover Charlotte, NC, including HSIS, the city 
of Charlotte, Mecklenburg County, North Carolina Department of Transportation (NCDOT), 
U.S. Census Bureau, and the Regional Integrated Transportation Information System (RITIS). 
The project team collected these data to address several potential contributing factors to 
pedestrian safety outcomes: 

• Estimated vehicular speed. 
• Pedestrian volumes. 
• Roadway geometry and cross section. 
• Intersection characteristics. 
• Pedestrian infrastructure. 
• Traffic volumes. 
• Transit access. 
• Land use. 
• Demographic and socioeconomic profiles. 

While traditional methods for analyzing pedestrian safety (e.g., crash trees or crash frequency) 
can examine the location and context of past crashes, they struggle to discern the magnitude of 
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relationships between components of the transportation system and pedestrian safety. Vehicle 
speed at the time of impact is a leading contributing factor in determining the severity of a 
pedestrian crash, but other factors, such as the age of the pedestrian, crossing distance, and traffic 
volumes, may confound the influence of vehicle speed alone. Therefore, this study sought to 
integrate HSIS data with a broad spectrum of datasets to provide models that more fully describe 
the relationship between pedestrian safety and context. 

ORGANIZATION OF THE REPORT 

The report is structured as follows. 

• Chapter 1 describes the motivation and objectives of this study. 

• Chapter 2 includes a review of previous research related to the application of probe data 
in safety analyses, as well as the three primary model components of this study: 

1. Pedestrian volumes. 
2. Pedestrian crash severity. 
3. Pedestrian crash probability. 

These studies have documented key contributing factors to each model type, including 
factors that drive increased pedestrian activity, higher pedestrian crash severities, and an 
increased likelihood that a crash will occur at a location. 

• Chapter 3 documents the data sources for this study, as well as the methods and 
assumptions used to integrate these data with HSIS data for analysis. 

• Chapter 4 details the analysis methodology, variable selection, and modeling decisions. 

• Chapter 5 examines the pedestrian volume model results. 

• Chapter 6 describes the pedestrian crash severity and pedestrian crash probability model 
results. 

• Chapter 7 summarizes this study, examines study implications, and makes 
recommendations for future research.
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CHAPTER 2. LITERATURE REVIEW 

This chapter highlights a selected set of studies that have investigated contributing factors to 
pedestrian activity and volumes, pedestrian crash severity, and pedestrian crash probability. The 
chapter also covers previous attempts to incorporate measures of speed derived from vehicle 
probe data into crash modeling and analysis. 

PEDESTRIAN VOLUMES 

Pedestrian activity is often determined by the built environment, proximity of origins and 
destinations, and the demographic and socioeconomic profile of a neighborhood. Past studies 
have shown that network factors, such as block length and street connectivity, contribute to 
higher levels of pedestrian activity and thus higher pedestrian volumes (Griswold et al. 2019; 
Hampshire et al. 2017). Additionally, proximity of origins and destinations, especially in 
combination with network connectivity, also contributes to increased pedestrian activity. This 
function has been measured through the development of origin and destination demand models 
(Hampshire et al. 2017), as well as metrics of land-use mixing that capture a diversity of land 
uses within a small geographic radius (Frank, Andresen, and Schmid 2004; Hankey et al. 2012). 
Nearly all studies also incorporate a socioeconomic profile to refine pedestrian volume estimates, 
including population and employment density, nonmotorized commuting patterns, median 
income, educational attainment, and vehicle availability (Griswold et al. 2019; Frank, Andresen, 
and Schmid 2004; Hampshire et al. 2017; Hankey et al. 2012). 

PEDESTRIAN CRASH SEVERITY 

Previous studies on factors influencing pedestrian crash severity have noted correlations with 
almost every dimension of context, including the built environment, traffic volumes, vehicle 
speed, vehicle size, person-level characteristics, and environmental conditions at the time of the 
crash. 

Road characteristics associated with higher functional classification roads, such as wider vehicle 
traveled way widths and higher total number of lanes, are commonly associated with more 
severe pedestrian crashes (Aziz, Ukkusuri, and Hasan 2013; Rothman et al. 2012; Zajac and Ivan 
2003). Furthermore, pedestrian crashes tend to be more severe at uncontrolled midblock 
locations than at intersections, particularly compared with signalized intersections (Aziz, 
Ukkusuri, and Hasan 2013; Eluru, Bhat, and Hensher 2008; Rothman et al. 2012). 

In separate evaluations of unsignalized and signalized intersections, Haleem, Alluri, and Gan 
(2015) found that higher traffic volumes (especially truck volumes) and adverse weather 
conditions increased pedestrian crash severity at signalized intersections, whereas crosswalk type 
affected pedestrian crash severity at unsignalized locations. Posted speed limits, pedestrian ages, 
and lighting conditions were significant contributing factors at both intersection types, with 
higher speed limits, older ages, and dark conditions all correlated with more severe outcomes. 

Measures of higher vehicle speeds and larger vehicle sizes were commonly associated with more 
severe pedestrian crashes (Aziz, Ukkusuri, and Hasan 2013; Haleem, Alluri, and Gan 2015; Li et 
al. 2017; Zajac and Ivan 2003). Posted speed limit is the most common proxy of vehicle speed 
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used in pedestrian crash severity studies, with roadway width and functional classification also 
serving as surrogate measures of vehicle speed (Rothman et al. 2012). 

Pedestrian age was a commonly cited contributing factor to crash severity: crashes involving 
older pedestrians were more likely to result in a fatality or serious injury compared with crashes 
involving younger pedestrians (Aziz, Ukkusuri, and Hasan 2013; Eluru, Bhat, and Hensher 2008; 
Haleem, Alluri, and Gan 2015; Li et al. 2017; Zajac and Ivan 2003). Pedestrian action during the 
time of the crash was also cited as a contributing factor to severity outcomes, with some studies 
assigning road user fault as a contributing factor (Haleem, Alluri, and Gan 2015). Other studies 
noted that different actions, by both the pedestrian and the driver, may result in different severity 
distributions, depending on context (Aziz, Ukkusuri, and Hasan 2013). Both pedestrian and 
driver alcohol consumption resulted in more severe pedestrian injury outcomes (Clifton, Burnier, 
and Akar 2009; Lee and Abdel-Aty 2005; Zajac and Ivan 2003). 

Gender represented a point of disagreement in past research. Pitt et al. (1990) found no 
significant difference between male and female pedestrians in crash severity for pedestrians 
under the age of 20 yr, whereas other studies have noted that male pedestrian fatalities are 
proportionally higher in the total population (Rothman et al. 2012). Conversely, Lee and 
Abdel-Aty (2005) found a marginally significant increase in crash severity for female pedestrians 
in a study of Florida crashes. 

Environmental circumstances have also been observed as significant contributors to pedestrian 
crash severity. Dark lighting conditions and adverse weather conditions have led to more severe 
injury outcomes in numerous contexts (Aziz, Ukkusuri, and Hasan 2013; Eluru, Bhat, and 
Hensher 2008; Haleem, Alluri, and Gan 2015; Lee and Abdel-Aty 2005; Li et al. 2017). 
Furthermore, studies by Eluru, Bhat, and Hensher (2008) and Lee and Abdel-Aty (2005) found 
that lighting conditions and other environmental factors could combine with other crash factors 
(e.g., alcohol consumption) to further increase the likelihood of a fatal or serious injury crash. 

PEDESTRIAN CRASH PROBABILITY 

Studies that have attempted to analyze contributing factors to pedestrian crash probability and 
frequency have typically looked at two different contexts: the geographic zone level (e.g., a 
census tract), or an individual road segment. These studies have shown differing contributing 
factors based on the chosen unit of analysis. 

For zonal analyses, factors that contribute to the likelihood of a crash are typically associated 
with increased pedestrian activity. Street connectivity, proximity of origins and destinations, and 
socioeconomic characteristics have been associated with higher pedestrian crash frequency 
within geographic zones (Mansfield et al. 2018; Moradi et al. 2016; Siddiqui, Abdel-Aty, and 
Choi 2012; Ukkusuri et al. 2012). Zonal studies have also observed a relationship between direct 
measures or proxies of roadway and vehicular traffic characteristics and pedestrian crash 
frequency. Ukkusuri et al. (2012) noted that greater mileage of higher road functional 
classifications and number of lanes were associated with an increase in pedestrian crash 
frequency. Mansfield et al. (2018) found a significant increase in the likelihood of a fatal 
pedestrian crash with higher traffic volume density (e.g., vehicle miles traveled per square mile). 
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Siddiqui, Abdel-Aty, and Choi (2012) noted a relationship between an increase in pedestrian 
crash frequency and higher posted speed limits. 

At the road segment level, the relationship between pedestrian volumes and the number of 
pedestrian crashes is less direct. A “safety-in-numbers” effect has been observed in several 
studies, where the relative risk for pedestrian crashes is lower as pedestrian volume increases 
(Omer et al. 2017). Further study has suggested that specific design elements, such as block 
length and intersection configuration, may have more nuanced effects on pedestrian safety at the 
segment level (Dumbaugh, Li, and Joh 2013; Omer et al. 2017). In most studies, higher traffic 
volumes, measured in terms of annual average daily traffic (AADT), were associated with an 
increase in the number of pedestrian crashes (Omer et al. 2017; Torbic et al. 2010). Torbic et al. 
(2010) found that minor-leg AADT was a stronger predictor of crashes at intersections than 
major-road AADT. 

Although sidewalks and other pedestrian infrastructure may produce crash-reduction benefits, 
they may not be strong predictors of reduced pedestrian crash probability (FHWA 2017). Pande 
and Abdel-Aty (2009) found that sidewalk presence was positively correlated with the number of 
pedestrian crashes, meaning that roads with sidewalks had more pedestrian crashes and roads 
without sidewalks had fewer pedestrian crashes. However, it should be noted that the negative 
correlation may be related to pedestrian volumes. One is likely to see a confounding exposure 
effect (e.g., better pedestrian facilities associated with more pedestrian crashes due to higher 
levels of activity), if a reliable measure of pedestrian exposure is not available. 

PROBE DATA INTEGRATION 

Probe data are an emerging asset to transportation practitioners and researchers. These promising 
new data have been applied primarily in a traffic operations context, with relatively few 
applications to safety research. Kersavage (2019) used INRIX® probe data to assess the 
relationship between speed metrics and crash risk and frequency (all crash types). Her research 
found that operating speeds higher than the road segment’s average speed or road reference 
speed were associated with increased crash risk. The average speed refers to the average speed 
on a segment over the same weekday and hour, and the reference speed is the average speed for 
all periods and days. Additionally, Kersavage (2019) found that increases in the differences 
between operating speeds and average speed and differences between operating speed and 
inferred design speed were associated with an increase in crash frequency. To perform the crash 
frequency analysis, Kersavage (2019) disaggregated the probe speed data by year and season 
(i.e., one database row is one season of 1 yr). 

