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Tech Brief 
DATA MANAGEMENT AND GOVERNANCE IN 
UNMANNED AIRCRAFT SYSTEMS 

 
 

INTRODUCTION 
State Departments of Transportation (State DOTs) across the 
Nation have seen a rapid increase in the use of unmanned 
aircraft systems (UAS) because of their ability to collect 
detailed data, especially in high risk areas when using 
traditional data collection methods can be difficult (Neubauer 
et al., 2021). The American Association of State Highway and 
Transportation Officials (AASHTO) has reported that nearly all 
State DOTs are using UAS in some capacity (AASHTO, 2019). 
As UAS data collection increases, the data needs for storing 
information may increase exponentially. Some of the goals of 
this tech brief are to: 

• Help surface transportation organizations understand 
some potential ways they may use UAS data.  

• Identify innovative solutions for what can be achieved 
with UAS data through processing. 

• Considerations regarding data management and 
governance solutions.  

A sample workflow of the key terms and data governance 
policies, processes, and tools discussed in this Tech Brief are 
illustrated in Figure 1. 

Figure 1. Sample UAS Data Governance Policies, Processes, and Tools. Image Source: FHWA 

KEY TAKEAWAYS 
• Considerations for UAS data 
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processes, and tools. 

• Identify innovative solutions 
for what can be achieved with 
UAS data through processing 

• Understanding asset 
inventories using engineering 
asset data models. 

• Roadmap considerations for 
data storage and provisioning 
with UAS. 
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FAA REGULATIONS 
UAS operators in both the public and private sectors must also adhere to statutory and regulatory 
requirements. Public aircraft operations (including UAS operations) are governed under the statutory 
requirements for public aircraft established in 49 USC § 40102 and § 40125. Additionally, both public and 
civil UAS operators may operate under the regulations promulgated by the Federal Aviation 
Administration. The provisions of 14 CFR part 107 apply to most operations of UAS weighing less than 55 
lbs. Operators of UAS weighing greater than 55 lbs may request exemptions to the airworthiness 
requirements of 14 CFR part 91 pursuant to 49 USC §44807. UAS operators should also be aware of the 
requirements of the airspace in which they wish to fly as well as the requirements for the remote 
identification of unmanned aircraft. The FAA provides extensive resources and information to help guide 
UAS operators in determining which laws, rules, and regulations apply to a particular UAS operation. For 
more information, please see https://www.faa.gov/uas/.  

DATA MANAGEMENT 
Transportation data systems, including UAS, comprise of multiple data models, applications, tools, and 
processes. The data processes are used by field data collectors, data processing engineers, and data 
modelers to work with the raw imagery and Light Detection and Ranging (LiDAR) data collected in the 
field and engineer new processed data models that can be used in downstream business processes. The 
data management processes in the UAS ecosystem can broadly be categorized as follows:  

• Data Collection and Modeling: This process involves collecting raw imagery and LiDAR data in the
field, using unmanned aircraft.

• Data Integration and Engineering: This process involves integrating and engineering new data
models from the raw imagery and LiDAR data collected in the field.

• Data Storage and Provisioning: This process involves managing the storage of raw and engineered
data models. It also involves provisioning raw and engineered data models through an enterprise
data warehouse or cloud-based data lake.

Data Collection and Modeling 

UAS has become a versatile geospatial data collection system that can transform how highway facilities 
are planned, designed, built, operated, and maintained (Mallela et al., 2018). UAS can be a versatile tool 
to build a virtual representation of transportation corridor systems that can be used for multiple use cases 
relevant to State DOTs (Choi, 2016). Multiple State DOTs have identified significant monetary savings of 
40 percent or more and safety benefits when using UAS over conventional methods (Snyder et al., 2018). 
With the growth of UAS collection activities, the variety of data types has expanded, and organizations 
should select data collection tools based on their needs and budgets (Dalamagkidis et al., 2016). With so 
many options available, it can be beneficial to identify the end goals prior to data collection to assist with 
selecting a data solution that will be adequate for those goals. UAS are typically used for infrastructure 
mapping and inspections to collect two types of data—LiDAR point cloud and imagery. The LiDAR point 
cloud and imagery data collected come with metadata that are packaged with the raw data into a data 
model. Two types of raw data models are available at the end of the data collection in the field—a raw 
imagery data model or a raw LiDAR data model. 

