National Performance Management Measures: Bridge Condition to Assess the National Highway Performance Program

Derek Constable and Doug Blades FHWA Office of Bridges & Structures

Phoenix, AZ

September 13, 2017

Bridge Sessions

- Session 1: Asset Management Plans
- Session 2: Bridge Management Systems
- Session 3: Bridge Performance Measures
 & Target Setting

Acronyms

AMP BMS LCC LCCA	asset management plan bridge management systems life-cycle cost life-cycle cost analysis
NBIS NHPP	National Bridge Inspection Standards National Highway Performance Program
NHS PM STIP	National Highway System performance measure State Transportation Improvement Program

Session 1: Asset Management Plans

Asset Management Plans

- Purpose & Definitions
- Development Processes & Requirements
- Deadlines & Penalties
- Process Certification
- Resources

Asset Management Plans

- Law: 23 USC 119(e)(8), 144, 150(c)
- Regulation: 23 CFR 515 AMPs
 - Published Oct. 24, 2016
 - Effective Oct. 2, 2017

23 CFR 515.1: Purpose

- Establish processes State DOT must use
- Establish minimum development requirements
- Describe penalties
- Set forth minimum standards for developing and operating bridge management systems

23 CFR 515.5: Key Definitions

- Asset
- Asset class
- Asset condition
- Asset management
- Asset management plan
- Asset sub-group
- Bridge
- Critical infrastructure
- Financial plan
- Investment strategy

• Life-cycle cost

- Life-cycle planning
- Minimum practical cost
- NHS bridges
- Performance of the NHS
- Performance gap
- Risk
- Risk management
- STIP
- Work type

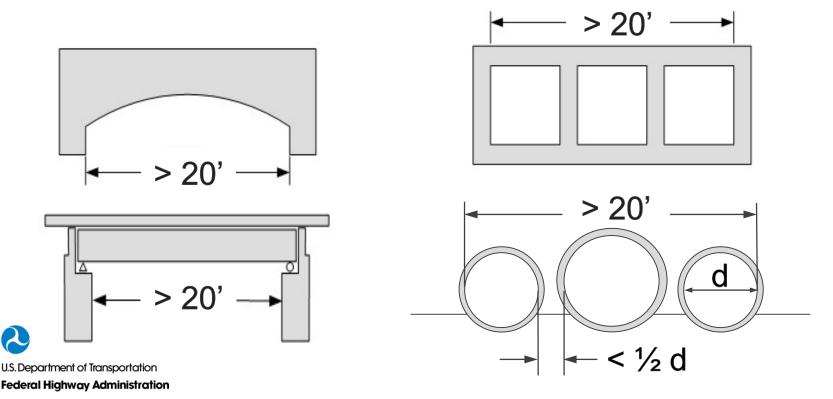
Key Definitions

- Asset: physical highway infrastructure
 - o Bridges
 - Tunnels
 - Ancillary structures
- Asset class: same characteristics and function
 - Bridges
 - Culverts
- Asset sub-group: concrete, steel, movable....
- Asset management

Key Definitions

Bridge (23 CFR 650 Subpart C – National Bridge Inspection Standards)

- A structure including supports erected over a depression or an obstruction
- Has a track or passageway for carrying traffic or other moving loads
- Has an opening measured along the center of the roadway of more than 20 feet between undercopings of abutments or spring lines of arches or extreme ends of openings for multiple boxes



11

Bridge Definition

 May also include multiple pipes, where the clear distance between openings is less than half of the smaller contiguous opening

Bridge Examples

Bridge Definition

- Must be on a public road
- 23 USC 101: "The term 'public road' means any road or street under the jurisdiction of and maintained by a public authority and open to public travel"

Key Definitions

Investment strategy

 Set of strategies that result from evaluating various levels of funding to achieve State DOT targets for bridge condition and system performance effectiveness at a minimum practicable cost while managing risks

Life-cycle cost

• Cost of managing an asset class or sub-group for its whole life, from initial construction to its replacement

Life-cycle planning

- Process to estimate the cost of managing assets over its whole life
- Considers minimizing cost while preserving or improving condition
- Minimum practicable cost
 - Lowest feasible cost to achieve the objective

Key Definitions

NHS Bridges

 Bridges that carry the NHS (including on and off ramps connected to NHS)

Performance of the NHS

- Effectiveness of the NHS in providing for the safe and efficient movement of people and goods
- Where performance can be affected by physical assets

Performance gap

- Gaps between the current asset condition and State DOT targets for asset condition
- Gaps in system performance effectiveness that are best addressed by improving the physical assets

Questions?

23 CFR 515.7: AMP Establishment Processes

- Plans describe how NHS will be managed to :
 - achieve system performance effectiveness and targets for asset condition
 - o manage risk
 - o minimize cost
 - over the life-cycle of assets

Minimum processes

- Performance gap analysis
- Life-cycle planning
- Risk management planning
- Financial plan
- Investment strategy development
- NHS bridge data collection from all owners

- Performance gap analysis
 - To identify deficiencies hindering progress to achieving a state of good repair and system performance effectiveness
 - Can look for immediate gaps that need closed in the near term and long-term gaps that need closed in stages
 - Examples of immediate gaps: Higher risk/lower reliability bridges based on condition or risk hazard
 - Examples of long-term gaps: condition and needs representative of sustainable state of good repair

- Life-Cycle Planning (LCP)
 - "A process to estimate the cost of managing an asset class, or asset sub-group, over its whole life with consideration for minimizing cost while preserving or improving the condition." (23 CFR 515.5)
 - Provides the long-term view to decision making and includes
 - identification of deterioration models
 - identification of work types and costs
 - strategy for managing assets by minimizing life-cycle cost

Life-Cycle Planning (LCP)

- FHWA LCP guidance document
 - Compares costs and benefits of different treatment strategies
 - Should have basis in preservation (minimizing lifecycle cost)
 - Can include other objectives (mobility, risk hazards, etc.)
 - Fits treatment strategies to budgets for inclusion in the selected investment strategy

Life-Cycle Planning

What is the definition of a treatment strategy?

Complete set of actions

- Preventive maintenance
- Preservation
- Major rehabilitation
- Replacement
- Actions address condition and cost drivers of elements/components

Life-Cycle Planning

LCP Guidance Document

- 1. Select asset classes and networks to be analyzed
- 2. Evaluate asset strategies
- 3. Set LCP scenario inputs
- 4. Develop the LCP scenarios
- 5. Provide input to financial planning

LCP Guidance: Step One

STEP ONESelect asset classes and networksto be analyzed

At minimum, include NHS bridges and pavements

LCP Guidance: Step Two

STEP TWO Evaluate asset strategies

- Evaluate different treatment strategies
 - Asset class or subgroup evaluation
 - Composed of different actions, timing/intervals, and sequencing
- Complement of strategies to fit to later imposed constraints (budget, performance, etc.)

LCP Guidance: Step Three

STEP THREE Set LCP scenario inputs

- Network level evaluation
- Minimum acceptable condition and reliability for safety
- Performance gaps that need to be closed
- Other?

LCP Guidance: Step Four

STEP FOUR Develop & evaluate LCP scenarios

- Apply different asset treatment strategies to network to predict outcome
- Constrained by Step Three inputs and funding
- Long-term outcome measured (bridges 50+ years common)

LCP Guidance: Step Five

STEP FIVE Provide input to financial planning

Results inform:

- Cross asset tradeoff evaluation and budget allocation (bridge vs. pavement)
- Investment strategy selection

- Risk Management Planning
 - Identification of risks that can affect condition and performance
 - Prioritization of risks
 - Mitigation planning
 - Monitoring of top risks
 - Assessment of likelihood of occurrence and impact and consequence

Financial Planning

- Annual costs for 10-year period minimum
- Cost to implement investment strategy by State FY and work type
- Estimated funding levels by FY and funding sources
- Value of agency's NHS bridges and required annual investment to maintain value

- Investment Strategies
 - Process for developing investment strategies shall be influenced at a minimum by
 - Performance gap analysis
 - Life-cycle planning
 - Risk management analysis
 - Financial plan

Investment Strategies & Target Setting

- It is important to consider the information produced by analyses done during the development of an asset management plan, and to fully utilize bridge management systems, when establishing State targets.
- The analyses help identify needs, resources, and investment strategy outcomes. These can inform target setting.

- NHS bridge data
 - Process for obtaining data from other owners
- Bridge Management System (BMS)
 - use to develop/implement AMP
 - can support analysis, investment strategy development, and target setting

Questions?

23 CFR 515.9: AMP Minimum Content Requirements

- Objectives
- Measures and targets
- Summary condition description
- Performance gap identification
- Life-cycle planning
- Risk management analysis
- Financial plan
- Investment strategies

AMP Requirements

- Objectives, Measures and Targets
 - Asset management objectives
 - Performance measures
 - Required FHWA measures
 - Additional State measures (optional)
 - Targets
 - Complement of measures recommended

Objectives & Measures (Examples)

	High-level Decision Making	Low-level Decision Making
• • • •	identifying investment strategy cross asset allocation (bridges vs. pavements vs. other) bridge budget allocation among owners, regions, roadway classes, etc.	 implementing investment strategy project prioritization work type selection & scoping

Objectives & Measures

- Measure(s) Selection: In selecting additional optional measures, some questions that need asked include;
 - Will it be used for high level decisions?
 - Will it be used for low level decisions?
 - o Will it be used for both?
 - Does it adequately represent the objective?
 - Is a complement of measures needed to represent each objective?