In a study of rural roads in Ohio and Washington, Das et al. (2020) found that larger variability 
between weekday and weekend speeds was associated with higher numbers of crashes. 
Furthermore, larger hourly variability in operating speeds and higher average operating speeds 
were significant indicators of higher numbers of crashes on rural roads. The literature review did 
not uncover any study that had successfully integrated vehicular probe speed data into a 
pedestrian safety analysis. 
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SUMMARY 

The literature review revealed several types of factors that contribute to the severity and 
likelihood of pedestrian crashes. These factors span roadway characteristics, vehicle travel, and 
descriptors of the persons involved in the crash. Most studies had access to variables 
characterizing the dimensions of the roadway, the presence of pedestrian infrastructure, and the 
traits of the vehicles, drivers, and pedestrians involved in the crashes, but they often relied on 
surrogates for vehicle speeds and pedestrian activity. The surrogates for speed were often posted 
speed limits and functional classification. The surrogates for pedestrian activity were often 
demographic and socioeconomic characteristics. As new data sources emerge and improve over 
time, more reliable and direct measures of these contributing factors to pedestrian safety may be 
obtainable. This study applies more direct measures of speed and pedestrian activity in the form 
of probe-derived vehicle speed and a pedestrian volume model developed with pedestrian count 
data to expand on the findings in previous studies.
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CHAPTER 3. DATA ACQUISITION AND INTEGRATION 

This chapter documents the data sources and elements, and it details the data integration and 
preparation processes for each type of modeling activity in this study: pedestrian volume 
modeling, pedestrian crash severity modeling, and pedestrian crash probability modeling. 

SOURCES 

HSIS is a multiagency database of transportation safety-related information, including road 
inventories, traffic volumes, and crash records. HSIS datasets span approximately 30 yr and 
cover seven States and one city: 

• California. 
• Illinois. 
• Maine. 
• Minnesota. 
• North Carolina. 
• Ohio. 
• Washington. 
• Charlotte. 

Data collection for this research focused on Charlotte, building on a previous geospatial pilot 
effort by HSIS using data from Charlotte. The project team collected data from several sources 
and integrated these data with geospatial data for Charlotte, that were provide through HSIS 
(FHWA n.d.). Data sources included the City of Charlotte (2019), Mecklenburg County (n.d.), 
NCDOT (2021), U.S. Census Bureau (2021), and RITIS (The Eastern Transportation Coalition 
2021). The project team collected data in geographic information systems (GIS) and tabular 
formats. Table 1 lists the data by source and relevant period. 
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Table 1. Data description and source. 

Data Element Category Source(s) Years Accessed 
Pedestrian crashes Crash HSIS; NCDOT 2014–2018 
AADT Traffic HSIS; NCDOT 2015–2018 
Functional classification Roadway NCDOT 2019 
One-way/two-way 
operation Roadway HSIS; Charlotte 2018 
Number of lanes Roadway HSIS; Charlotte 2018 
Median presence Roadway HSIS; Charlotte 2018 
Pavement width Roadway Charlotte; NCDOT 2018 
Posted speed limit Roadway HSIS; Charlotte 2018 
Average vehicle speeds Speed RITIS 2015–2018 
Intersection geometry Intersection HSIS; Charlotte 2018 
Intersection traffic 
control Intersection HSIS; Charlotte 2018 
Pedestrian counts Pedestrian counts Charlotte 2011–2020 
Bus-stop locations Transit HSIS; Charlotte 2018 
Light rail-stop locations Transit HSIS; Charlotte 2018 

Sidewalks 
Pedestrian/bicyclist 
infrastructure HSIS; Charlotte 2018 

Greenways 
Pedestrian/bicyclist 
infrastructure HSIS; Charlotte 2018 

Bicycle lanes 
Pedestrian/bicyclist 
infrastructure HSIS; Charlotte 2014–2018 

PHB 
Pedestrian/bicyclist 
infrastructure Charlotte 2014–2018 

Other pedestrian 
beacons 

Pedestrian/bicyclist 
infrastructure Charlotte 2014–2018 

Land use Land use Mecklenburg County 2011–2016 
Total population Demographic U.S. Census Bureau 2014–2017 
Total employment Demographic U.S. Census Bureau 2014–2017 
Commute by mode Demographic U.S. Census Bureau 2014–2018 

PHB = pedestrian hybrid beacon. 
Note: The overall period for data analysis is 2014–2018. 

COLLECTION 

Crash Data 

Pedestrian crash data provided by HSIS were compared with crash data made publicly available 
by NCDOT (2019). At the time that data were collected for this study, NCDOT-provided 
publicly available data contained some crash report information and a geographic location for all 
bicycle and pedestrian crashes that occurred between 2007 and 2018. For this study, the project 
team collected crashes occurring on “non-interstate” facilities between 2014 and 2018. The 
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project team removed pedestrian crashes that occurred in parking lots, on private property, and 
on interstate highways. 

HSIS and NCDOT pedestrian crash datasets were compared for consistency in the number of 
crash observations, and accuracy of geolocation information. On review, the project team learned 
that NCDOT data had gone through additional crash-by-crash scrutiny to refine the accuracy of 
the geolocation of each pedestrian crash. They investigated further instances in which the crashes 
could have involved a pedestrian, but the crash type field did not include pedestrian crash at the 
time the data were shared with HSIS. Based on this comparison and analysis of both pedestrian 
crash datasets, the project team proceeded with the NCDOT database. The project team offers a 
discussion at the conclusion of this report on whether it is practical for HSIS to monitor such 
targeted data efforts (which likely vary in topic and scope across HSIS participating agencies) 
and incorporate resulting changes to specific crashes into previously finalized HSIS data. 

To match the availability of other traffic, speed, and roadway data, the project team narrowed the 
crash dataset to retain crashes that occurred on the following functional classification roads: 

• Other freeways and expressways. 
• Other principal arterials. 
• Minor arterials. 
• Major collectors. 
• Minor collectors. 

While previous studies have removed the other freeways and expressways functional 
classification due to access control restrictions, many of these facilities in Charlotte, NC (e.g., 
Independence Boulevard/US 74), have pedestrian accommodations, at-grade intersections, and a 
history of pedestrian crashes. Only crashes that occurred on interstates and local roads were 
excluded from this study. 

Roadway Data 

The project team obtained road centerline data from NCDOT and Charlotte via HSIS. NCDOT 
data were used to identify the relevant functional classification roads in the Charlotte area 
(excluding interstates and local roads). HSIS centerline data contained relevant operational, 
geometric, and posted speed-limit information. All geometric data were stored in a bidirectional 
format, allowing the project team to characterize a full cross section for each segment. 

Traffic Data 

Bidirectional AADT values were collected from NCDOT for all available years between 2015 
and 2018. All available AADT values were assigned to each road segment for all available years. 
If AADT had not been collected on a road segment for a particular year, gaps were filled 
according to the following process: 

• If a previous year of AADT on the road segment was available, the AADT value from the 
most recent previous year was applied to a gap year. For instance, if 2016 AADT were 
unavailable for a road segment, 2015 data for that road segment would be used instead. 
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• If no previous AADT was available, the AADT value from the most recent following 
year was applied to the gap year. For instance, 2015, 2016, 2017, or 2018 (whichever was 
the earliest year available) for a road segment would be applied to 2014 for that road 
segment. 

Speed Data 

Speed data consisted of probe data provided by HERE and accessed through RITIS. RITIS is 
housed and managed by the University of Maryland’s Center for Advanced Transportation 
Technology (CATT) Laboratory (CATT Lab 2020). NCDOT has access to RITIS through its 
membership in the I–95 Corridor Coalition (I–95 Corridor Coalition 2018) and provided 
permission for the project team to use the data for this research. 

HERE collects vehicle speeds using multiple real-time sources, including global positioning 
systems, probe vehicles, and cell phones. The speed data can be accessed and downloaded from 
the RITIS platform using RITIS’ Massive Data Downloader of archived data. The data can be 
queried based on road type or location, day of the week, and time of day. Average speed, 
calculated as the harmonic mean speed, is available at various frequencies, with 5 min being the 
most granular data available. The data are available via traffic message channel (TMC) roadway 
segmentation specific to the probe data. These TMC segments vary in length, with the beginning 
and ending of each segment corresponding to specific locations on the roadway. A confidence 
score is assigned to the average speed within each time interval, which is used to represent how 
much of the values reported are directly from vehicles observed traveling on the roadway versus 
calculated using historical trend data. The use of historical trend data may be necessary in rural 
locations and mountainous areas with poor signal penetration. It may also be necessary to assist 
with the removal of outliers. 

In this study, the probe data downloaded from RITIS were aggregated at intervals of 1 h to 
remove random “noise” in the data while still representing a roadway’s average speed during 
periods of interest. The project team used a threshold for confidence scores of over 70 to best 
represent data collected from vehicles during the periods that were queried. The project team 
matched the TMC segmentation to the NCDOT road segmentation. NCDOT’s GIS team had 
previously conflated the probe data to the NCDOT roadway network. 

Intersection Data 

The project team obtained intersection locations from Charlotte via HSIS. These data also 
contained traffic control information. Intersection approach geometry (i.e., number of legs) was 
derived from the combination of roadway centerline data and intersection points using GIS 
geoprocessing tools. 

Pedestrian Count Data 

Charlotte collects pedestrian counts simultaneously with turning movement counts at 
intersections throughout the city. These counts disaggregate crossings by approach at each 
intersection. The project team obtained 13-h pedestrian counts (6 a.m. to 7 p.m.) using the city’s 
traffic management system for 2011 through 2020 (City of Charlotte 2020). Since these data do 
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not exist for every intersection in the city, the project team devised a data collection plan to 
obtain a representative sample of pedestrian counts according to the proportion of centerline 
miles in the city by functional classification (interstates and local roads excluded). Table 2 
details the distribution of collected pedestrian counts by functional classification. 

Table 2. Road centerline mileage and pedestrian count locations by functional classification 
in Mecklenburg County, NC. 

Functional 
Classification 

Total Mileage in Data 
(Percent)* 

Pedestrian Count Observation 
Coverage (Percent)* 

Major arterial 28.7 37.3 
Minor arterial 36.7 50.1 
Collector 34.5 40.2 

*Interstate and local road mileage are not included in the data for this study. 
Note: Major arterial classification includes other freeways and expressways and other principal arterials; collector 
classification includes major and minor collectors. 

As table 2 details, minor arterials make up most of the study’s centerline mileage and cover more 
of the study’s pedestrian count observations than the other functional classifications. The 
percentages in the final column of table 2 will not sum to 100 percent, as more than one 
functional classification road can approach a single intersection. 

Transit Data 

Transit service in Charlotte consists of on-street bus service and light rail. The project team 
obtained Charlotte Area Transit System bus and light rail-stop information for 2018. The project 
team assumed that bus service experienced negligible changes over the 2014–2018 study period. 
However, Charlotte expanded its light rail service, the Lynx Blue Line, in March 2018. This 
change was noted for all 11 stations included in the Blue Line extension, and all datasets 
reflected the absence or presence of these stations for the appropriate periods. 