Data Integration and Engineering 
State DOTs are primarily using four data transformation techniques to process the raw data models 
created using UAS. The raw data models are integrated and transformed through a series of algorithms 
to engineer new data models. The four data transformation techniques used most frequently by State 
DOTs for UAS data are described in this section: (a) structure for motion (SfM), (b) computer vision, (c) 
georectification and classification, and (d) point cloud data fusion (or integration).  

https://www.faa.gov/uas/
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Engineering Processed Point Cloud Data Model Using Structure for Motion 
Significant developments in digital photogrammetry 
techniques over the last decade have revolutionized the 
collection of three-dimensional (3D) topographic data. 
Unlike traditional photogrammetry, the SfM workflow 
does not require prior knowledge associated with 
conventional photogrammetry (Cullen et al., 2018). SfM 
is a photogrammetric range imaging technique for 
estimating 3D structures of a scene from two-
dimensional image (2D) sequences. (Figure 2) SfM can 
work with a wide range of cameras and is well-suited to 
UAS imagery. Multiple software packages incorporate 
SfM into their solutions at various price points, including 
open-source software. SfM and low-altitude platforms 
can produce point clouds with point densities 
comparable to airborne LiDAR, with horizontal and 
vertical precision in the centimeter range, low capital 
and labor costs, and low expertise levels (Fonstad et al., 2013). 

The high-resolution 3D point cloud provides a digital representation of the physical world that engineers, 
inspectors, asset managers, and others can repeatedly explore, query, and analyze to mine important 
information (Mallela et al., 2018). The quality of the point cloud depends on the quality of the source data, 
including having clear images and proper overlap between images on both the front and sides. (Figure 3). 
Furthermore, using ground control points may also be beneficial to improve the accuracy and precision of 
the final deliverables. 

Point clouds from SfM and LiDAR collection can look similar in many ways because both can incorporate 
colorized point clouds. Yet, LiDAR will have additional information in the point cloud, such as intensity and 
return values. SfM is a passive technique that uses images collected from a camera. A camera is 
considered a passive remote sensing instrument that relies on the scene having proper illumination and 
appropriate lighting conditions. A camera does not actively send pulses of light but instead captures what 
is visible on the scene. (Figure 4) Without adequate light, the sensor cannot capture an adequate image 
for SfM. Once a point cloud is created using SfM, various point cloud tools may be used to analyze the 
data further (e.g., quantities of a site, as-built models, or advanced analytics).   

Engineering Asset Data Models Using Computer Vision  
Transportation agencies maintain an inventory of highways assets in the right-of-way to support various 
design, construction, operations, and maintenance business processes. Per the ISO-19650 information 
management standard, asset information models (AIMs) should be created and maintained to meet all the 

Figure 3. Image Overlap for SfM. Image Source: 
FHWA 

. 

Figure 2. Example of 3D model from 
photogrammetry. Image Source: Utah DOT 
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asset information requirements (AIRs) that are typically established by asset managers.1 Location is one 
of the most important AIRs for infrastructure assets such as culverts, bridges, drainage structures, 
guardrails, medians, shoulders, ground-mounted and overhead signs, pavement markings, rumble strips, 
sidewalks, and crosswalks. The location of these assets can be engineered (extracted) from imagery data 
that are collected via UAS using an artificial intelligence (AI) technique known as computer vision.  

Computer vision uses known methods (algorithms) to detect each asset in the imagery. The process of 
detecting each asset is referred to as object detection, wherein the term “object” refers to the asset that is 
being detected. Once the asset location information is determined, it can be added to the geospatial AIMs 
that are managed in geospatial asset management systems (AMS).  

UAS imagery operations may have advantages over traditional "boots in the field" inspections in 
performing asset inspections, particularly in situations where data collection on the ground may be 
dangerous or where an aerial perspective may provide a more holistic understanding of a project. 

However, an unintended consequence of UAS 
operations is the volume of data, specifically imagery, 
that still needs to be reviewed by an inspector. This may 
result in inspections where many images need to be 
reviewed, cropped, and pasted into reports.   