AMP Requirements

Summary condition description

- All NHS bridges regardless of ownership
- Including condition based on FHWA performance measures

Example

STATE_CODE	STRUCTURE_NUMBER	FEATURES_DESC	FACILITY_CARRIED	OWNER	YEAR_BUILT	Deck Area	Bridge Condition	Minimum
1	8	6A	7	22	27	(sq. m.)	Classification	Condition Rating
01	605	BRANCH	US 82	1	1929	47.36	Fair	6
01	608	BRANCH	SR 9	1	1929	48.91	Good	7
01	611	SWEETWATER CREEK	US 43	1	1929	82.62	Fair	6
01	624	BENNETTS CREEK RELIEF	US 45	1	1929	64.6	Fair	5
01	662	BRANCH TO ESLAVA	US 98	1	1929	58.29	Fair	6
01	663	BRANCH TO MAGNOLIA RIVER	US 98	1	1929	65.36	Fair	6
01	664	SPRING BRANCH	US 98	1	1929	146.16	Fair	6
01	735	JENKINS CREEK	US 82 WBL	1	1930	715.86	Fair	5
01	749	PAULINES BRANCH	US 43	1	1930	218.54	Fair	5
01	784	TENNESSEE RIVER	SR 35	1	1930	4180.48	Poor	4
01	882	CEDAR CREEK	US 31	1	1931	372.28	Fair	6
01	893	BRANCH	US 43	1	1931	74.46	Fair	6
01	900	HURRICANE BRANCH	US 45	1	1931	54.4	Fair	6

AMP Requirements

- AMP approved by head of the State DOT
- Make available to the public
- Integrate AMP into planning processes leading to the STIP

Questions?

23 CFR 515.11: Deadlines & Phase-in

- April 30, 2018: initial State-approved riskbased AMP submittal to FHWA
 - Describes State DOT processes: policies, procedures, documentation, and implementation approach
 - May exclude 1 or more analyses: life-cycle planning, risk management, financial plan
 - Review and process certification by FHWA
- June 30, 2019: State-approved risk-based AMP submittal to FHWA with all requirements

23 CFR 515.13: Process Certification/Recertification

 90-day process certification review by FHWA

- Process recertification every 4 years
- 90 days for State DOT to address deficiencies if certification was denied
 - FHWA may extend upon request
- FHWA may certify if only minor deficiencies to be corrected by State DOT within 90 days

23 CFR 515.13 Annual Consistency Review

- FHWA determination:
 - By Aug. 31, 2019
 - By July 31 each year thereafter

- Not an approval/disapproval of strategies or other decisions
- Ensure development with certified processes and includes required content
- Ensure implementation of AMP

23 CFR 515.15: Penalties

- Beginning Oct. 1, 2019 and each fiscal year thereafter if State DOT does not develop and implement an AMP consistent with statute and regulations
 - Maximum Federal share for NHPP projects reduced to 65% for that FY

23 CFR 515.15: Penalties

- If State DOT does not develop and implement an AMP consistent with statute and regulations and with the Part 150 performance targets by 18 months after effective date of NHS bridge performance measure rule (by Nov. 20, 2018)
 - FHWA will not approve any further NHPP-funded projects
 - Deadline may be extended if State DOT has made a good faith effort as determined by FHWA

23 CFR 515.17: Minimum BMS Standards

- Documented procedures for:
 - Collecting, processing, storing, and updating inventory and condition data
 - Forecasting deterioration
 - Determining the benefit-cost over the life cycle of bridges to evaluate alternative actions (including no action decisions) for managing condition
 - Identifying short- and long-term budget needs for managing condition

Minimum BMS Standards

- Documented procedures for:
 - Determining the strategies for identifying potential NHS bridge projects that maximize overall program benefits within the financial constraints
 - Recommending programs and implementation schedules to manage the condition of NHS bridges within policy and budget constraints
- Not subject to FHWA certification, but are subject to FHWA oversight

23 CFR 515.19: Organizational Integration

- Establish organizational strategic goals
 - Explain how asset management helps achieve goals
- Conduct periodic self-assessments
 - Identify areas for improvement
 - Develop strategies to close significant gaps
- Not a requirement for State DOTs

Resources

- FHWA Policy and Guidance Center
 - o <u>https://www.fhwa.dot.gov/pgc/</u>
- FHWA TPM Website
 - o <u>https://www.fhwa.dot.gov/TPM/index.cfm</u>
- FHWA Asset Management Website
 - o <u>https://www.fhwa.dot.gov/asset/</u>

FHWA NHI Training Resources: TPM & AM

- 138004 TPM Overview for MAP-21 & FAST Acts (ILT)
- 138005 TPM Overview for MAP-21 & FAST Acts (WBT) (Dev.)
- 138007 Performance-Based Planning and Programming
- 138011 The Role of Data in TPM
- 138012 Steps to Effective Target Setting for TPM
- 136002A Introduction to Financial Planning for Transportation Asset Management (WBT)
- 136065 Risk Management
- 136106A Introduction to Transportation Asset Management with Workshop
- 136106B Developing a Transportation AMP
- 136106C Introduction to a Transportation AMP (WBT)
- 136113 Transportation Asset Management Overview (WBT)

FHWA NHI Training Resources: Bridge

- 138008 TPM for Bridges (future ILT)
- 130055 Safety Inspection of In-Service Bridges
- 130053 Bridge Inspection Refresher
- 130106A Bridge Preservation Fundamentals (WBT)
- 130106B Establishing a Bridge Preservation Program (WBT)
- 130106C Communication Strategies for Bridge Preservation (WBT)
- 130109A Bridge Management Fundamentals (WBT)
- 130109B Performance-Based Management of Highway Bridges (WBT)
- 130107A Fundamentals of Bridge Maintenance (WBT)
- 130108 Bridge Maintenance

Knowledge Checks

Performance measures can be used to assist in (choose all that apply):

- a) prioritizing projects
- b) measuring progress toward achieving goals and objectives
- c) identifying how to allocate funds to different asset classes
- d) prioritizing work actions

Knowledge Checks

Life-cycle planning for bridges involves (choose all that apply):

- a) quantifying the benefits of preservation
- b) evaluating different treatment strategies applied to bridges
- c) identifying optimum treatment strategies
- d) evaluating different network-level scenarios
- e) determining the financial resources available

Knowledge Checks

Asset management plan required development processes include (choose all that apply):

- a) life-cycle planning
- b) risk management planning
- c) permit route planning
- d) performance gap analysis
- e) investment strategy development

Questions?

Session 2: Bridge Management Systems

Topics

- BMS History
- BMS Purpose & Value
- FHWA Requirements for BMS
- Technical Summary BMS Software
 - Workflow
 - Objectives & Measures
 - o Models
 - Analysis & Prioritization
 - Work Selection & Program Development
 - Performance Monitoring and Reporting
- BMS Support of Asset Management Plan Elements, Performance Measure Requirements, & Target Setting

BMS History

BMS History

Event	Publish/Release Date
NCHRP Report 300 - BMS	1987
FHWA Demo Project 71 - BMS	1989
Intermodal Surface Transportation Efficiency Act	1991
Pontis software version 1 (by FHWA)	1992
BRIDGIT software version 1 (by NCHRP)	1994
Pontis software version 3 (by AASHTO)	1995
National Highway System Designation Act	1995
AASHTO Guide to Commonly Recognized Structural Elements	1997

Followed by proprietary development resulting in upgrades and new software; continued Federally assisted research

2

BMS Purpose & Value

BMS Purpose & Value

- In practice, bridge management systems
 - Estimate how inventory looks present and future
 - Estimate how investments change how inventory looks present and future
 - Estimate how deferred investments change how inventory looks
 - Help allocate funding and select combination of projects that achieve largest benefit

BMS Purpose & Value

• Asset management: "A strategic and systematic process of operating, maintaining, and improving physical assets, with a focus on both engineering and economic analysis based upon quality information, to identify a structured sequence of maintenance, preservation, repair, rehabilitation, and replacement actions that will achieve and sustain a desired state of good repair over the lifecycle of the assets at minimum practicable cost." (23 USC 101)

MAP-21 legislation

 Secretary shall establish minimum standards for States to use in developing and operating bridge and pavement management systems

Asset Management Plan Rule

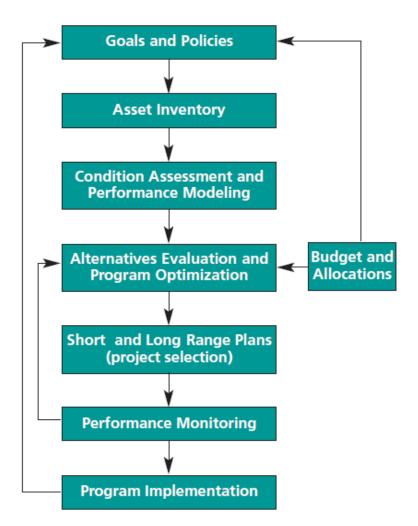
- Minimum Standards for bridge and pavement management systems (23 CFR 515.17)
- Shall use bridge and pavement management systems for developing and implementing the plan (23 CFR 515.7)

- Minimum Standards: shall include documented procedures for
 - a) Data collection and retrieval
 - b) Forecasting deterioration
 - c) Benefit-cost analysis over the life-cycle of assets
 - d) Identifying short and long-term budget needs
 - e) Identifying strategies that maximize benefits
 - f) Recommending work programs