Multimodal Infrastructure Data 

The project team obtained bicycle and pedestrian infrastructure data from HSIS and Charlotte. 
These data included the presence of sidewalks, off-street greenways, bicycle lanes (both striped 
and separated), and pedestrian crossing beacons. Shared lane markings (“Sharrows”) were not 
included in the dataset as a designated bicycle lane, and a distinction was made between 
pedestrian hybrid beacons (PHBs) and any other nonregulatory warning signals for crossing 
pedestrians. Charlotte does not typically install rectangular rapid flashing beacons, and these 
location data were unavailable. 

Land-Use Data 

The project team obtained land-use data from Mecklenburg County, NC, at the parcel level in 
GIS format. 
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Demographic Data 

The project team obtained population, employment, and commuter mode share data from the 
U.S. Census Bureau. These data included two primary sources, the American Community Survey 
(ACS) and the Longitudinal Employer-Household Dynamics (LEHD) program. Population and 
commute mode share were collected from ACS 5-yr estimates for surveys between 2009–2013 
and 2013–2017. Total employment was collected from the LEHD Origin-Destination 
Employment Statistics version 7 database (U.S. Census Bureau n.d.). The project team obtained 
all demographic data at the census block group level for Mecklenburg County and surrounding 
counties in North Carolina and South Carolina. To obtain 2018 values for population and 
employment, the project team determined the percent change in both datasets between 2016 and 
2017 and applied that rate of growth to the 2017 observed values. 

INTEGRATION 

The project team prepared datasets for three modeling efforts: pedestrian volume modeling, 
pedestrian crash severity modeling, and pedestrian crash probability modeling. This section 
describes the methods and assumptions used to develop datasets for each modeling effort. 

Pedestrian Volume 

Pedestrian volume was quantified at the intersection level to match the unit of observation of 
existing pedestrian count data: total pedestrian counts at intersections over a 13-h period (6 a.m. 
to 7 p.m.) conducted by Charlotte. These 13-h counts were used as the dependent variable in the 
pedestrian volume modeling. Data were collected and aggregated to individual intersections with 
pedestrian count data in a GIS format. Table 3 is a description of all data collected to develop the 
pedestrian volume model. Model results produced a predicted average 13-h pedestrian count 
between 6 a.m. and 7 p.m. as a function of intersection characteristics, including surrounding 
context. 

Table 3. Pedestrian volume data dictionary. 

Data Element Data Type Description 

Major arterial Indicator 
Intersection includes a leg classified as other 
freeways and expressway or other principal 
arterial. 

Minor arterial Indicator Intersection includes a leg classified as a minor 
arterial.  

Collector Indicator Intersection includes a leg classified as a major 
or minor collector.  

Four-leg intersection Indicator Intersection geometry is a four-leg intersection. 

Signalized intersection Indicator Intersection traffic control device is a traffic 
signal. 

Speed 25 mph Indicator Intersection includes a posted 25-mph leg. 
Speed 30 mph Indicator Intersection includes a posted 30-mph leg. 
Speed 35 mph Indicator Intersection includes a posted 35-mph leg. 
Speed 40 mph Indicator Intersection includes a posted 40-mph leg. 
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Data Element Data Type Description 
Speed 45 mph Indicator Intersection includes a posted 45-mph leg. 
Speed 50 mph Indicator Intersection includes a posted 50-mph leg. 
Speed 55 mph Indicator Intersection includes a posted 55-mph leg. 
Sidewalk present Indicator Sidewalk exists within 100 ft of the intersection. 

Greenway present Indicator Greenway exists within 100 ft of the 
intersection. 

Bus stops Continuous 
number Number of bus stops within 0.1-mi radius. 

Light rail stops Continuous 
number Number of light rail stops within 0.1-mi radius. 

Total population Continuous 
number 

Total population; ACS 5-yr estimates—year of 
count. 

Total employment Continuous 
number 

Total employment; ACS 5-yr estimates—year of 
count. 

Total households Continuous 
number 

Total households; ACS 5-yr estimates—year of 
count. 

Total commuters Continuous 
number 

Total commuters; ACS 5-yr estimates—year of 
count. 

Total walking commuters Continuous 
number 

Total walking commuters; ACS 5-yr 
estimates—year of count. 

Total transit commuters Continuous 
number 

Total transit commuters; ACS 5-yr estimates—
year of count. 

Total zero-vehicle 
households 

Continuous 
number 

Total zero-vehicle households; ACS 5-yr 
estimates—year of count. 

Total college-educated 
population 

Continuous 
number 

Total population over 25 yr of age with an 
Associate’s degree or higher educational 
attainment; ACS 5-yr estimates—year of count. 

Proportion of walking 
commuters 

Continuous 
number 

Proportion of total commuters who walk to 
work; ACS 5-yr estimates—year of count. 

Proportion of transit 
commuters 

Continuous 
number 

Proportion of total commuters who take public 
transit; ACS 5-yr estimates—year of count. 

Proportion of zero-vehicle 
households 

Continuous 
number 

Proportion of households without a motor 
vehicle; ACS 5-yr estimates—year of count. 

Proportion of college-
educated population 

Continuous 
number 

Proportion of population over 25 yr of age with 
an Associate’s degree or higher educational 
attainment; ACS 5-yr estimates—year of count. 

Land-use mix Ratio 
Modified version of land-use mixing variable 
first described by Frank, Andresen, and Schmid 
2004 (figure 2). 

mph = miles per hour. 
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Roadway Data 

Centerline data were directly joined to each intersection using geoprocessing tools in a GIS 
format. This process allowed the project team to determine the functional classification, posted 
speed limit, and total number of approach legs for each intersection. 

Socioeconomic Data 

The project team collected demographic and socioeconomic data at the block group level and 
aggregated using ⅒-mi, ¼-mi, and ½-mi radii geographic buffer distances. Previous studies have 
suggested that these distances provide the most effective predictors of pedestrian traffic at the 
intersection level (Griswold et al. 2019). All socioeconomic variables were proportionally 
assigned to an intersection based on the overlap of the buffer area and the block group zone. For 
instance, if an intersection buffer overlapped 50 percent of a census block group, 50 percent of 
the socioeconomic data (population, employment, households) would be aggregated to that 
intersection area. The total of these overlaps produced the estimates of demographic and 
socioeconomic variables at each intersection. 

Land-Use Mix 

A dense mix of different land uses provides the proximity of origins and destinations that 
encourage pedestrian travel. Using parcel-level, land-use information from Mecklenburg County, 
NC, this study employed an approximation of land-use mix (figure 2) described by Frank, 
Andresen, and Schmid (2004). 

 
Figure 2. Equation. Land-use mix from Frank, Andresen, and Schmid (2004). 

Where: 
pi = proportion of estimated square footage attributed to land use i. 
n = number of land uses within 1 km. 

This metric assesses the distribution of four land-use types—residential, commercial, office, and 
institutional—within a 1-km radius of an intersection. A totally uniform land use within the 1-km 
buffer would produce a value of “0,” whereas a completely even distribution of all four land uses 
would produce a value of “1.” Unlike the Frank, Andresen, and Schmid (2004) variable, this 
study used a straight-line, Euclidean distance buffer around each intersection rather than a 
network distance buffer. This practice matched the buffer methodology applied to socioeconomic 
and demographic data preparation. Figure 3 and figure 4 compare an example of a low-land-use 
mix location and a high-land-use mix location. 
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Original photo: © 2019 NC OneMap. Annotated by FHWA (see 
Acknowledgments section). 

Figure 3. Photograph. Low-land-use mix example (land-use mix = 0.129) 
(NC OneMap 2019). 

 
Original photo: © 2019 NC OneMap. Annotated by FHWA (see 
Acknowledgments section). 

Figure 4. Photograph. High-land-use mix example (land-use mix = 0.955) 
(NC OneMap 2019). 
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Pedestrian Crash Severity 

This section details the data preparation process for the pedestrian crash severity modeling. 
Table 4 presents the data dictionary for all independent variables included in the severity model. 
The pedestrian crash severity data are structured so that one row of the database represents one 
pedestrian crash, including characteristics associated with the crash that could influence the 
severity outcome. The pedestrian crashes in the crash severity dataset include both midblock- 
and intersection-related crashes. A predicted level of pedestrian activity is also included for each 
crash location, which is derived from the pedestrian volume model described in chapter 4. 

Table 4. Pedestrian crash severity data dictionary. 

Data Element Data Type Description 

Highest AADT Continuous 
number 

Average AADT—highest AADT within 100 ft, 
year of the crash. 

Lowest AADT Continuous 
number 

AADT—lowest AADT within 100 ft, year of the 
crash. 

Closest AADT Continuous 
number AADT—closest road, year of the crash. 

Predicted average 
pedestrian volume  

Continuous 
number 

Value after applying the pedestrian volume model 
to make a pedestrian volume prediction at the crash 
location. 

Average speed  Continuous 
number 

Average speed, in mph, based on hour of day of the 
week (RITIS; 2018 values). 

Reference speed Continuous 
number 

Average speed, in mph, based on all times of every 
day of the week (RITIS; 2018 values). 

Hourly speed-to-
reference ratio 

Continuous 
number Ratio of average speed to reference speed. 

One way Indicator Indicates the road is one way. 
Divided/undivided Indicator Indicates the road is median divided. 

Number of lanes Continuous 
number Total number of lanes. 

Major arterial road Indicator 
Crash is within 100 ft of a road classified as other 
freeways and expressways or other principal 
arterial. 

Minor arterial road Indicator Crash is within 100 ft of a road classified as minor 
arterial. 

Collector road Indicator Crash is within 100 ft of a road classified as a 
major or minor collector. 

Pavement width Continuous 
number 

Paved area of road segment (lane widths and 
shoulder widths). 

Presence of a bicycle 
lane Indicator Crash occurred on a street with a designated 

bicycle lane. 
Presence of a sidewalk Indicator Crash occurred near a sidewalk (<100 ft). 
Presence of a greenway Indicator Crash occurred near a greenway (<100 ft). 
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Data Element Data Type Description 
Intersection related 
(100 ft) Indicator Crash occurred within 100 ft of an intersection. 

Signalized intersection 
related (100 ft) Indicator Intersection is signalized (if intersection related). 

Four-leg intersection 
(100 ft) Indicator Intersection has four legs (if intersection related). 

Intersection related 
(250 ft) Indicator Crash occurred within 250 ft of an intersection. 

Signalized intersection 
related (250 ft) Indicator Intersection is signalized (if intersection related). 

Four-leg intersection 
(250 ft) Indicator Intersection has four legs (if intersection related). 

PHB Indicator Crash is within 100 ft of a PHB. 
Other pedestrian 
crossing beacon Indicator Crash is within 100 ft of another pedestrian 

crossing beacon (over/under 12-inch signal head). 
Bus stop adjacent Indicator Bus stop within 0.1-mi radius. 

Posted speed limit Continuous 
number Posted speed limit on road. 

Large-vehicle type Indicator 

Vehicle is flagged as a “light truck, commercial 
bus, sport utility, sport utility, van, pickup, single 
unit truck, other bus, tractor/trailer/truck” in the 
crash report. 

Driver impairment Indicator Driver flagged for suspected or detected 
alcohol/drug impairment. 

Age Continuous 
number Age of the pedestrian. 

Gender Indicator Gender of the pedestrian (male = 1, 
female/unknown = 0). 

Pedestrian impairment Indicator Pedestrian flagged for suspected or detected 
alcohol/drug impairment. 