Automated imagery analytics using AI techniques such 
as computer vision are expected to greatly reduce the 
burden of human effort involved in asset data collection 
and may assist with the processing of the imagery 
captured by UAS operations while improving accuracy 
(Chen et al., 2023). AI experiments by State DOTs 
resulted in favorable results, including Utah DOT 

automated detection of missing rivets in overhead signs and North Carolina DOT automated detection of 
airport runway cracks.  

For State DOTs to evaluate the benefit from an investment in automated imagery analytics, it may be 
beneficial to understand the general method used to achieve the desired results. Computer vision relies 
on training data sets, usually annotated boxes of the object of interest, to produce the object detection 
model. Key terms are clarified here to avoid any confusion:   

• Algorithms - An algorithm is a sequence of instructions used to solve a problem or carry out a
computation. In computer vision, the term algorithm refers to functions that learn feature extraction
from labeled and unlabeled training data resulting in an inference "model." For example, convolutional
neural networks is an algorithm.

• Inference "Models" - In computer vision applications, the inference model is trained to "infer" the class
and location of objects with a statistical probability. This is what is operationalized to automate object
detection.

• Training Data - In computer vision, the training data used are "annotated imagery." (Figure 5)
Annotations (usually square boxes, but they can be polygons) mark the area representing the object
to be detected. There can be multiple annotations on a single image; the more quality training
annotations, the better the quality of the inference model.

Typically, an AI developer will annotate training data, run the data through training models, annotate more 
training data, retrain the model, and combine the resulting AI models with deterministic vision algorithms 

1 The use of ISO specifications is not a Federal requirement. 

© Christopher Parrish 2022 

Figure 4. UAS Image Collection (e.g., Passive 
Sensor). 
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until satisfactory results are obtained. (Figure 6) The resulting system is then integrated into the 
production system pipeline.  

Figure 5. Bounding Box Rust Detection. Image 
Source: Sanjay Mishra 2020 

Figure 6. Pixel Based Classification – Mask Rust Detection. Image 
Source: Sanjay Mishra 2020 

The approach to automated imagery analytics using computer vision may benefit from further research. 
Training data can be unique to each environment and use case, including the camera angle or the 
perspective from which the data were captured. With AI, the more information that is provided, the better 
the analysis becomes, and the results progressively improve as the AI learns over time (Krizhevsky et al., 
2012). Opportunities for collaboration between State DOTs may exist to gather similar data to improve 
algorithms that could benefit multiple State DOTs in the future for AI and machine learning.  

Engineering Geo-rectified and Classified Point Cloud Data Model 
LiDAR is becoming increasingly popular across the United States, and State DOTs are adopting this 
technology for practical uses in transportation-related applications (Chang et al., 2014). Mississippi DOT 
recently acquired UAS LiDAR to perform tasks in the field much faster than using traditional measuring 
tools (Mississippi DOT, 2022). Washington State DOT found LiDAR could modernize some of its 
operations efficiently and improved desirable outcomes such as employee safety and data accuracy (Yen 
et al., 2011). 

LiDAR is an active sensor that sends pulses of light (Figure 7), whereas SfM is a passive sensor based 
on imagery processing. The point clouds associated with LiDAR do not depend on scene illumination and 
can provide additional information such as intensity or return values. 

• Intensity refers to the surface reflectance of an object, which may help identify different
characteristics in a scene.

• Return refers to multiple pulses or emissions that are intercepted and reflected with the ability to
better penetrate through vegetation.
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LiDAR point clouds generally take less time to 
process than SfM point clouds because they are 
created in real-time from the active sensors. LiDAR 
with multiple returns also increase the chance of 
penetration through vegetation because it actively 
sends pulses of light rather than relying on passive 
processing methods. Aerial LiDAR has been found 
to be more accurate for characterizing bare earth in 
dense vegetative areas than SfM or terrestrial 
LiDAR (Swetnam et al., 2018). Furthermore, LiDAR 
does not depend on light and is not affected by 
areas in shadow.  