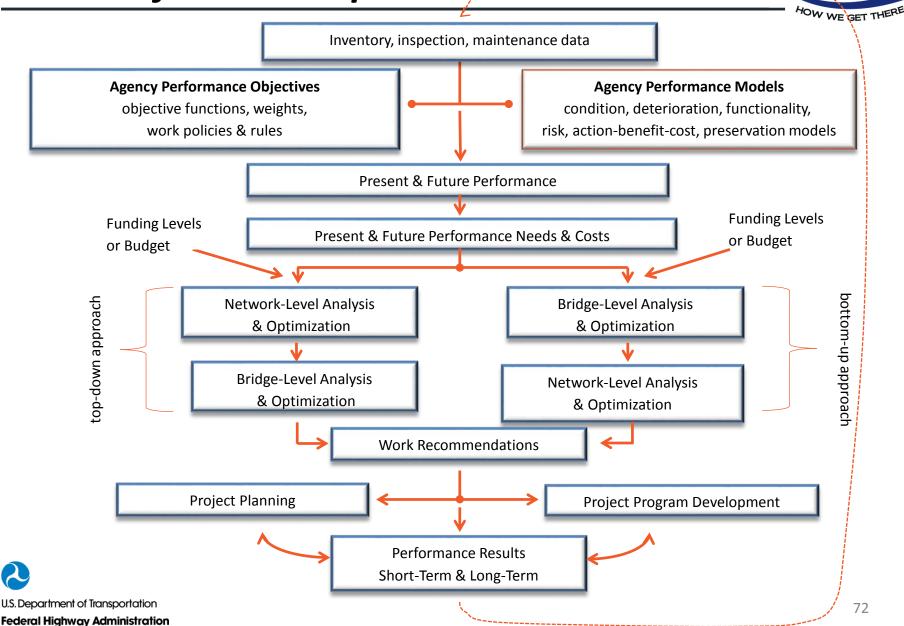
- Procedures shall be documented (23 CFR 515.17)
 - Should include
 - Technical aspects of each procedure
 - Integrated business processes (supporting input, using the output)
- Management systems are not subject to AMP certification (23 CFR 515.17) but are subject to FHWA oversight

 FHWA minimum standards do not specify the form of BMS: what they must look like, how they work

Questions?



Technical Summary BMS Software



Workflow: Example

Workflow: Example

Objectives & Measures

- BMS in practice use objectives & measures to determine benefits and prioritize work
- In practice, agencies establish objectives & measures that BMS use to evaluate and recommend investment strategy
- In practice, agencies establish objectives & measures that BMS uses to recommend work actions and projects (implement investment strategy)

Objectives & Measures (Examples)

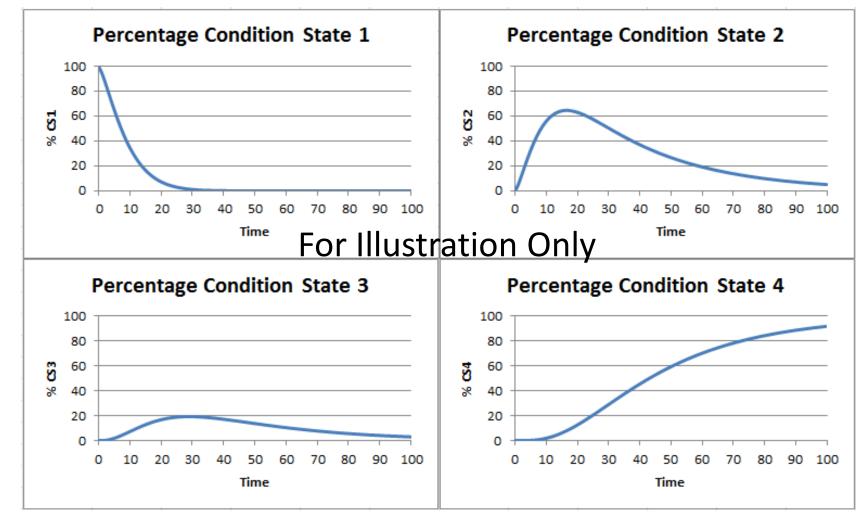
High-level Decision Making	Low-level Decision Making
 identifying investment strategy cross asset allocation (bridges vs. pavements vs. other) bridge budget allocation among owners, regions, roadway classes, etc. 	 implementing investment strategy project prioritization work type selection & scoping
 In practice, BMS support analysis of investment strategies to identify the strategy that maximizes achievement of objectives and measures. 	 In practice, BMS support implementation of the chosen strategy by selecting work that maximizes achievement of objectives and measures

Models

 Definition: A set of ideas and numbers that describe the past, present, or future state of something (Merriam-Webster)

BMS Model Types

- Performance
 - Condition assessment, deterioration, functional assessment, risk assessment
- Action-Benefit-Cost
- Life-Cycle Cost & Preservation
- FHWA minimum standards do not specify the form of BMS. In practice, models are used.


Performance Models

- Deterioration Models
 - Predict element and/or component condition over time
 - Influence parameters
 - Element or component type
 - Material and design
 - Environment severity
 - Bridge loading and usage
 - Routine maintenance practice
 - Protective systems present
 - Condition of neighboring elements or components
 - Typically, include only a few of the most significant parameters in the model

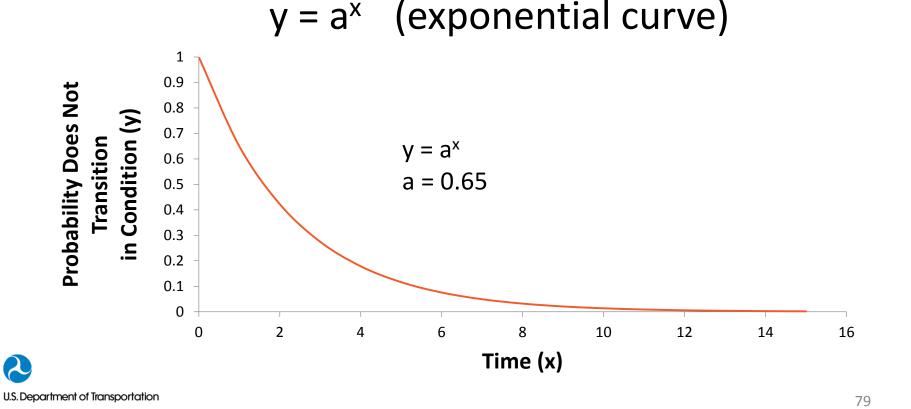
Performance Models: Deterioration Example

U.S. Department of Transportation

Federal Highway Administration

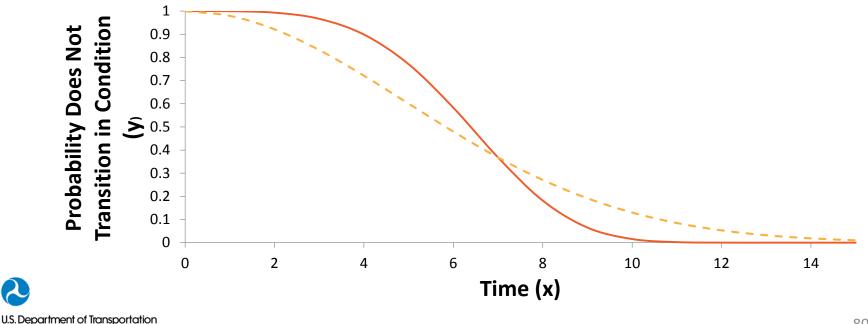
From AASHTOWare Bridge Management (BrM)

Performance Models: Deterioration


- Model development
 - o Deterministic vs. probabilistic
 - Common probability models
 - Markov
 - Weibull

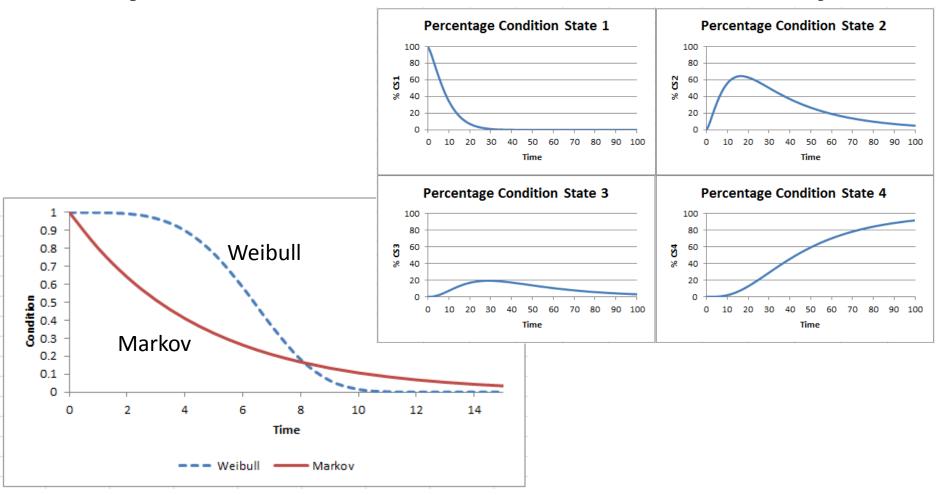
Performance Models: Deterioration Example

Model development
 The Markov probability distribution


Federal Highway Administration

Performance Models: Deterioration Example

Model development
 The Weibull probability distribution


$$y = e^{-(\frac{x}{\alpha})^{\beta}}$$
 (exponential curve)