Lighting type—dark, 
not lighted Indicator Dark lighting conditions, unlit, or unknown 

lighting roadway. 
Lighting type—dark, 
lighted Indicator Dark lighting conditions, lit roadway. 

Lighting type—daylight Indicator Crash occurred during daylight, dusk, dawn, or 
unknown conditions. 

Weather—rain Indicator Weather is indicated as “rain.” 
Weather—snow Indicator Weather is indicated as “snow.” 
Road condition Indicator Road condition indicated to be wet, snowy, or icy. 
Work zone Indicator Crash occurred in a work zone. 
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Pedestrian Volume 

Although not included in table 4, all variables that appear as predictor variables in the pedestrian 
volume model described in chapter 4 were also collected for the individual crash locations. 
These variables were then used to predict a pedestrian count at the crash location. The prediction 
represents an average 13-h pedestrian count between 6 a.m. and 7 p.m. as a function of 
intersection characteristics, including the surrounding context. For the purposes of pedestrian 
volume prediction, midblock crash locations were treated as unsignalized intersections. 

Vehicular Speed 

Vehicular speed was linked to crashes through the conflation of the RITIS probe data to 
NCDOT’s road segment data. The project team derived three variables from available vehicle 
speeds: average speed, reference speed, and the ratio of average to reference speed. 

• Average speed refers to the average vehicle speed for the specific hour of the day and day 
of the week that a crash occurred. For instance, if a crash occurred at 6:30 p.m. on a 
Thursday, the average speed variable refers to the average travel speed on that road 
segment between 6 p.m. and 7 p.m. on Thursdays. 

• Reference speed refers to the average vehicle speed on that segment of road for all times 
of day for every day of the week. 

• Speed ratio refers to the ratio of average speed to reference speed. Values greater than 
one indicate faster than longer-term average conditions, while values less than one would 
indicate more congested, lower than longer-term average speed conditions. 

All speed data for the crash severity model data reference 2018 values. A total of 615 of 1,422 
eligible pedestrian crashes (43 percent) received speed values from the probe data. To investigate 
the validity of the probe data, the project team compared the average speed ratio over the time of 
day (table 5), as well as reference speed values, for each functional classification (table 6). 

Table 5. Speed ratio by period. 

Period Average Speed Ratio (mph) 
Overnight: 10 p.m. to 6 a.m.  1.15 
Morning/midday: 6 a.m. to 2 p.m. 1.00 
Afternoon/evening: 2 p.m. to 10 p.m. 0.96 

Table 6. Average reference speed by functional classification. 

Functional Class Average Reference Speed (mph) 
Major arterial 30.55 
Minor arterial 26.26 
Collector 23.24 
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The speed ratios in table 5 show greater travel speeds during the overnight period, with lower 
than average speeds in the afternoon and evening. This result suggests that the probe data are 
generally a good indicator of congested and free-flow conditions during the time of a crash. 
Furthermore, table 6 shows a logical increase in average reference speeds based on higher 
functional class roads. Based on this assessment, the project team determined the RITIS probe 
speed data to be acceptable for exploration as part of crash severity modeling. 

Roadway and Traffic 

Roadway and traffic data were linked to crashes according to spatial proximity in GIS. Each 
crash received the roadway attributes from the closest road, which is intended to correlate with 
the cross section the pedestrian was crossing or walking along. Conversely, crashes received 
traffic information from both the closest road, as well as any other road within 100 ft. This action 
was intended to account for cross-street traffic information at intersections, as well as additional 
turning movement conflicts that do not exist midblock. 

Pedestrian Crossing Beacons 

Pedestrian crossing beacons were separated into PHB locations and all other pedestrian-specific 
crossing beacons. Installation dates were provided as a part of the Charlotte dataset. Beacon 
locations were only associated with crashes if the crash occurred after the installation date. 

Crash Data 

Crash report data related to person-level and environmental conditions at the time of the crash 
were included in the modeling process. If a crash report indicated a crash occurred in a work 
zone, that crash was dropped from the dataset before modeling. 

Pedestrian Crash Probability 

This section details the data preparation process for pedestrian crash probability modeling. The 
pedestrian crash probability data are structured so that one row of the database represents one 
road segment. Each road segment may or may not have had pedestrian crashes. Study area 
segments were defined as continuous road centerlines with homogenous characteristics. The 
criteria used to define homogenous segments were as follows: 

• Functional classification. 
• Number of lanes. 
• Median presence. 
• Speed limit. 
• AADT. 
• One-way vs. two-way traffic operation. 

All centerlines on functional classification roads between principal arterials and minor collectors 
were collected, and eligible continuous segments had a minimum length of 300 ft. This practice 
allowed small downtown blocks to be included in the probability modeling while very small, 
ephemeral changes due to roadway and traffic conditions were removed. Less than 1 percent of 
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potential study area road mileage within Charlotte was removed for not meeting the 300-ft 
threshold. Data were aggregated to study area segments in GIS. 

Given the structure of the crash probability dataset, the project team applied the pedestrian 
volume model described in chapter 4 to predict average pedestrian volumes for each 
homogenous road segment. The project team used the pedestrian volume model to develop a 
pedestrian volume prediction for each intersection along a segment, then summed those 
predictions to arrive at a pedestrian volume for the entire segment. 

Data were first collected for each road segment by year, creating a dataset of segment-years 
between 2014 and 2018. This action allowed the project team to incorporate changes to the built 
environment over time. Segment-years were then combined before modeling, and all variables 
characterizing each segment were averaged to generate the segment values. Table 7 presents the 
data dictionary for all independent variables included in the probability modeling process. 

Table 7. Pedestrian crash probability data dictionary. 

Data Element Data Type Description 
Vehicle traffic 
(AADT) 

Continuous 
Number 

AADT by year (if year AADT missing, see the 
Collection section for assumptions). 

Predicted average 
pedestrian volume 

Continuous 
number 

Predicted value after applying the pedestrian volume 
model to make pedestrian volume predictions at each 
intersection along a homogenous segment, then 
summing the predictions across all intersections 
along the segment. 

Peak period speed—
a.m. 

Continuous 
number 

Average speed for observation period (7–9 a.m.); 
uses speed for the direction of travel used to generate 
the speed ratio—a.m. variable. 

Peak period speed—
p.m. 

Continuous 
number 

Average speed for observation period (4–6 p.m.); 
uses speed for the direction of travel used to generate 
speed ratio—p.m. variable. 

Overnight speed Continuous 
number 

Average speed for observation period (11 p.m. to 
3 a.m.). 

Speed ratio—a.m. Continuous 
number Ratio of peak period speed—a.m. to overnight speed. 

Speed ratio—p.m. Continuous 
number Ratio of peak period speed—p.m. to overnight speed. 

One way Indicator Indicates the road is one way. 
Divided/undivided Indicator Indicates the road is median divided. 

Number of lanes Continuous 
number Total number of lanes. 

Major arterial road Indicator Road is classified as other freeways and expressway 
or other principal arterial. 

Minor arterial road Indicator Road is classified as minor arterial. 
Collector road Indicator Road is classified as major or minor collector. 
Presence of a 
bicycle lane Indicator Crash occurred on a street with a bicycle lane; 

considered present during year of installation. 
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Data Element Data Type Description 
Segments with bicycle lanes installed during the 
study period would receive a value between 0 and 1. 

Presence of a 
sidewalk—single 
coverage 

Continuous 
number 

Proportion of the continuous segment with a 
sidewalk on at least one side. 

Presence of a 
sidewalk—dual 
coverage 

Continuous 
number 

Total length of sidewalk (both sides combined) 
divided by twice the segment length; complete 
sidewalk on one side only = 0.5, complete sidewalks 
on both sides = 1. 

Presence of a 
greenway Indicator Segment is within 100 ft of a separated greenway 

facility. 
Total intersection 
count 

Continuous 
number Total number of intersections along segment. 

Total signalized 
intersection count 

Continuous 
number 

Total number of signalized intersections along 
segment. 

PHB Indicator 

Crash is within 50 ft of a PHB; considered present if 
installed before July during year of installation. 
Segments with PHBs installed during the study 
period (i.e., indicator is 0 for some years, 1 for 
others) would receive a value between 0 and 1 when 
the segment-years are combined and variables 
averaged. 

Other pedestrian 
crossing beacon Indicator 

Crash is within 50 ft of another pedestrian crossing 
beacon (over/under 12-inch signal head); considered 
present if installed before July during year of 
installation. Segments with other pedestrian crossing 
beacons installed during the study period (i.e., 
indicator is 0 for some years, 1 for others) would 
receive a value between 0 and 1 when the 
segment-years are combined and variables averaged. 

Length of segment Continuous 
number Length of the segment in miles. 

Posted speed limit Continuous 
number Posted speed limit on road. 

Bus stop adjacent Continuous 
number Total number of bus stops (<100 ft). 

Light rail stop 
adjacent 

Continuous 
number Total number of at-grade light rail stops (<100 ft). 

Crash Data Linkage 

Pedestrian crashes were joined to the respective study segments using a 100-ft buffer. If a 
pedestrian crash was located within 100 ft of more than one segment (e.g., at an intersection), 
that crash was joined to the closest continuous segment. The project team summed crash totals 



24 

between 2014 and 2018 for each segment and then developed a binary variable representing the 
occurrence of no pedestrian crashes versus one or more pedestrian crashes. 

Pedestrian Volume 

Pedestrian counts were predicted for each intersection along a segment using the pedestrian 
volume model and then summed to produce a segment-wide estimate of pedestrian volume. The 
project team produced a predicted pedestrian count for each year between 2014 and 2018 based 
on changes to socioeconomic and demographic estimates. If more than one segment shared an 
intersection, the full predicted pedestrian count was applied equally to all associated segments; 
the predicted pedestrian counts were not divided between study area segments. 

Vehicular Speed 

The project team obtained speed data from RITIS for all study area segments for which the speed 
data were available. Average speeds were developed for three periods, the a.m. peak period (7 to 
9 a.m.), the p.m. peak period (4 to 6 p.m.), and an overnight period (11 p.m. to 3 a.m.). Each 
segment received a speed value for these periods based on the average speeds obtained for the 
weekdays of Tuesday through Thursday during the second and third full weeks in March. These 
values were derived annually for each year between 2014 and 2018. The choice of study period 
was determined for two principle reasons: 

1. Tuesdays, Wednesdays, and Thursdays are considered typical operational days for traffic 
studies. 

2. The second and third full weeks in March represented a period in which school was in 
session and no meaningful breaks or holidays occurred just before these weeks, according 
to the Charlotte-Mecklenburg Schools academic calendar. 

The project team derived five variables from speed data: average speeds for the morning, 
afternoon, and overnight periods, as well as the ratios of the morning and afternoon peak period 
speeds to the overnight speed. For data that only had a single direction of travel available, the 
project team collected data for the relevant periods and determined the ratios of peak period 
speed to the overnight condition. If data were available for both travel directions, the project 
team determined the travel direction that produced the lowest ratio of peak period speed to 
overnight speed and applied those values to the segment. The project team determined that the 
lowest ratio likely indicated the dominant direction of travel for a specific peak period. This 
period, therefore, was ideal for comparing differences in congested and free-flow conditions. The 
project team averaged overnight speeds for both directions on segments with bidirectional data. 