Although the processing time for LiDAR can be less 
than for SfM point clouds, a raw LiDAR point cloud may still need additional processing to provide the 
most accuracy and precision. UAS LiDAR, when raw, is typically accurate relative to itself; however, it 
may not be aligned to other flight lines within the data set or have georeferencing information for absolute 
spatial accuracy. A processing workflow may increase the accuracy of the data by aligning each flight line 
and adding spatial information to reference the point cloud to known coordinate systems to align the 
data with other geospatial data. A generalized workflow of UAS LiDAR data processing is illustrated in 
Figure 8. 

 

Figure 8. General LiDAR Post Processing Workflow.General LiDAR Processing Workflow. Image Source: FHWA 

Review Data 
In a LiDAR processing workflow, it is often beneficial to review the data to ensure the collection meets the 
goals of the operation. Reviewing the data directly after its collection may help identify sufficient density or 
errors in the information while on-site. The process may include checking each flight line, reviewing the 
density of the point cloud to monitor that it sufficiently defines the area of interest, and analyzing for 
errors. (Figure 9)  

© Christopher Parrish 2022 

Figure 7. UAS LiDAR Collection (e.g., Active Sensor). 
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Flight Line Trajectory, Global Navigation Satellite Systems, and Inertial Measurement Unit Post-
Processing 
Due to variations between satellite observations during the data collection process, additional processing 
tools can assist in further aligning each section's trajectories to reduce noise, improve accuracy and 
precision, and reduce discrepancies on overlapping point clouds. Trajectory reconstruction quality can be 
a significant factor affecting the accuracy of the final data set (Jozkow et al., 2017). The raw observations 
may be compared against a Global Positioning System base station or Continuously Operating Reference 
Station network and use software to improve the absolute accuracy of the solutions.There may be 
discrepancies in the two flight lines that may be improved through processing. Additionally, this process 
may also assist in identifying anomalies in the data. 

Georectify Data 
LiDAR data may need to be translated from a relative coordinate system into a spatial reference to align 
with other data used on a project. Data in multiple datums or projections may be a source for translation 
errors on a project. Software solutions are increasing to assist with real-time translation from disparate 
spatial reference; however, it is often beneficial to re-project the data to align with the coordinate system 
that will be used on a project (Fonstad et al., 2013). 

Point Cloud Classification 
Classification of the point cloud can assist in organizing each element into its independent class. (e.g., 
bare earth, buildings, low vegetation, high vegetation). Point cloud classification can prove beneficial for 
extracting or isolating separate elements or geoinformation. In conventional LiDAR workflows, 
classification was completed manually by selecting and grouping points, which could be time consuming 
and cumbersome. Advances in tools and technology have improved classification using automated 
algorithms to expedite the process and substantially reduce the processing time (Zhao et al., 2020). 

Verification  
LiDAR applications have increased significantly in the past few years, but the user community still lacks 
standard and efficient procedures for evaluating the quality of provided point clouds (Habib et al., 2009). 
A variety of variables can affect the overall accuracy of data collection; therefore, it can often be beneficial 
to have a system of checks and balances to assist with quality control (QC) and quality assurance (QA) of 
the point cloud (Habib and Van Rens, 2012). 

Verifying the data and providing the root mean square error (RMSE) in documentation may provide users 
with a better understanding of the overall quality of the data, which can build confidence and help with 
planning. Furthermore, QA/QC procedures provide a means to discover errors early to help minimize 
costly change orders or other problems in future data use phases. Effective QA exercises may be more 

Figure 9. UAS Raw LiDAR Flight Lines and Associated Point Cloud Data. 
Image Source: Utah DOT 
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complex to apply to remote sensing data but can be seen as essential for a ground-based survey to 
ensure the accuracy of the solutions (Henrys and Jarvis, 2019). 

Engineering Integrated Point Cloud Data Models  
Remote sensing has been widely adopted for collecting dense and accurate topographic data for multiple 
applications (Habib et al., 2009). Like many tools, remote sensing platforms, whether SfM or LiDAR, have 
strengths and weaknesses associated with each technology. Research by Swetnam et al. (2018) 
discovered the following: 

• Aerial LiDAR was found to be more accurate for characterizing bare earth in dense herbaceous 
vegetation than terrestrial LiDAR. 