Federal Highway Administration

Performance Models: Deterioration Examples

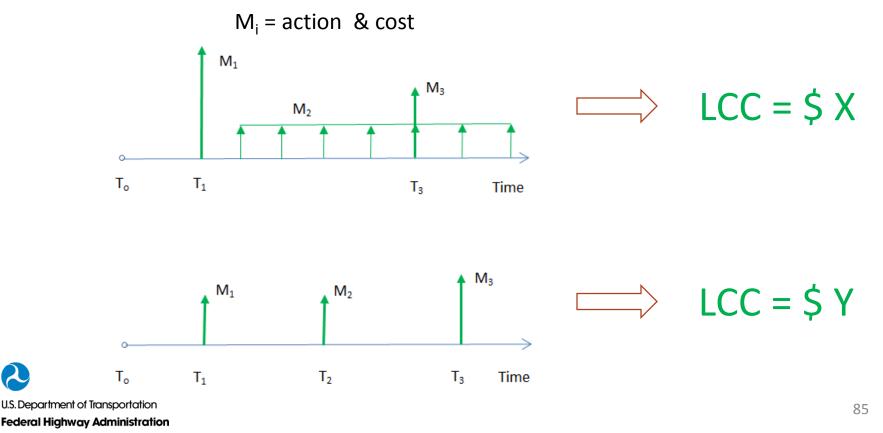
Performance Models: Deterioration Example

Correlating element-level conditions with component-level conditions

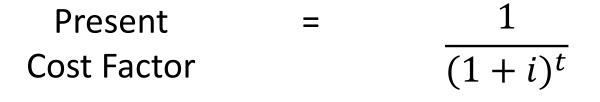
NBI	CS1%	CS2%	CS3%	CS4%
9	х	х	x	x
8	100	0	0	0
7		> 0 - 20	0	0
6			> 0 - 5	0
5			> 5 - 20	0
4				> 0 - 20
3				> 20 - 100
2	х	х	x	x
1	х	x	x	x

Questions?

Action-Benefit-Cost Models: Example


ACTION	BENEFIT	COST
Rehab deck	component condition = 7 & element condition = 100% CS2 & life-cycle cost may be reduced*	\$45/sf
Patch CS3 & CS4 Spalls/Delam	element condition = CS2 & life-cycle cost may be reduced*	\$35/sf
Seal CS2 & CS3 Cracks	element condition = CS2 & life-cycle cost may be reduced*	\$8/sf
Apply overlay to bare deck	life-cycle cost reduced	\$25/sf
*LCC benefit varies by bridge as function of condition, remaining life, size, etc.		

Life-Cycle Cost Analysis & Preservation Models


LCCA compares the LCC that results from alternative work actions. (LCCA is not the same as life-cycle planning. LCCA can be used to support AMP required life-cycle planning)

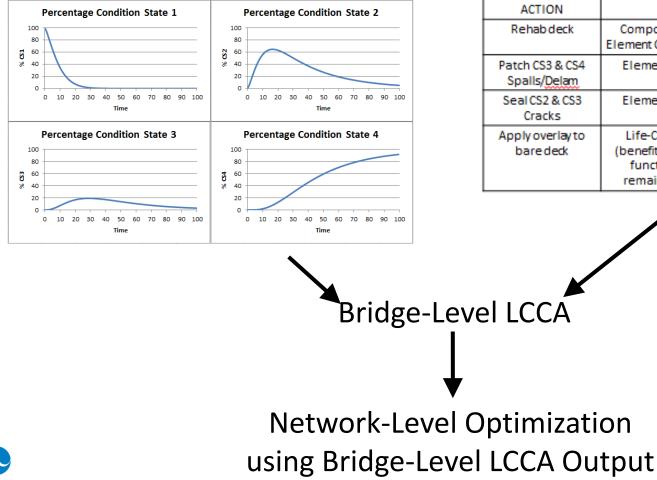
LCCA & Preservation Models

Equivalent		Future		Present
Present	=	Cost at	X	Cost
Cost		Year t		Factor

- *t* = year the future cost expenditure occurs
- *i* = discount factor

LCCAs & Preservation Models: Example

Present Cost of \$1M spent in Year 10	=	\$1M	*	$\frac{1}{(1+0.03)^{10}}$		
	=	\$1M	*	0.744	=	\$744K
Present Cost of \$1M spent in Year 75	=	\$1M	*	$\frac{1}{(1+0.03)^{75}}$		
	=	\$1M	*	0.109	=	\$109K
	•	\$1M = 10 years		\$1M Time T = 75 years		
U.S. Department of Transportation Federal Highway Administration	<	' Analys	sis Period	>		87



LCCA & Preservation Models: Example

Deterioration Models

U.S. Department of Transportation

Federal Highway Administration

Action-Benefit-Cost Models

ACTION	BENEFIT	COST
Rehab deck	Component Condition = 7 Element Condition = 100% CS2	\$45/sf
Patch CS3 & CS4 Spalls/Delam	Element Condition = CS2	\$35/sf
Seal CS2 & CS3 Cracks	Element Condition = CS2	\$8/sf
Apply overlay to bare deck	Life-CycleCost reduced (benefit differs by bridge as function of condition, remaining life, size, etc.)	\$25/sf

LCCA & Preservation Models

- BMS LCCA is not the same as project LCCA
- Analysis is only as good as action, cost, benefit & deterioration data/models
- Additional LCCA benefit is quantifying the life-cycle cost increase from deferring work

LCAA & Preservation Models: Example

Preservation Model: Sometimes used in lieu of bridge-level LCCA to simplify computations

Example Deck Element Preservation Model for Spalls, Delamination, and Exposed Rebar Defects					
Condition	Least Life-Cycle Cost Action Probable Change in Condition State				
State					
1	no action	-	-	-	-
2	type 1 patch	90% CS1	10% CS2	0% CS3	0% CS4
3	type 2 patch, scarify and	98% CS1	2% CS2	0% CS3	0% CS4
	overlay				
4	replace	100% CS1	0% CS2	0% CS3	0% CS4
Cyclical acti	Cyclical actions independent of condition state:				

- Sweep and flush deck each spring
 - Clean out and flush scuppers and drainage piping each spring and fall

Questions?

- Analysis Purpose: Identify work needs, determine the optimum approach to address needs, and forecast future performance from intended work
- Analysis Utilities
 - Bridge-Level Analysis
 - Network-Level Analysis
 - Prioritization
 - Simulation & Scenario Investigation
- FHWA minimum standards do not specify the form of BMS; in practice, these analyses are used

Analysis: Bridge vs. Network

Bridge-Level Analysis	Network-Level Analysis
 individual bridge(s) alternative work actions analyzed compares benefit-cost of alternative work actions 	 network of bridges uses results of bridge-level analysis to evaluate alternative bridge projects composed of optimal bridge-level actions compares benefit-cost of alternative projects

Generally BMS perform both levels of analysis

- A primary goal of analysis
- Orders work by effectiveness
 - In practice:
 - First, potential work actions on each bridge are prioritized to identify projects and scopes
 - Second, projects are prioritized to identify programs
- Ranking vs. optimization

RANKING	OPTIMIZATION
Ordered by relative score	 All possible combinations of work and projects analyzed
 Simplified analysis that uses simplified scoring 	Complex iterative analysis
 Attempts to consider multiple objectives by using aggregate indexes 	 Considers multiple objectives and multiple analysis years
Cannot handle multiple constraints	 Can handle multiple constraints (budget, programming rules, minimum acceptable performance, etc.)
 Does not yield most cost-effective solution 	Yields most cost-effective solution

Analysis: Prioritization by Optimization

• Fill a knapsack with 20 pounds of free food from options that can include one of each

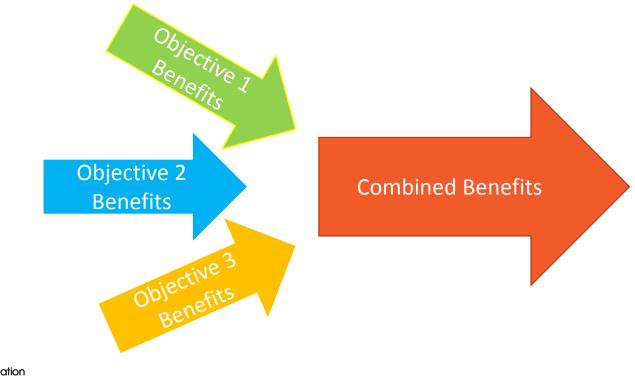
Nuts:4 lbs for \$10Fruit:10 lbs for \$6Candy:2 lbs for \$3Juice:3 lbs for \$5Cheese:5 lbs for \$15

COMBINATION ONE			
cheese	5 lbs	\$15	
nuts	4 lbs	\$10	
fruit	10 lbs	\$6	
TOTAL 19 lbs \$31			

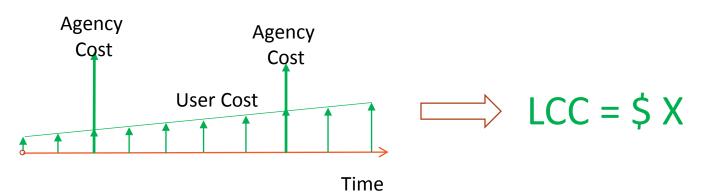
COMBINATION TWO			
candy	2 lbs	\$3	
juice	3 lbs	\$5	
nuts	4 lbs	\$10	
cheese	5 lbs	\$15	
TOTAL 14 lbs \$33			