The project team investigated the speed data for logical and consistent observations. During this 
process, several inconsistencies were noted: 

• For some segments, a.m. and p.m. peak speed values were higher than the reported speed 
during overnight periods. This situation was questionable, as it inferred that peak hour 
traffic moved faster than traffic during overnight free-flow conditions. 
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• For roads with bidirectional speeds available, travel speeds in one direction would greatly 
exceed travel speeds in the opposing direction for all observed periods. Sometimes this 
discrepancy would represent a 40- to 50-percent difference in travel speeds. While large 
differences in travel speed by direction are to be expected, particularly during peak hour 
congestion, the consistency of this discrepancy by direction over all periods was 
questionable. 

For these reasons, as well as a lack of all coverage for all segments, the project team had greater 
success incorporating measures of speed from the probe data into the pedestrian crash severity 
models than in the pedestrian crash probability models. 

Sidewalk Presence 

Sidewalk presence was measured by two variables, each intended to assess the coverage over the 
length of a segment. Single coverage determined the proportion of a segment with at least one 
sidewalk on either side; it did not discern whether one or both sides of the street had a sidewalk 
over this distance. Dual coverage makes a more refined measurement. This variable sums the 
total length of sidewalk on both sides of a segment and divides this number by twice the overall 
segment length. If a study area segment had a sidewalk on only one side of its entire length, it 
would produce a dual coverage value of 0.5; if the same segment had complete sidewalk 
coverage on both sides, it would have a dual coverage value of 1. 

Bicycle Lane Presence 

Bicycle lanes were assigned to segments based on the year of installation. If a bicycle lane were 
installed during the study period, the lane would be considered present during its installation year 
as well as for all subsequent years. 

Pedestrian Crossing Beacons 

Pedestrian crossing beacons, defined as PHB and other beacon types, were joined to each 
segment in GIS. Like bicycle lanes, these features were considered present if they were installed 
before July of their installation year as well as for all subsequent years. 

Transit Stops 

Transit stops were joined to study area segments using a 100-ft buffer. Only at-grade light rail 
stations were considered in the analysis, and LYNX Blue Line extension stations were only 
applied to 2018 segment-years. 

FINAL DATA 

This section provides summary statistics for all variables included in each model developed for 
this study. Table 8, table 9, and table 10 only provide the variables included in each model in the 
appropriate form. 
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Table 8. Pedestrian volume model summary statistics for variables in model. 

Variable Obs Mean SD Min Max 
Indicator variable for year of count 
(1 = yr 2014; 0 otherwise) 485 0.14 0.3 0 1 

Yr 2015 485 0.13 0.3 0 1 
Yr 2016 485 0.13 0.3 0 1 
Yr 2017 485 0.11 0.3 0 1 
Yr 2018 485 0.21 0.4 0 1 
Yr 2019 485 0.16 0.4 0 1 
Indicator variable with value of 1 if 
lowest posted speed for roads at 
intersection is 25 or 30 mph; 0 
otherwise 

485 0.4 0.5 0 1 

Indicator variable with value of 1 if 
sidewalk is present; 0 otherwise  485 0.8 0.4 0 1 

Indicator variable with value of 1 if 
intersection is signalized; 0 
otherwise  

485 0.8 0.4 0 1 

Indicator variable with value of 1 if 
a bus stop is present within 0.1-mi 
radius; 0 otherwise 

485 0.7 0.5 0 1 

Land-use mix ratio 485 0.6 0.2 0 1 
Indicator variable with value of 1 if 
the intersection has an arterial 
(major and/or minor) approach leg; 
0 otherwise 

485 0.8 0.4 0 1 

Indicator variable with value of 1 if 
the intersection has four approach 
legs; 0 otherwise 

485 0.9 0.3 0 1 

Total transit commuters within 
0.5-mi radius 485 65 62.7 0 267 

Natural log of total population 
within 0.5-mi radius 485 7.6 0.9 0 9 

Total employment within 0.5-mi 
radius 485 5,882.6 11,145.6 23.6 65,187 

Obs = number of observations; SD = standard deviation; Min = minimum; and Max = maximum. 
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Table 9. Crash severity model summary statistics for variables in model. 

Variable Obs Mean SD Min Max 
Lowest AADT within 100 ft 
(vehicles per day divided by 
1,000) 

1,378 23.2 13.1 0.5 112 

Indicator variable with value of 1 
if crash involved a large vehicle 
type; 0 otherwise 

1,378 0.3 0.5 0 1 

Indicator variable with value of 1 
if pedestrian impaired; 0 otherwise 1,378 0.1 0.3 0 1 

Indicator variable with value of 1 
if crash occurred in daylight; 0 
otherwise 

1,378 0.6 0.5 0 1 

Indicator variable with value of 1 
if pedestrian was 50 yr old or 
older; 0 otherwise 

1,378 0.3 0.5 0 1 

Average speed 590 27.5 8.2 7.4 57.8 
Indicator variable with value of 1 
if intersection is signalized 
(<250 ft) (if intersection related); 0 
otherwise 

1,378 0.5 0.5 0 1 

Pedestrian volume 1,378 438 1,087 2.2 7,240.4 
Indicator variable with value of 1 
if crash is intersection related 
(<100 ft); 0 otherwise 

1,378 0.7 0.5 0 1 

Indicator variable with value of 1 
if a crash occurred on a four-plus 
lane divided road; 0 otherwise 

1,378 0.4 0.5 0 1 

Indicator variable with value of 1 
if the road had a posted speed limit 
45 mph or higher; 0 otherwise 

1,378 0.4 0.5 0 1 
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Table 10. Crash probability model summary statistics for variables in model. 

Variable Obs Mean SD Min Max 
Predicted pedestrian volume 
(predicted average 13-h 
pedestrian counts) 

1,619 523.2 1,498.7 3.3 16,735.9 

Segment length (mi) 1,619 0.3 0.3 0.1 2.1 
AADT (vehicles per day) and 
predicted pedestrian volume 
interaction  

1,619 15,565.7 32,427.0 115.6 370,944.9 

Speed limit 25–35 mph and 
median presence interaction 1,619 0.1 0.3 0 1 

Indicator variable with value of 1 
if posted speed limit is between 
25 and 35 mph; 0 otherwise 

1,619 0.5 0.5 0 1 

Number of lanes 1,619 3.7 1.3 1 8 
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CHAPTER 4. PEDESTRIAN VOLUME RESULTS 

This chapter describes the development of a pedestrian volume model. The pedestrian volume 
model predicts average 13-h pedestrian volumes at intersections as a function of intersection 
characteristics (including the context surrounding the intersection). The project team used the 
model to predict pedestrian volumes at intersections and other pedestrian crash locations and 
explore the predictions as part of the pedestrian crash severity and pedestrian crash probability 
modeling. The sections in this chapter describe the pedestrian volume modeling technique, 
variable selection process, and results. 

MODEL DEVELOPMENT AND FORM 

The pedestrian volume model was developed using a negative binomial count regression model. 
The dependent variable in the model is the pedestrian count over a 13-h period, making a count 
model appropriate for the data. Negative binomial regression is preferred to other count 
regression models as it can account for overdispersion, which occurs when the variance exceeds 
the mean of the observed data. 

The functional form of the negative binomial regression model is shown in figure 5 (Lord and 
Mannering 2010). 

 
Figure 5. Equation. Negative binomial regression functional form. 

Where: 
𝑒𝑒𝜀𝜀𝑖𝑖  = gamma distributed error term, where 𝑒𝑒𝜀𝜀𝑖𝑖 is gamma distributed with a mean equal to 1 

and variance equal to α. 
λi = expected number of pedestrians at location i. 
β = vector of estimated parameters. 
Xi = vector of independent variables that characterize location i and influence pedestrian 

volumes. 

The variance in the number of pedestrians at location i is shown in figure 6 (Lord and Mannering 
2010). 

 
Figure 6. Equation. Negative binomial regression variance calculation. 

Where: 
E[yi] = expected number pedestrians at location i. 
VAR[yi] = variance in number of pedestrians at location i. 
α = overdispersion parameter. 
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The form of the negative binomial distribution is shown in figure 7 (Washington, Karlaftis, and 
Mannering 2011). 

 
Figure 7. Equation. Negative binomial probability function. 

Where: 
P(yi = y) = probability of observing number of pedestrians equal to y at location i.  
Γ = gamma function. 

VARIABLE SELECTION 

Variable selection for the pedestrian volume model included an examination of the descriptive 
statistics of available data to determine variability in the data. Sufficient variability needs to be 
present in the variables to be included in the models. For example, if a variable is categorical, 
enough observations should be available for each category to be considered for the model. 
Without enough observations, model results could be influenced by only a few observations in 
one or more categories. Similarly, continuous variables should show variability across ranges of 
values for which the model will apply. 

After individual variable statistics were examined, the project team applied a forward selection 
process to develop the pedestrian volume model. Forward selection includes starting with a 
model with no variables, then gradually and progressively adding variables until the model no 
longer improves (Agresti 2007). After each variable is added to the model, it is tested to examine 
the effect. This test assesses how each variable improves model fit and the statistical significance 
of the model and remaining variables, including the magnitudes of the effects and significance of 
that effect size. The p-values were checked for variable statistical significance, and the pseudo R2 
and overdispersion values were checked for model fit and explanatory value. The project team 
also examined correlations between variables. Variable selection and model development are 
complete once the model no longer significantly improves with the addition of any other 
variables. 

The variable selection process included the variables described in chapter 3 (Data Acquisition 
and Integration) and variable transformations. Variable transformations were reviewed and 
considered, including transforming continuous variables and adjusting categories for categorical 
variables. 

PEDESTRIAN VOLUME MODEL RESULTS 

The estimation results for the negative binomial regression model of pedestrian volumes are in 
table 11. 
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Table 11. Negative binomial regression model for pedestrian volume. 

Variable Coefficient 
Standard 

Error z-Value P > |z| 
Indicator variable for year of count 
(1 = yr 2014; 0 otherwise) 

−0.0627 0.1503 −0.42 0.677 

Yr 2015 −0.0838 0.1544 −0.54 0.587 
Yr 2016 −0.1918 0.1567 −1.22 0.221 
Yr 2017 0.0724 0.1617 0.45 0.654 
Yr 2018 −0.0992 0.1463 −0.68 0.498 
Yr 2019 −0.0404 0.1468 −0.27 0.783 
Indicator variable with value of 1 if 
lowest posted speed for roads at 
intersection is 25 or 30 mph; 0 
otherwise 

0.3133 0.0915 3.43 0.001 

Indicator variable with value of 1 if 
sidewalk is present; 0 otherwise  

0.6682 0.1335 5.01 <0.001 

Indicator variable with value of 1 if 
intersection is signalized; 0 
otherwise  

0.3523 0.1086 3.24 0.001 

Indicator variable with value of 1 if 
a bus stop is present within 0.1-mi 
radius; 0 otherwise 

0.4358 0.0916 4.76 <0.001 

Land-use mix ratio 1.2306 0.2240 5.49 <0.001 
Indicator variable with value of 1 if 
the intersection has an arterial 
(major and/or minor) approach leg; 
0 otherwise 

−0.6090 0.1058 −5.76 <0.001 

Indicator variable with value of 1 if 
the intersection has four approach 
legs; 0 otherwise 

0.6272 0.1778 3.53 <0.001 

Total transit commuters within 
0.5-mi radius 

0.0034 0.0007 4.54 <0.001 

Natural log of total population 
within 0.5-mi radius 

0.3508 0.0551 6.37 <0.001 

Total employment within 0.5-mi 
radius 

0.0001 0.000005 12.03 <0.001 

Constant −0.8621 0.4335 −1.99 0.047 
α 0.6728 0.0428 N/A N/A 

N/A = not applicable. 
Note: Number of observations = 485; log likelihood = −2621.344; pseudo R2 = 0.1367; likelihood ratio (LR) χ2(16) 
= 830.41; probability > χ2 < 0.0001. 

The pedestrian volume model in table 11 includes indicator variables for the year in which 
pedestrian counts are being predicted. Despite the higher p-values associated with the annual 
indicators, these variables capture “aggregate effects” of unknown or unmeasured variables that 
change from year to year and are not explicitly included in the model, but influence pedestrian 
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volumes. Gayah et al. (2018) noted that a primary concern for statistical modeling is omitted 
variable bias. Including these yearly indicators is one way to account for confounding effects and 
thus more accurately estimate the influences of other variables that are included in the model. 
The yearly indicators also improved the accuracy of model predictions. For these reasons, the 
yearly indicators were kept in the model, regardless of statistical significance. 

The model indicates that pedestrian volumes increase at intersections where the lowest posted 
speed limit on the approach roadways is equal to 25 or 30 miles per hour (mph), intersections 
with a sidewalk, signalized intersections, and intersections with at least one bus stop present. The 
model also suggests that pedestrian volumes increase as the land-use mix becomes more 
heterogeneous and as the total population and total employment within a 0.5-mi radius of the 
intersection increases. Conversely, one of the approach roadways being an arterial road is 
associated with a decrease in pedestrian volumes, compared with all approaches being collector 
roads. The impacts of the independent variables on pedestrian volumes are consistent with 
engineering and planning expectations. Figure 8 maps a sample subset of the pedestrian volume 
predictions near Charlotte. Comparison between these predicted values (figure 8) and observed 
pedestrian activity within this area (figure 9) suggests a good overall match between the 
pedestrian volume predictions and actual pedestrian travel demand patterns. 

 
Original photo: © 2019 NC OneMap. Annotated by FHWA (see 
Acknowledgments section). 

Figure 8. Graphic. Example pedestrian volume model output (NC OneMap 2019). 
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Original photo: © 2019 NC OneMap. Annotated by FHWA (see Acknowledgments section). 

Figure 9. Graphic. Average observed 13-h counts at intersections during available years 
(Charlotte 2020; NC One Map 2019). 

The project team developed a cumulative residual (CURE) plot to display the predicted 
pedestrian volume in terms of relation to cumulative residuals to assess how well the model fits 
the data (figure 10). Overall, the CURE plot shows that the model generally fits the data well, as 
just about 7 percent of the observations fall outside of the 95-percent confidence interval. 
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Source: FHWA. 

Figure 10. Graph. CURE plot for the predicted pedestrian volume. 

 



35 

CHAPTER 5. SAFETY MODELING METHODOLOGY 

This chapter describes the methodologies used for the crash severity and crash probability 
modeling. It includes descriptions of the statistical analysis approaches and variable selection 
process. Chapter 6 provides the model results and related discussions. 

ANALYSIS APPROACH 

This section describes the statistical analysis approaches that were applied to model pedestrian 
crash severity and pedestrian crash probability. 

Pedestrian Crash Severity 

The goal of the pedestrian crash severity model was to estimate the probability of a pedestrian 
crash resulting in a fatal or suspected serious injury for the pedestrian (as opposed to other injury 
outcomes—suspected minor injury, possible injury, or no apparent injury). The crash severity 
analysis is based on injury severity for the pedestrian involved in that crash and does not 
consider the injury level of vehicle drivers or passengers in the crash. 

Pedestrian crash severity was modeled as a binary outcome: a value of 1 represented a fatal or 
suspected serious injury for the pedestrian, and a value of 0 represented all other severity levels 
(suspected minor injury, possible injury, or no apparent injury). Due to the binary nature of the 
crash severity outcome of interest, the project team used binary logistic regression. Binary 
logistic regression is a popular method to analyze binary data (Agresti 2007) where a binary 
outcome is modeled using predictors (Washington, Karlaftis, and Mannering 2011). The model 
developed here provides the probability of a pedestrian crash resulting in a pedestrian fatality or 
suspected serious injury. Figure 11 displays the functional form of the binary logistic regression 
(Agresti 2007), which applies a logit transformation to the probability of a fatality or suspected 
serious injury. 

 
Figure 11. Equation. Binary logistic regression functional form. 

Where: 
P(FSI) = probability of fatality or suspected serious injury. 
α = regression model constant value. 
β = vector of estimated regression model coefficients. 
x = vector of independent variables influencing the injury outcome. 

The resulting probability of a fatality or suspected serious injury as a function of the independent 
variables can be obtained using the equation in figure 12 (Agresti 2007). 
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Figure 12. Equation. Probability calculation using binary logistic regression. 

Another method to interpret the binary logistic regression results is by computing the odds ratio, 
shown in figure 13. 

 
Figure 13. Equation. Odds ratio calculation for binary logistic regression. 

Where: 
m = a specific number or value for a variable xj. 
βj = estimated regression model coefficient for a specific variable xj. 

The odds ratio associated with a specific independent variable represents the change in the 
likelihood of observing a fatality or suspected serious injury when that variable increases in 
value by 1 unit while all other independent variables are held constant. Odds ratios greater than 1 
suggest an increase likelihood of a fatality or suspected serious injury outcome with an increase 
in the variable, while odds ratios less than 1 represent a reduced likelihood. Therefore, positive 
parameter estimates identify variables where an increase in those variables is associated with an 
increased likelihood of a fatality or suspected serious injury crash, whereas negative parameter 
estimates identify variables where an increase in those variables is associated with a decreased 
likelihood of a fatality or suspected serious injury crash. 

Pedestrian Crash Probability 

The goal of the crash probability was to estimate the probability of a pedestrian crash occurring 
on a given segment during the 5-yr analysis period. A binary outcome was used in the database 
to denote if a pedestrian crash occurred on a segment: a value of 1 was used for segments that 
experienced at least one pedestrian crash of any severity, whereas a value of 0 was used if no 
pedestrian crashes were observed on that segment. Due to the binary nature of this outcome 
variable, a binary logistic regression model was also used for the crash probability analysis. 

VARIABLE SELECTION 

The variable selection process considered the variables described in the pedestrian crash severity 
and pedestrian crash probability sections of chapter 3 (Data Acquisition and Integration) and was 
similar for development of both the pedestrian crash severity and pedestrian crash probability 
models. As with the development of the pedestrian volume model, the project team employed a 
forward selection process, testing statistical significance and model fit as variables were added to 
the models and considering the magnitude of the effects. Variable transformations and 
correlations were also considered and checked. 
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The project team developed two crash severity models: one not considering measures of speed 
derived from probe data, and the other considering speed variables from probe data. The crash 
severity model that excluded the probe speed variables was developed first and served as a 
“baseline” for the crash severity model that included probe speed variables. This approach 
allowed observations of the effects and explanatory contributions of the probe speed variables. 
Variables that were no longer statistically significant after the addition of the probe speed 
variables were removed, and correlations were rechecked. 

SUMMARY 

The pedestrian crash severity and pedestrian crash probability modeling both used binary logistic 
regression. The crash severity model predicts the probability of a pedestrian crash resulting in a 
pedestrian fatality or suspected serious injury. The crash probability model predicts the 
probability of a road segment experiencing one or more pedestrian crashes of any severity level 
over a 5-yr analysis period. 

The development of model specifications used a forward selection process for determining which 
variables are appropriate to include in the models. Variable transformations and variable 
interactions were also considered, along with correlations between variables. 
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CHAPTER 6. SAFETY ANALYSIS RESULTS AND INTERPRETATION 

This chapter provides estimation results and interpretations of the pedestrian crash severity and 
pedestrian crash probability models. As discussed throughout this report, the pedestrian crash 
severity model predicts the probability of a pedestrian crash resulting in a pedestrian fatality or 
suspected serious injury as a function of crash characteristics. The characteristics include a 
predicted level of average pedestrian activity at the crash location, which is derived from the 
pedestrian volume model described in chapter 4. The pedestrian crash probability model predicts 
the probability that one or more pedestrian crashes will occur on a road segment as a function of 
characteristics of that segment. As with the severity model, one of those characteristics is the 
level of pedestrian activity on the segment, which is also derived from the pedestrian volume 
model in chapter 4. 

PEDESTRIAN CRASH SEVERITY 

The project team performed two separate crash severity analyses: one without probe speed data 
and one with probe speed data. This approach allowed the project team to observe additional 
explanatory information from actual operating speeds from probe data that were added to the 
crash severity analysis compared with posted speed limit, a commonly used operating speed 
surrogate. Table 12 and table 13 display the estimation results for the binary logistic regression 
models excluding and including probe speed data, respectively. The models in table 12 and 
table 13 show that, when actual operating speeds are added, some variables are no longer 
significant based on magnitude of the effects, statistical significance, and correlations between 
other variables. This observation indicates that operating speeds capture the effects of those 
variables that may have been serving as surrogates for operating speed. These variables include 
the predicted pedestrian volume, the roadway cross section, and the speed limit. 

Like the pedestrian volume model, the project team kept several variables in the model that were 
not statistically significant at the 95-percent confidence level. Variables kept in this way were 
those that were demonstrated in past research to be important contributing factors to crash 
severity and had a coefficient sign and magnitude that was reasonable. Note that recent safety 
research has mentioned that statistical significance of model coefficients is a secondary concern. 
Including statistically insignificant but informative variables can help reduce omitted variable 
bias and advance safety performance knowledge (Gayah et al. 2018). Variables that may not be 
statistically significant may still be important (Hauer 2004). Variables that remain in both models 
show similar effects, regardless of whether operating speed is included. Variables in both models 
that are associated with an increase in the odds of a pedestrian crash resulting in a fatality or 
suspected serious injury are as follows: whether there was an increase in the lowest AADT 
within 100 ft of the crash; whether a large vehicle struck the pedestrian (light truck, commercial 
bus, sport utility, van, pickup, single unit truck, other bus, or tractor/trailer/truck); whether the 
pedestrian was impaired; and whether the pedestrian was 50 yr old or older. If a pedestrian crash 
occurs during daylight, the odds of the crash resulting in a fatality or suspected serious injury 
decrease. 