Analysis: Prioritization by Optimization

Benefit-Cost Ratio

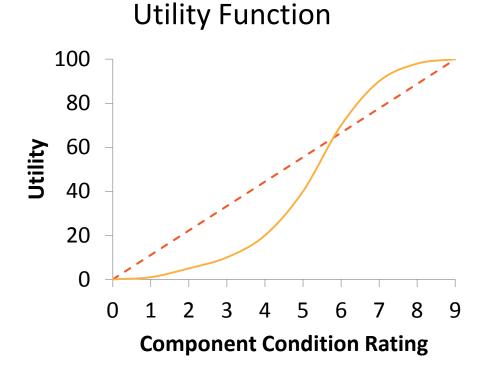

$$BCR_i = \frac{B_i}{C_i}$$

Benefits Measurement


Work Action / Project / Program Benefits

- Benefits Measurement
 - Monetization
 - Suits objective types that are measurable by cost impacts

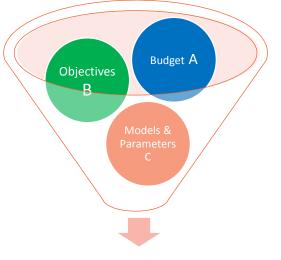
Monetization

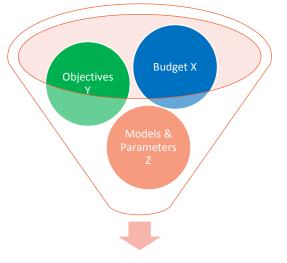


- Benefits Measurement
 - Utility: suits multiple objective types
 - Utility theory
 - Used in customer management to assess satisfaction or value
 - Combines different factors by uniform scaling & relative weighting

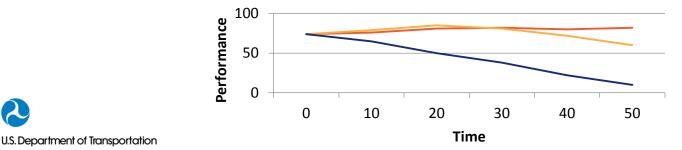
Benefits Measurement: Utility Example

Utility Weights


OBJECTIVE	MEASURE	ASSIGNED WEIGHT
Condition	Component Ratings	15%
	Health Index	30%
Life-Cycle Cost	Life-Cycle Cost Reduction	40%
Extreme Event Failure Risk	Risk Score	15%
Total		100%



Analysis: Network Simulation & Scenario Investigation


Forecasts outcomes from different strategies

Year 1, Year 2, Year 3, ... Year X Performance

Year 1, Year 2, Year 3, ... Year X Performance

Federal Highway Administration

Questions?

Work Selection & Project Programming

FHWA minimum standards do not specify the form of BMS. In practice, project and programming functions like this are used.

ļ	3		Layout: Project Brid		Display Work				ay Zero Cost Recommenda		rk Candidates
	Bridge ID		Action	Work Candidate	Base Utililty	Utililty	Uti	ility Change	Estimated Cost	Benefit/Cost(\$k)	Target Year
		۲	T	T		T	T	۲	T		·
	01001		Preserve Super - Network	Generated 07/13/2016	70.86	72.88	2.0	2	\$36,890	0.0548	2016
	01001		Rehab Culvert - Network	Generated 07/13/2016	For Illu	ustrat	ion	Only	\$2,950	-0.8881	2016
	01001		Rehab Deck - Network	Generated 07/13/2016	70.86	68.37	-2/	•	\$11,550	-0.2156	2016
	01001		Rehab Sub - Natural	Converted 07/12/2016	70.05				1103 FAA	0.003	2016
	01001		Dahah Cunar	elect a funding source or comple ing Source Details	te the form below to create	e a new funding source.				0.005	2016
	01001		The prover of a set	ding Source Status: Planned Inding Source Type: State	• Fondi	ng Source URL		Funding Source	Nane.	-0.0392	2016
	01001		Network	ng Source Description						0.0546	2016
	01001		Replace Supe Network	ng Source Notes						0.0465	2016
٨	d to Project			ing Source Targets							
					o Create Edit/Delote Target - Ple	are Select A Funding Source	From The Dropde	sen List Or Create A New Fund	ng Source.		
D			Asso	ciated Programs and Projects		Please add Funding Source	larget to view the	dotaits			

Performance Monitoring: Examples

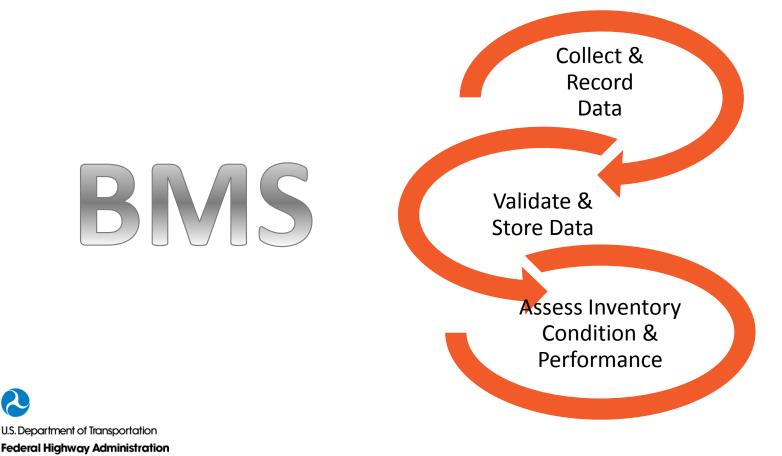
U.S. Department of Transportation Federal Highway Administration

From AASHTOWare Bridge Management (BrM)

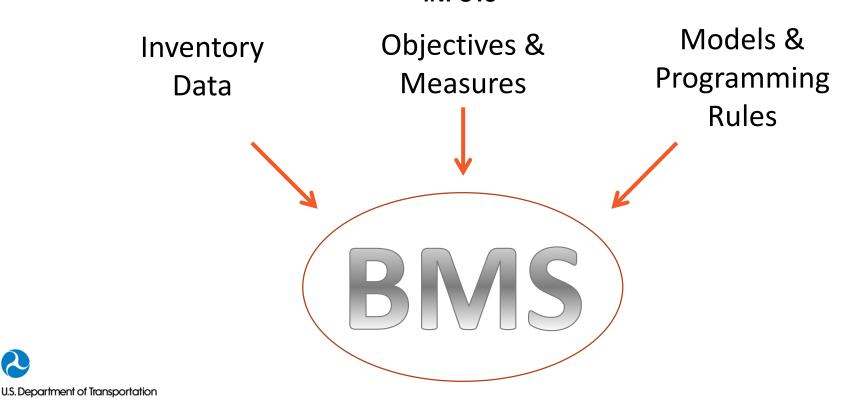
105

BMS Support of Asset Management Plan Elements, Performance Measure Requirements & Target Setting

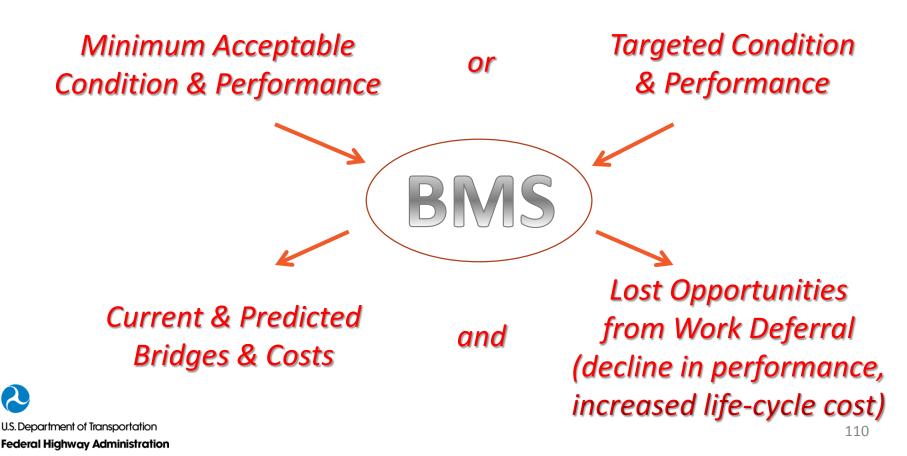
BMS Support of Asset Management Plan Elements, PM Requirements & Target Setting


- How can BMS support development and implementation of AMP?
- Illustrations of how BMS should support AMP development and implementation

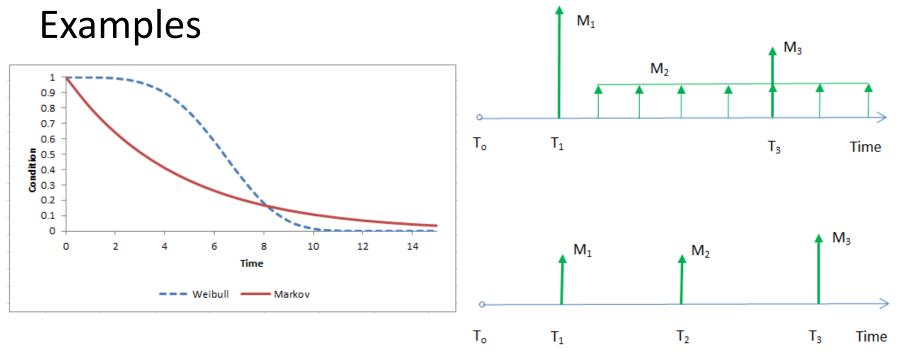
BMS Support of Asset Management Plan Elements, PM Requirements & Target Setting


• AM Plan Element: Inventory

INPUTS


AM Plan Element: Objectives & Measures

Federal Highway Administration



BMS Support of Asset Management Plan Elements, PM Requirements & Target Setting AM Plan Element: Performance Gap Analysis

AM Plan Element: Life-Cycle Planning

Life-Cycle Cost Analysis

Deterioration Models
U.S. Department of Transportation
Federal Highway Administration

AM Plan Element: Investment Strategies & Target Setting

AM Plan Element: Work Program Development Processes

- BUDGET ALLOCATION
- OBJECTIVES & MEASURES
 - LIFE-CYCLE PLANNING
 SCENARIO
 - **ETC**.

RECOMMENDED PROJECTS & WORK ACTIONS

Knowledge Checks

BMS can analyze and make recommendations

- for (choose all that apply):
 - a) asset classes
 - b) asset subgroups
 - c) individual bridges
 - d) individual bridge elements

Knowledge Checks

Deterioration models (true or false):

- a) are detailed enough to assess bridge work needs and costs
- b) account for slowed deterioration from protective systems
- c) model component deterioration only
- d) identify work action costs and benefits

Knowledge Checks

BMS project recommendations often do not account for and therefore need to be adjusted for (choose all that apply):

- a) field knowledge
- b) performance measures
- c) long-range plans for capacity and corridor improvement
- d) life-cycle cost

Questions?

Session 3: Bridge Performance Measures & Target Setting

Bridge Performance Measures & Target Setting

- Purpose & Definitions
- Data
- Bridge Performance Measures & Minimum Condition Level
- Setting Bridge Performance Targets
- Performance Reporting

Purpose & Definitions

23 USC 119: National Highway Performance Program

- National goal for infrastructure condition = maintain the highway infrastructure asset system in a state of good repair [23 USC 150(b)(2)]
- States shall develop a risk-based asset management plan for the NHS to improve or preserve the condition of the assets and the performance of the system [23 USC 119(e)]

23 USC 119: National Highway Performance Program

 Ensure that Federal-aid investments in highway bridge construction are directed to support progress toward the achievement of the goal by meeting targets established in an asset management plan. [23 USC 119(b)(3)]

Bridge TPM Regulations

- Detailed in 23 CFR 490
 - Subpart A General Information
 - Subpart C National Performance Management
 Measures for Assessing Pavement Condition
 - Subpart D National Performance Management Measures for Assessing Bridge Condition

Definitions of Key Terms

Measure	Expression based on a metric that is used to establish targets and to assess progress toward achieving the established targets	Example: % of bridges by deck area in good or poor condition
Target	Quantifiable level of performance or condition, expressed as a value for the measure, to be achieved within a time period required by FHWA	Example: no more than 10% of NHS bridges by deck area classified as poor by 2020

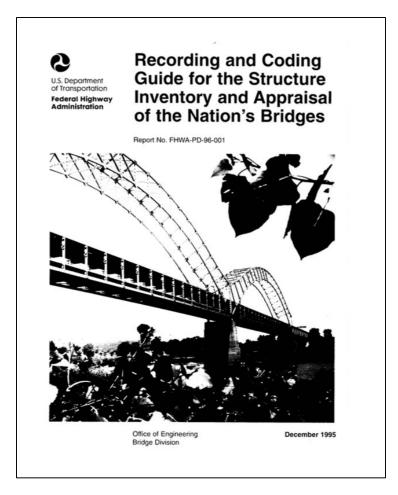
Data

Data Sources

- States and other agencies utilize a variety of bridge data sources
 - Federal National Bridge Inventory (NBI) data
 - Agency data items (often more detail than NBI items)
 - Plans and inspection photographs
 - Construction and maintenance history
 - Detailed roadway characteristics
 - GIS location and network relationships
 - Ownership and custodial agreements

NBI Data

- Well-established data set for all bridges
- Each State and Federal agency maintains an inventory of bridges (23 USC 144: National Bridge Inventory & Inspection Standards)
- Bridges typically inspected every 24 months or more frequently as needed
- States and Federal agencies report inventory and condition data annually



NBI Data

 Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges (1995)

NBI Data Types

- Identification
- Structure type and materials
- Age and service
- Geometric data
- Inspection types and dates
- Classification

- Condition
- Load rating and posting
- Appraisal
- Proposed
 - improvements
- Navigation data

Structure Inventory & Appraisal Sheet of NBI Data: Example

Structure Inventory and Appraisal Sheet

Bridge Key:	11 0013		Agen	icy ID: 11 0013			Suffici	ency Rating:	96.8
	IDENTIFI	CATION				INSPECTI	ON		
State 1:	06 California	Struc Num 8: 11 001	13	Frequency 91:	24 months	Inspection Date 90:	10/28/1997	Next Inspection:	10/28/1999
Facility Carried 7:	STATE ROUTE 162	Location 9: 03-GL	E-16273.55	FC Frequency 92A:	NA	FC Inspection Date 93A:	NA	Next FC Inspection:	NA
Rte.(On/Under)5A:	Route On Structure	Rte. Signing Prefix 58:	3 State Hwy	UW Frequency 928:	NA	UW Inspection Date 938:	NA	Next UW Inspection:	NA
Level of Service 5C:	1 Mainline	Rie. Number 5D:	00162	SI Frequency 92C:	NA	SI Date 93C:	NA	Next SI:	NA
Directional Suffix 5E:	0 N/A (NBI)	% Responsibility :	Unknown	Element Frequency:	Ad manths	Element Inspection Date:	100110007	Next Elem. Insp. Due	
SHD District 2:	District 3	County Code 3:	(11)GLENN	Element Prequency.	24 montria	Exement inspection Date:	12/11/1997	Next Elem, Insp. Due	10/28/1999
Place Code 4:	Unknown	Kilometer Post 11:	73.6 km			CLASSIFICA	TION		
Feature Intersected 6:	BRUSH CANAL			Defense Highway 1	00: 0 N	a STRAHNET twy Parale		01: No il bridge er	data
Latitude 16:	39d 31' 18"	Longitude 17:	1220 03' 42"	Direction of Traffic	102: 2.2-1	way traffic Temp	orary Structu	re 103: Unknown (NE	10
Border Bridge Code 98	Unknown (P)			Highway System 1	0 No	t on NHS NBIS	Length 112	Long Enough	
Border Bridge Number	99: Unknown			Toll Facility 20:	3 On fre	e road Functi	onal Class 2	5: 06 Rural Mine	or Arterial
			_		cal Significan				
STR Number of Approach 8		AND MATERIA		Custo	22: lian 21:	1 State Highwa 1 State Highwa			
Main Span Material	/Design 43A/B:					CONDITIO	DN .		
2 Concrete Continuous		01 Slab		Deck 58: 7 Good Culvert 62: N N/A		Super 59: 7 Good Channel/Channel		Sub 50: 7 Good	

U.S. Department of Transportation Federal Highway Administration

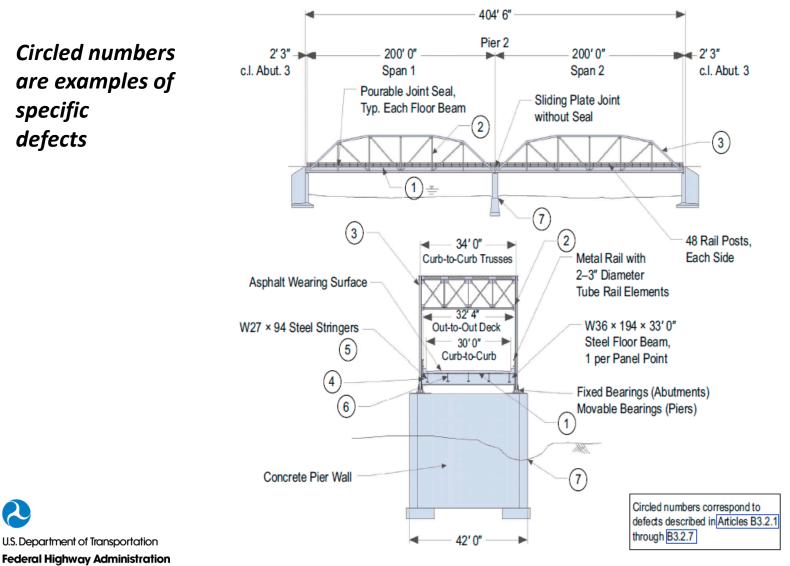
Component-Level Data

- Provides a single condition rating for 4 components
 - o Deck
 - Superstructure
 - o Substructure
 - o Culvert
- An overall characterization of the general condition of the entire component (FHWA Recording and Coding Guide)

Element-Level Data

- States collect additional condition data at an *element level* to supplement the deck, superstructure, substructure and culvert component condition ratings
- Element-level data first collected on a voluntary basis in the mid-1990s
- Element data can provide better indication and quantification of needs than component data

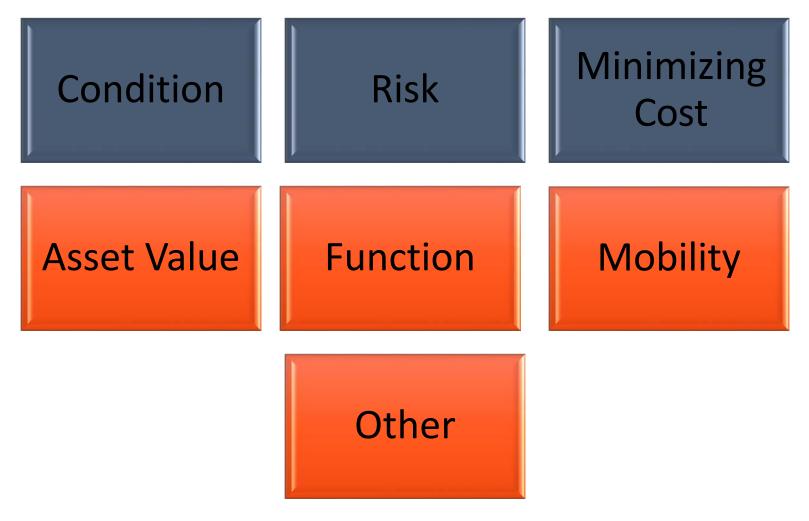
Element-Level Data


Recent developments:

- AASHTO Manual for Bridge Element Inspection (MBEI); supersedes the earlier Commonly Recognized Element (CoRe) Guide
- In 2015, States and Federal agencies began reporting NHS bridges element data to FHWA as required by MAP-21 [23 USC 144(d)(2)]

Element-Level Representation: Example

Questions?