Both models also include a variable related to whether the pedestrian crash occurred near an 
intersection, with some variation. The project team developed two indicators of intersection 
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proximity: the 100-ft buffer represents the area directly within the intersection itself, whereas the 
250-ft buffer considers the intersection influence area. This larger window accounts for 
intersection-related traffic patterns, such as traffic queues and turn lanes. The model in table 12, 
which excludes probe speed, includes an indicator variable for whether a pedestrian crash is 
intersection related (i.e., defined in this model as a crash within 100 ft of any intersection). A 
pedestrian crash that is intersection related is associated with a decrease in the odds of a fatality 
or suspected serious injury. The intersection variable in table 13 also shows a decrease in fatality 
or suspected serious injury odds when a crash is intersection related, but the variable refers to 
whether the crash is intersection related and the intersection is signalized (i.e., defined in this 
model as a crash within 250 ft of a signalized intersection). 

Table 12. Binary logit for crash severity not including probe speed variables. 

Variable 
Odds 
Ratio Coefficient 

Standard 
Error z-Value P > |z| 

Lowest AADT within 100 ft 
(divided by 1,000) 

1.0178 0.0176 0.0077 2.33 0.020 

Pedestrian volume 0.9997 −0.0003 0.0002 −1.79 0.073 
Indicator variable with value of 
1 if crash is intersection related 
(<100 ft); 0 otherwise 

0.5207 −0.6525 0.1012 −3.36 0.001 

Indicator variable with value of 
1 if crash involved a large 
vehicle type; 0 otherwise 

1.715 0.5397 0.3316 2.79 0.005 

Indicator variable with value of 
1 if pedestrian impaired; 0 
otherwise 

3.0584 1.1179 0.6949 4.92 <0.001 

Indicator variable with value of 
1 if crash occurred in daylight; 0 
otherwise 

0.3896 −0.9425 0.0816 −4.50 <0.001 

Indicator variable with value of 
1 if pedestrian was 50 yr old or 
older; 0 otherwise 

2.0235 0.7048 0.3985 3.58 <0.001 

Indicator variable with value of 
1 if a crash occurred on a 
four-plus lane divided road; 0 
otherwise 

0.57045 −0.5615 0.1254 −2.55 0.011 

Indicator variable with value of 
1 if the road had a posted speed 
limit 45 mph or higher; 0 
otherwise 

1.5058 0.4093 0.3209 1.92 0.055 

Constant 0.0964 −2.3388 0.0279 −8.08 <0.001 
Note: Number of observations = 1,378; log likelihood = −386.6432; pseudo R2 = 0.1660; LR χ2(9) = 153.87; 
probability > χ2 < 0.0001. 
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Table 13. Binary logit for crash severity including probe speed variables. 

Variable 
Odds 
Ratio Coefficient 

Standard 
Error z-Value P > |z| 

Lowest AADT within 100 ft 
(divided by 1,000) 

1.0154 0.0153 0.0105 1.48 0.139 

Indicator variable with value of 
1 if crash involved a large 
vehicle type; 0 otherwise 

1.6344 0.4913 0.4931 1.63 0.103 

Indicator variable with value of 
1 if pedestrian impaired; 0 
otherwise 

2.5989 0.9551 0.9498 2.61 0.009 

Indicator variable with value of 
1 if crash occurred in daylight; 
0 otherwise 

0.3633 −1.0125 0.1184 -3.11 0.002 

Indicator variable with value of 
1 if pedestrian was 50 yr old or 
older; 0 otherwise 

2.2874 0.8274 0.7121 2.66 0.008 

Average speed 1.0585 0.0569 0.0228 2.64 0.008 
Indicator variable with value of 
1 if intersection is signalized 
(<250 ft) (if intersection 
related); 0 otherwise 

0.6500 −0.4308 0.2003 −1.4 0.162 

Constant 0.0147 −4.2217 0.0107 −5.78 <0.001 
Note: Number of observations = 590; log likelihood = −165.6118; pseudo R2 = 0.1649; LR χ2(7) = 65.39; 
probability > χ2 < 0.0001. 

PEDESTRIAN CRASH PROBABILITY 

The pedestrian crash probability model predicts the probability that one or more pedestrian 
crashes will occur on a road segment as a function of characteristics of that segment. The project 
team used binary logistic regression to develop multiple pedestrian crash probability models, 
which are shown in table 14, table 15, and table 16. Table 14 provides a crash probability model 
applicable to all road segments, whereas table 15 and table 16 provide models for road segments 
with and without a median, respectively. Disaggregating the model by median presence allowed 
the project team to explore interactions that appeared to exist between median presence and the 
other variables included in the crash probability models. 
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Table 14. Binary logit for crash probability including all segments. 

Variable 
Odds 
Ratio Coefficient 

Standard 
Error 

z-
Value P > |z| 

Pedestrian volume 0.9994 −0.0006 0.0001 −4.18 <0.001 
Segment length (mi) 2.2739 0.8215 0.4667 4.00 <0.001 
AADT and pedestrian volume 
interaction 

1.0001 0.0001 0.00001 7.07 <0.001 

Speed limit 25 to 35 mph and 
median presence interaction 

0.7691 −0.2626 0.1237 −1.63 0.102 

Number of lanes 1.1762 0.1623 0.0547 3.49 <0.001 
Constant 0.1914 −1.6534 0.0390 −8.12 <0.001 

Note: Number of observations = 1,619; log likelihood = −996.6926; pseudo R2 = 0.0867; LR χ2(5) = 189.34; 
probability > χ2 < 0.000. 

Table 15. Binary logit for crash probability including segments with a median. 

Variable 
Odds 
Ratio Coefficient 

Standard 
Error 

z-
Value P > |z| 

Pedestrian volume 0.9967 −0.0033 0.00084 −3.88 <0.001 
Segment length (mi) 1.9046 0.6443 0.8710 1.41 0.159 
AADT and pedestrian volume 
interaction 

1.0001 0.0001 0.00003 5.64 <0.001 

Indicator variable with value of 
1 if posted speed limit is 
between 25 and 35 mph; 0 
otherwise 

0.7509 −0.2865 0.1558 −1.38 0.167 

Number of lanes 0.9709 −0.0295 0.0854 −0.34 0.737 
Constant 0.3266 −1.1190 0.1387 −2.63 0.008 

Note: Number of observations = 532; log likelihood = −320.36529; pseudo R2 = 0.1111; LR χ2(5) = 80.08; 
probability > χ2 < 0.0001. 
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Table 16. Binary logit for crash probability including segments without a median. 

Variable 
Odds 
Ratio Coefficient 

Standard 
Error 

z-
Value P > |z| 

Pedestrian volume 0.9997 −0.0003 0.0001 −2.59 0.01 
Segment length (mi) 2.2131 0.7944 0.5343 3.29 0.001 
AADT and pedestrian volume 
interaction 

1.00004 0.00004 0.000007 
5.23 

<0.001 

Indicator variable with value of 
1 if posted speed limit is 
between 25 and 35 mph; 0 
otherwise 

0.9298 −0.0727 0.1312 −0.52 0.606 

Number of lanes 1.2225 0.2009 0.0737 3.33 0.001 
Constant 0.1807 −1.7107 0.0483 −6.4 <0.001 

Note: Number of observations = 1,087; log likelihood = −665.32705; pseudo R2 = 0.0896; LR χ2(5) = 131.00; 
probability > χ2 < 0.0001. 

Like the pedestrian volume and crash severity models, the project team included both statistically 
significant and less significant but informative variables; all variables included in these models 
have been demonstrated in past research to be important contributing factors to crash occurrence. 
The pedestrian crash probability model estimation results show that predicted pedestrian 
volumes are a statistically significant predictor of the probability of at least one pedestrian crash 
occurring on a segment. In all three models, pedestrian volume is statistically significant at a 
95-percent confidence level. The odds ratios indicate that the odds of at least one pedestrian 
crash occurring on a segment decrease as pedestrian volumes increase. This finding is consistent 
with safety-in-numbers ideas and may be due to greater awareness of pedestrian activity and 
other contextual factors in more pedestrian-active areas. 

The length of each segment is a statistically significant predictor of the probability of at least one 
pedestrian crash occurring on a segment. In table 14 and table 16, it is statistically significant at a 
95-percent confidence level, whereas in table 15 (when a median is present), it is statistically 
significant at a 90-percent confidence level. The odds ratios, all greater than 1, indicate that the 
odds of at least one pedestrian crash occurring on a segment increase as the segment length 
increases. This result is consistent with engineering and planning expectations, as longer 
segments provide more opportunities for crashes to occur than shorter segments (i.e., an 
exposure effect). 

The interaction between AADT and predicted pedestrian volume is a statistically significant 
predictor of the probability of a pedestrian crash at a 95-percent confidence level. The odds ratio 
is greater than 1, indicating that the odds of a least one pedestrian crash occurring on a segment 
increase as the value of this interaction increases. While the main effect of predicted pedestrian 
volume shows a safety-in-numbers effect, higher traffic volumes decrease or eliminate this 
safety-in-numbers benefit. 

The results in table 14 also include an interaction between an indicator variable for whether the 
segment has a posted speed limit between 25 and 35 mph and a median. This interaction variable 
was not included in table 15 or table 16 because those models are already separated by median 
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presence. This interaction variable in table 14 shows that the interaction between posted speed 
limit and median presence is a statistically significant predictor of the probability of a pedestrian 
crash at a 90-percent confidence level. The odds ratio, which is less than 1, indicates that, if a 
median is present and the segment has a posted speed limit between 25 and 35 mph, the odds of a 
pedestrian crash decrease. If there is either a median present or a low posted speed limit 
separately, the model indicates that there is no statistically significant effect. This result could 
indicate that there is some benefit to including both features to reduce the odds of a pedestrian 
crash. While table 14 showed the interaction between a low posted speed limit and median 
presence was statistically significant on all segments, table 15 and table 16 confirm the result that 
the presence of a low (25 to 35 mph) posted speed limit has a more significant impact (both in 
magnitude and statistical significance) when a median is present (table 15) than when it is not 
(table 16). Both odds ratios are less than 1, indicating that the odds of at least one pedestrian 
crash occurring on a segment decrease when the posted speed limit is between 25 and 35 mph 
compared with higher posted speed limits. While the variable is not statistically significant in 
either model, it is more statistically significant in table 15 (when a median is present) than in 
table 16 (when no median is present). This result reinforces the interpretation of the interaction 
term, showing that the combination of both a median and a lower posted speed limit provides a 
safety benefit, but one without the other may not have a quantifiable benefit. 

The number of lanes is statistically significant at a 95-percent confidence interval when all 
segments table 14 and segments without a median (table 16) are considered; however, it is not 
statistically significant when a median is present (table 15). This finding indicates that the 
number of lanes is a predictor of the probability of at least one pedestrian crash occurring on a 
segment when the segment does not have a median. The odds ratios in table 14 and table 16 are 
both greater than 1, indicating that the odds of at least one pedestrian-involved crash increase 
when the number of lanes increases.
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CHAPTER 7. DISCUSSION AND CONCLUSIONS 

This section discusses the applicability of integrating HSIS data and other emerging data sources 
to answer high-priority research questions, details the findings from this study, and makes 
recommendations for future research. 