Bridge Performance Measures & Minimum Condition Level

Performance Objectives

Common Bridge Performance Measures

Measure Description		Notes
Good/Poor Condition	Calculated based on minimum value of NBI deck, superstructure, substructure and culvert ratings	Required for NHS bridges
Structurally Deficient (SD)	Calculated based on minimum value of NBI deck, superstructure, substructure and culvert ratings	Equivalent to Poor condition
Sufficiency Rating (SR)	0-100 measure indicating a bridge's overall sufficiency to remain in service 0 indicates an entirely insufficient bridge; 100 indicates one that is entirely sufficient	Includes structural and functional considerations; formerly used to establish eligibility for Federal funding
Health Index	0-100 measure indicating overall bridge condition based on element-level data; 0 indicates all elements are in CS4, 100 indicates all are in CS1.	Summarizes element level conditions, does not include consideration of functional or geometrical issues

Common Bridge Performance Measures

Measure	Description	Notes
Posted Bridges	Count of bridges posted with load limits; specified through NBI Item 41	A number of States track posted bridges; posting practices vary
Remaining Service Life	A bridge's estimated remaining economic life	Calculation complicated by number of bridge components and feasible treatments
Functionality Obsolete (FO) Status	Identifies bridges with functional or geometrical issues; calculated based on a variety of NBI items	Previously used with SD and SR used by FHWA to establish funding eligibility
High Risk Bridges	Count or % of bridges considered high risk due to likelihood of service disruption and impact of service disruption	Examples include scour critical bridges, fracture critical bridges, bridges with clearance restrictions and seismic vulnerability

Bridge Performance Measures

- FHWA performance measures for assessing bridge condition and setting targets for NHS bridges
 - % of NHS bridges by deck area classified as Good condition
 - % of NHS bridges by deck area classified as Poor condition

Required NBI Data Items

Bridge Condition	58 – Deck 59 – Superstructure 60 – Substructure 62 – Culverts	
Deck Area Calculations	32 – Approach Roadway Width 49 – Structure Length 52 – Deck Width	

NBI Component Condition Rating Values

- 9 Excellent
- 8 Very Good
- 7 Good
- 6 Satisfactory
- 5 Fair
- 4 Poor
- 3 Serious
- 2 Critical
- 1 "Imminent" Failure
- 0 Failed

Condition Rating Thresholds for Classification

	NBI Rating Scale (from 0 - 9)	9 8 7 Good	65 Fair	4 3 2 1 0 Poor
	Deck (Item 58)	≥7	5 or 6	≤4
Bridge	Superstructure (Item 59)	≥ 7	5 or 6	≤ 4
	Substructure (Item 60)	≥ 7	5 or 6	≤ 4
	Culvert (Item 62)	≥ 7	5 or 6	≤ 4

Bridge Classification Example

NBI Item #	Component	Condition Rating	
58	Deck	5	
59	Superstructure	7	
60	Substructure	7	

Good and Poor % Calculation

- Determine structure length and width
- Calculate % good and poor as:

$$100 \times \frac{\sum_{g=1}^{GOOD} [\text{Length} \times \text{Width}]_{\text{Bridge g}}}{\sum_{s=1}^{TOTAL} [\text{Length} \times \text{Width}]_{\text{Bridge s}}}$$

$$100 \times \frac{\sum_{p=1}^{POOR} [\text{Length} \times \text{Width}]_{\text{Bridge p}}}{\sum_{s=1}^{TOTAL} [\text{Length} \times \text{Width}]_{\text{Bridge s}}}$$

Bridge Minimum Condition Level

- 23 USC 119 (implemented in 23 CFR 490)
- Maintain NHS bridges at less than 10.0% of deck area as structurally deficient
- If above 10.0% for a 3-year period
 - Penalty provision takes effect
 - Amount equal to 50% of a State's FY09 Highway Bridge
 Program apportionment is set aside and obligated
 - Remains in effect until structural deficiency drops to 10.0% or less

Minimum Condition Level of Bridges

- FHWA will use NBI data extracted on June 15
- To accommodate penalty data processing and administration of the penalty provision for the following fiscal year, NBI annual data submittal due date changed to March 15
 - New submittal date starts March 15, 2018

Definition of Structurally Deficient

	Until 12/31/17	After 12/31/17
Definition	 Any bridge component in Poor or worse condition or Adequacy of waterway opening provided by the bridge is insufficient, causing overtopping with intolerable traffic interruptions 	 Any component in Poor or worse condition Waterway openings and structural evaluation removed
Calculation (NBI Items)	 Items 58, 59, 60 or 62 ≤ 4 OR Items 67 or 71 ≤ 2 	 Items 58, 59, 60 or 62 ≤ 4 Items 67 and 71 removed

Calculation of % Structurally Deficient

- Determine structure length and width
- Calculate % structurally deficient as:

 $100 \times \frac{\sum_{SD=1}^{Structurally Deficient} [Length \times Width]_{Bridge SD}}{\sum_{s=1}^{TOTAL} [Length \times Width]_{Bridge s}}$

Importance of Data Quality

Bridge performance analysis depends on:

- Complete data
- Quality data
- Timely NBI reporting

Importance of Data Quality

Factors influencing data quality include:

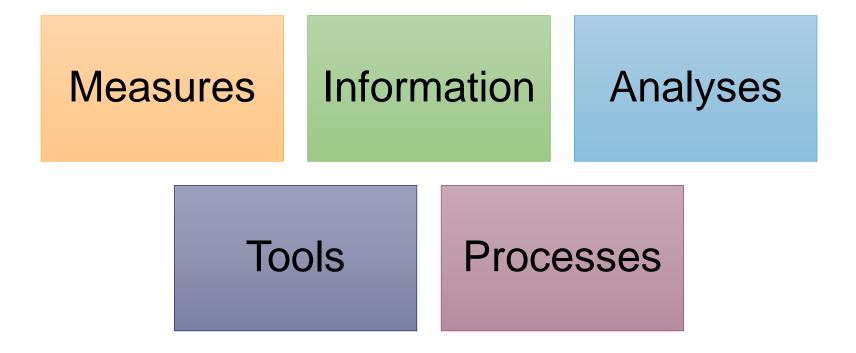
- Staff attrition/loss of institutional knowledge
- Field inspection resources & guidance
- Inspector/team experience/credentials
- Quality assurance/quality control (QA/QC) programs
- Information systems
 - Age & maintainability
 - Application coding errors
 - Transcription/data exchange errors
 - Documentation & training
 - Data administration standards & effectiveness

Questions?

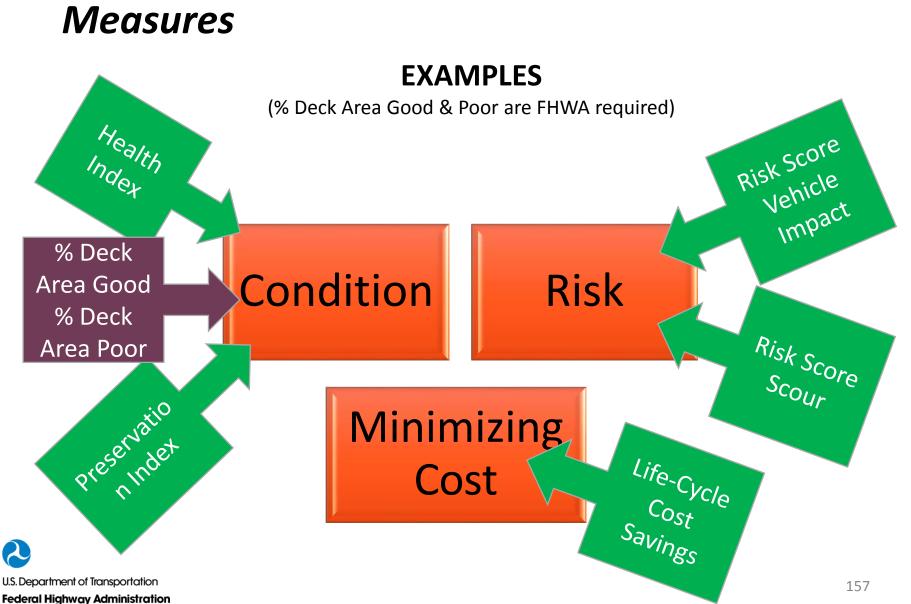
Setting Bridge Performance Targets

Performance Targets

- Quantifiable level of performance to be achieved within a time period required by FHWA
- Should be influenced by AMP analysis and investment strategy
- Process varies from State to State


Performance Targets

- Target setting is iterative and continual
- Should include
 - Analysis of historical and current data to determine performance trends and gaps
 - Analysis of alternative funding levels and allocation strategies to compare differences in long-term outcomes



Target-Setting Ingredients

Information

- Key information and data are used to assess measures' current values, and forecast how they will change over time as a function of investment strategy. This may include
 - Inventory and condition data
 - Deterioration and performance forecasts
 - Bridge treatments
 - Different funding scenarios

Analysis

Analyses should include

- Condition and performance forecasting
- Life-cycle planning
 - FHWA Life-Cycle Planning Guidance
 - FHWA Life-Cycle Cost Analysis Primer
 - Life-cycle cost components: agency, user, risk, uncertainty
- Risk management analysis
- Benefit-cost analysis
- Objective: maximize benefits

Tools

- Every State is required to have a BMS [23 CFR 515.7(g)]
- BMS must include the procedures identified in the Minimum Standards for Developing and Operating Bridge and Pavement Management Systems [23 CFR 515.17]
- MPOs and other agencies may need to leverage State BMS resources or analyses

Business Processes

- Analysis should yield forecasted performance given a set of operating assumptions and an investment strategy
- Business processes that support target setting may include:
 - Strategic planning
 - Financial planning
 - Cross-asset resource allocation
 - Project programming and delivery

Investment Strategies & Target Selection

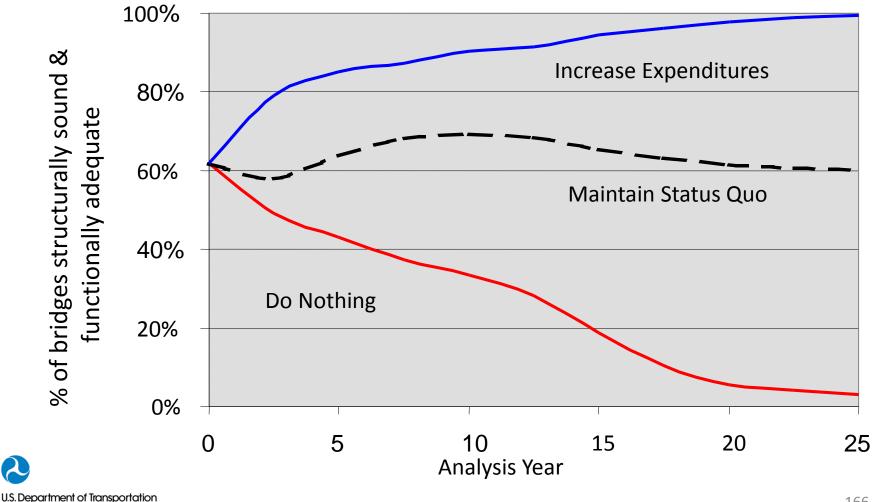
- Recommended approach: prioritize investments to maximize performance results
- Factors and objectives to consider
 - o Condition
 - Life-cycle costs
 - o Risk
 - Other agency objectives

Investment Strategies & Targets Selection

- Typically, the analysis and optimization process is iterative and performed for a set of scenarios with different budget assumptions or performance targets
- Result should be a model of predicted conditions and performance given an assumed investment strategy

Investment Strategies & Targets Selection

- "Worst first" approach not recommended; does not achieve the asset management objective of achieving a state of good repair over the life cycle of assets at minimum practicable cost.
- Large % poor/SD bridges are lagging indicators of an ineffective strategy
 - The most effective strategies perform work to maintain good bridges in good condition


Investment Strategies & Targets Selection

 Asset management plans need to be integrated into the planning processes that lead to the STIP [23 CFR 515.9(h)]

Bridges in Good Condition Projection: Example

Federal Highway Administration

Reasons for Lags in Performance Improvement

- Difference in time between when money is allocated and when projects are completed
- Data collection cycle; may take one to several years to observe improved performance following project
- Preventive maintenance shows condition benefits years later
- Actual project costs tend to be higher than projected in current dollars due to delays coupled with construction inflation and project realities

Other Reasons Predicted and Actual Performance May Differ

Expenditures Differ from Projections Cost Escalation

Agency Behavior Different from Model

Change in Priorities

del

Different Deterioration Patterns

Changes in Efficiency/Technology

Unplanned Events

Sharknados

Questions?

Performance Reporting

Uses of Performance Reporting

- Report baseline condition and identify targets
- Determine significant progress or target achievement
- Report to the public on condition and target achievement
- Report to Congress on the condition and performance of the Federal-aid highway system

State Target Setting and Reporting

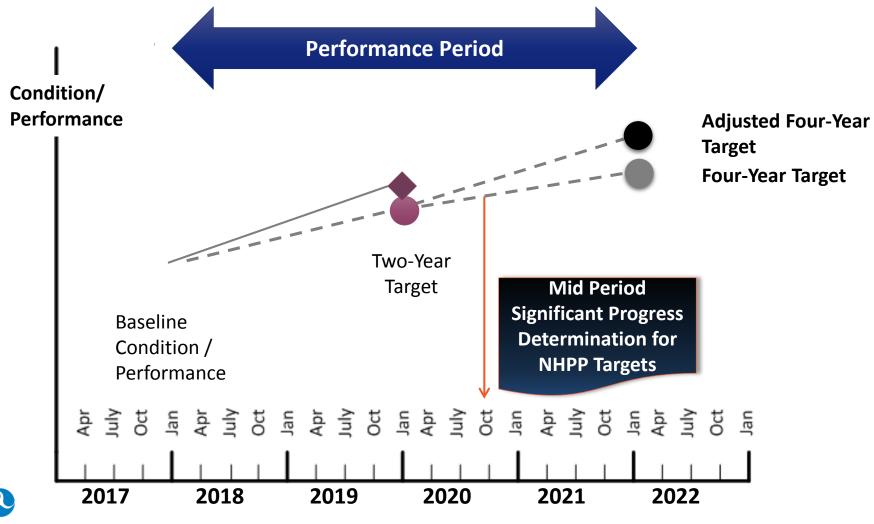
- State DOTs must set targets for measures
- Different reports required over a four-year performance period
- State Biennial Performance Reports ("150(e) Report"):
 - Baseline Performance Report
 - Mid Performance Period Progress Report
 - Full Performance Period Progress Report

MPO Target Setting & Reporting

- MPOs can choose to set quantifiable targets or support State targets
- If a State changes its four-year target, and an MPO originally chose to support the State's target, an MPO has 180 days to:
 - Agree to plan a program of projects to contribute to the adjusted State target or
 - Commit to a new, quantifiable MPO target
- MPO shall report baseline conditions and progress toward achieving targets in their
 metropolitan transportation plan

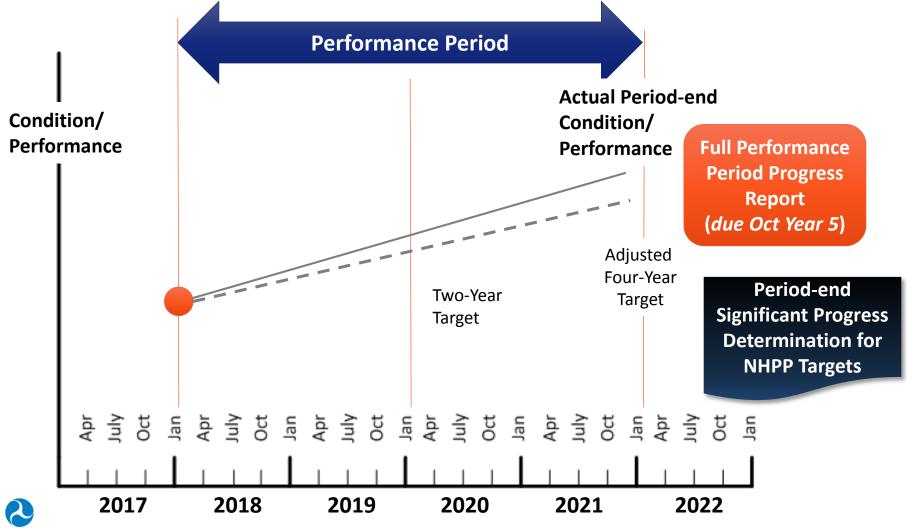
What Do You Have to Report?

Bridge Condition Measures		
Performance Target	NHS Condition	
_	% Good by deck area	
Two-year	% Poor by deck area	
	% Good by deck area	
Four-year	% Poor by deck area	


Baseline Performance Report

- Contents related to Bridge performance include:
 - Baseline conditions as of January 1 of the report year
 - 2-year and 4-year targets
 - Basis for targets
 - Relationship of targets to State's long-range plan, State's asset management plan (AMP), other plans
- Initial report due Oct. 1, 2018
- Subsequent reports due every four years

Mid Performance Period Progress Reporting



U.S. Department of Transportation

Federal Highway Administration

Full Performance Period Progress Reporting

U.S. Department of Transportation

Federal Highway Administration

Assessing Significant Progress Toward Achieving the Performance Targets

Who	 FHWA determines if a State DOT has made significant progress
What	 Make determination for each applicable target
When	 Assess significant progress biennially

Knowledge Checks

The FHWA bridge classification for performance measure calculation is based on (choose all that apply):

- a) lowest condition rating of bridge elements
- b) structural deficiency status
- c) deck area that is structurally deficient
- d) lowest condition rating of bridge components

Knowledge Checks

State DOT statewide 2- and 4-year targets for FHWA measures should be selected considering (choose all that apply):

- a) outcomes of alternative asset management plan investment strategies
- b) effects of data lag
- c) neighboring state targets
- d) MPO targets

Contacts

For questions or more information, please contact:

FHWA Office of Bridges and Structures: Derek Constable derek.constable@dot.gov, 202-366-4606 Doug Blades douglas.blades@dot.gov, 202-366-4622

Questions?