APPLICATION OF HSIS DATA INTEGRATION 

The Charlotte dataset provided by HSIS was a critical component of this study. The multimodal 
GIS dataset, the type of data piloted in the HSIS geospatial data delivery tool, allowed the project 
team to efficiently incorporate multiyear datasets from several different transportation agencies, 
as well as traffic and pedestrian count data from Charlotte directly. These other data sources 
included Mecklenburg County, NCDOT, U.S. Census Bureau, and RITIS. In chapter 3, the 
project team noted a difference between HSIS datasets and a more refined pedestrian crash 
dataset published by NCDOT. While the project team found the postprocessed NCDOT crash 
database to be more applicable to this study, future enhancements could allow HSIS to readily 
incorporate these spatial datasets into program workflows. The geospatial data delivery tool is an 
example of how the HSIS program could publish these supplementary datasets and allow users to 
explore them in parallel with more traditional HSIS data. 

Access to HSIS data in a geospatial format significantly reduced the level of effort required to 
perform data collection and integration. With this advantage, the project team tested a broader 
spectrum of contributing factors to pedestrian activity and safety, as well as invested more time 
refining the models included in this study. 

PEDESTRIAN VOLUME 

The components of the pedestrian volume model showed highly intuitive results in both the 
effect and magnitude of each variable. The presence of pedestrian infrastructure, a higher mix of 
land uses (origins and destinations), transit access, lower vehicle speeds, and dense 
neighborhoods with higher numbers of residents and workers all contributed to higher pedestrian 
activity. The presence of at least one arterial approach roadway at an intersection, with its 
typically wider cross section and higher vehicle speeds, contributed to lower levels of pedestrian 
activity. Furthermore, the estimate provided by the pedestrian volume model resulted in intuitive 
results in the pedestrian crash probability and severity models. 

PROBE SPEED DATA 

The project team successfully integrated probe speed data with pedestrian crash location data and 
found that observed speeds were a significant predictor of pedestrian crash severity. This result is 
highly consistent with previous studies, and probe data could replace other, less direct indicators 
of vehicle speed as a preferred safety analysis metric. While the project team questioned the 
reliability of probe speed data at the segment level for crash probability modeling, particularly 
before 2018, this limitation could be overcome as the coverage of the dataset improves and 
bidirectional data become more reliable over time. Other than gaps in data coverage, possible 
limitations of the probe data at the segment level could include: 
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• Appropriateness of the study period (i.e., a period that produces an average reference 
speed that reflects typical operating conditions). 

• Unobserved deviations in road conditions (i.e., temporary road work or closures affecting 
one or both directions of travel). 

Future studies may find stronger links between crash probability at the segment level and probe 
speed data, thus allowing agencies to potentially use this resource as a pedestrian network 
screening tool. There are tradeoffs between the capacity of “big data” management required of 
an agency to conduct speed data analysis (e.g., minutes, hours, and days) and the time periods 
consistent with typical safety analysis (e.g., 3 to 5 yr). This practical implications of this 
trade-off for safety analysis and screening are an area that could benefit from further research. 

CRASH SEVERITY 

The crash severity model without probe speed data was highly consistent with expectations and 
previous studies (table 12). Higher posted speed limits, higher traffic volumes (indicative of 
larger, higher functional classification roads), larger vehicles striking the pedestrian, pedestrian 
impairment, and older pedestrian ages were all indicative of a higher probability of a pedestrian 
crash resulting in a fatality or serious injury. Conversely, proximity to an intersection and 
daytime lighting conditions were significant predictors of less serious injury outcomes. 
Proximity to an intersection likely indicates slower vehicle speeds and “more organized” 
crossings expected by drivers as opposed to the circumstances leading to midblock crashes, 
while daytime crashes likely relate to visibility. If pedestrians are more visible, drivers have the 
opportunity to reduce their speed, stop, or attempt to avoid a potential crash. 

Two notable outcomes from the nonprobe speed model are the significance of pedestrian 
volumes and four-lane, median-divided roads as indicators of lower crash severity. Again, the 
concept of safety in numbers is a common theme throughout the literature, but its effect has not 
been frequently quantified due to lack of exposure information. This study showed that higher 
pedestrian volumes result in both lower crash severities and probabilities, but the safety benefit 
for crash probabilities is reduced by higher vehicle volumes. It is possible that pedestrian 
volumes are likely correlated with more urban environments, where city blocks are shorter, roads 
are narrower, and drivers are moving at more moderate speeds and anticipating pedestrian 
crossings, thus enhancing a safety-in-numbers effect. As noted in the pedestrian volume model in 
table 11, both minor and major arterials were negatively correlated with pedestrian volume 
(relative to collector streets). Furthermore, pedestrian crashes on four-lane, median-divided 
facilities had a lower probability of resulting in fatal and serious injuries compared with other 
facility types in the dataset (most of which were four-lane undivided). This finding may indicate 
a safety benefit provided by a median as a potentially moderating influence on vehicle speed or a 
refuge for pedestrians that allows them to wait for slower moving and more widely spaced 
traffic. 

The model in table 13 that included observed vehicle speeds collected from probe data also 
showed highly intuitive and consistent results. All variables common to the nonprobe and probe 
data models show similar results in both overall effect and magnitude. Although the definition of 
the statistically significant intersection variable changes between both models, the effect of a 
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signalized intersection in the probe speed model showing lower pedestrian crash severities is 
expected and consistent with previous studies. The statistical significance of traffic volumes and 
large vehicles is reduced somewhat, but this reduction may represent a strength of probe data 
capturing more of the speed effect. Rather than inferring road size and vehicle speed through 
traffic volume and posted speed limit, direct measures of speed may be a more nuanced indicator 
of potential pedestrian crash severity. By adding the direct measure of speed from probe data 
(and given the known importance of speed to crash injury severity), the probe speed model 
removed several surrogates of vehicle speed from consideration without sacrificing model fit. 
This outcome could indicate its applicability for existing conditions monitoring in future safety 
applications. 

CRASH PROBABILITY 

Like crash severity, the crash probability models showed highly intuitive results. In the 
all-segments model (table 14), wider roads, the length of the continuous segment, and the 
interaction of pedestrian volume with the average AADT were correlated with an increased 
likelihood of a pedestrian crash occurring on a particular segment. This finding is consistent with 
expectations and previous studies. Conversely, pedestrian volume alone and segments with a low 
posted speed and a median present were associated with a lower likelihood of a pedestrian crash 
occurring. The significance of the pedestrian volume variable alone is especially relevant 
compared with the interaction between pedestrian volume and AADT. Pedestrian volumes alone 
indicate a safety-in-numbers effect, but the interaction of pedestrian and traffic volumes shows 
an important corollary effect: while an increase in pedestrian activity alone may not lead to an 
increased likelihood of a pedestrian crash, the confluence of high pedestrian volumes and high 
vehicular traffic volumes does lead to an increased probability of a pedestrian crash. 

The interaction of a median and low posted speed limits indicates a lower likelihood of a 
pedestrian crash and is an intuitive result. Lower speed limits and the presence of a potential 
crossing refuge appear to be especially important when combined. During the modeling process, 
the project team noted that median presence alone was not consistently an indicator of a 
decreased likelihood of a pedestrian crash. The separate models in table 15 and table 16 have 
some intuitive differences. While both exposure variables retain their effect, magnitude, and 
statistical significance, the low posted speed limit indicator and the number of lanes vary 
considerably between both models. Lower posted speed limits were much more significant to a 
lower likelihood of a pedestrian crash on median divided roads and were much less significant in 
the undivided model. Conversely, the presence of the median reduces the significance of the 
number of lanes a pedestrian must cross, whereas the number of lanes on an undivided road is a 
highly significant indicator of an increased likelihood of a pedestrian crash. While this finding 
may not definitively reinforce the efficacy of a median as a pedestrian safety device, it does 
suggest that medians may have some moderating influence on the risk posed by crossing 
distance; this effect may be enhanced through lower vehicle speeds. 

LIMITATIONS 

This section discusses some of the limitations of this study. One notable limitation is highlighted 
by the inconclusive results of medians alone in predicting crash probability. While the study took 
care to account for changes to the environment over time, the project team assumed that road 
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infrastructure was constant throughout the study. Therefore, there is no comparison of a road 
before a median was installed relative to its safety performance after a median was installed. 
Furthermore, while continuous segments allowed the project team to aggregate highly similar 
segments, small deviations in the roadway geometry may not be adequately captured. For 
instance, medians may temporarily break to allow for turn lanes, but the segment may be 
predominantly median divided on either side of this gap. Finally, the project team did not have 
access to median type information. No distinction was made between a median designed to be a 
pedestrian refuge and one that merely separated bidirectional traffic. Some medians may not 
provide adequate protection, or be accessible, for pedestrians. 

Related to safe crossing locations for pedestrians, the study did not take any pedestrian or vehicle 
action into account. For instance, the presence of a median does not provide protection for a 
pedestrian walking along a travel way or walking out between parked vehicles. While the study 
captured many of the commonly cited trends in pedestrian crash outcomes, especially for 
network screening purposes, prediction outcomes at certain locations could be refined by 
incorporating specific actions of persons involved in a crash. Finally, as noted in some of the 
previous studies, the efficacy of some pedestrian infrastructure may not be reflected in this type 
of study. Sidewalks, PHBs, and other crossing improvements may reduce crashes at specific 
locations, especially compared with conditions before a treatment was installed, but these 
locations may still experience more crashes (or more severe crashes) than peer locations with 
different site-specific qualities (e.g., sight distance, lighting, special events). 

CONCLUSIONS 

This study successfully integrated HSIS with numerous multi-jurisdictional and emerging 
datasets and identified promising applications of both direct measures of vehicle speed and 
estimated pedestrian counts based on observed pedestrian counts. Vehicle speed was a strong 
predictor of a fatal or serious injury, and pedestrian volume, especially when combined with high 
traffic volume, was a highly consistent predictor of the likelihood of a pedestrian crash on a 
given road segment. Both results are intuitive and consistent with findings in previous studies. 

The objective of this study was to apply more direct measures of vehicle speed and pedestrian 
volume to assess pedestrian safety. The benefit of using these sources, rather than a collection of 
proxies and surrogates, is threefold. First, safety models developed using these direct measures 
(e.g., observed speed) could provide greater insight into the differences between two relatively 
similar sites. While two roads may have a posted speed limit of 45 mph, speeding may be a 
greater issue on one road than on the other. Observed speeds could allow agencies to make more 
nuanced interventions. 

Second, the measures of speed and pedestrian volume applied in this study lend themselves to 
network screening and analysis. While speeds are typically measured for individual corridor 
studies and pedestrian counts are collected ad hoc at targeted locations, the RITIS data and the 
pedestrian volume model allow conditions to be assessed and compared over an entire road 
network efficiently. This process could enhance and supplement traditional screening for 
pedestrian safety issues. 
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Finally, while several proxies of pedestrian volume are most reliable at the zonal level (e.g., a 
census tract), specific countermeasure treatments are often only applicable at the segment or site 
level. Zonal analysis has the potential to be a strong planning tool to assess anticipated changes 
in a community, but it may lack the power to make targeted treatments in the present. Observed 
speeds and interpolated pedestrian volumes allow practitioners to make informed improvements 
immediately, rather than in the future.
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