• Terrestrial LiDAR and high-resolution near-distance UAS were better and more accurate at 
detecting grass and fine woody vegetation. 

• UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass 
and shrubs. 

• UAS and handheld SfM photogrammetry in near-distance high-resolution collections had similar 
accuracy to terrestrial LiDAR for vegetation but difficulty measuring bare earth elevation beneath 
the dense herbaceous cover. 

A combination of platforms and techniques (e.g., UAS, mobile, terrestrial LiDAR, SfM) may provide 
complementary solutions to overcome the weaknesses of a single platform (Swetnam et al., 2018). 
Combining tools, whether conventional or newer, remote sensing technologies may provide a more 
accurate overall solution in varying terrain. Furthermore, the fusion of data from two or more sensors may 
create more complete models and be easier to interpret (Forkuo and King, 2005). Providing complete 
data for a scene, rather than a traditional breakline survey, may also make additional field collection visits 
unnecessary. With advances in automation, computer vision, and AI, future solutions may hold more 
significant opportunities for the automation of data interpretation.  

Data Storage and Provisioning 
As data volumes and computing power 
increase, and as AI, machine learning, and 
big data capabilities rise, established leaders 
will need to adapt and grow to stay 
competitive (Bean and Gupta, 2021).  

UAS data management may quickly grow 
cumbersome if a good roadmap and plan are 
not followed as UAS operations expand. 
Having multiple UAS missions collecting gigabytes of data can quickly fill data storage drives.  

For example, a Utah DOT mapping project on the Moki Dugway area for a landslide project using a 
platform with a 12-megapixel sensor generated 634 images with a combined file size of 3.04 gigabytes 
(GB). When processed to create a 3D point cloud and aerial imagery and associated processing files, the 
output was 1.82 GB, with the point cloud file of 1.39 GB and the associated TIF file of 432 megabytes 
(MB). The images and associated deliverables would equate to a combined total size of 4.86 GB. (Table 
1) Assuming only four operations a week over 52 weeks, a single UAS could theoretically create more 
than 758 GB over the course of a year. An organization with 20 other aircraft with similar data collection 
efforts could produce 15.1TB in a year. With larger mapping sizes, the data storage needs could be even 
greater. 

UAS Data Can Grow Exponentially 
 
20 UAS, mapping four times a week, 
could create 15.1 terabytes (TB) of 
data in one year. 
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Table 1. Utah DOT, Moki Dugway Mapping Project Data Size Comparison. 

 

UAS mission goals may dictate the data format, but there may be opportunities to share data across 
organizations to increase the return on investment. If managed correctly, data can become an 
organization's most valuable asset (Panian, 2010). Data analysis and asset management solutions have 
become more advanced and easier to use in recent years as a result of advances in computer speed, 
cost, and processing power (Brutus and Tauber, 2009). As the amount of available data increases, 
storage solutions become more important. Including UAS data early in future data management 
roadmaps may help agencies proactively prepare for the exponential growth in data across organizations.  

State DOTs are managing big data by adopting big data management offices and data-governance 
boards to assist with data management (Mallela and Bhargava, 2021). However, UAS data may not 
always be considered in the data management equation. When creating a roadmap, it may be beneficial 
to address the following key questions presented by Mallela and Bhargava for a successful data 
management roadmap: 

• What data is critical for an organization? 

• What benefits does data management provide? 

• What data models and data-exchange standards offer the most value? 

• What needs to be done? 

Including UAS data management in the organizational data management roadmap plan may prevent data 
integration issues associated with inadequate storage or insufficient dissemination solutions to share the 
data across the organization. The influx of data from UAS could be a means to create a rich database of 
information that may improve the understanding of each asset and the system as a whole. Using a 
phased approach for UAS data to achieve a completely integrated process can help achieve the full 
range of benefits that comes from integrating all departmental data and assets into a full data 
management lifecycle (Mallela and Bhargava, 2021). 

DATA GOVERNANCE  
As methods for digital information collection, modeling, and exchange increase for UAS, data governance 
can become more important.  

An AASHTO survey showed that nearly all DOTs have incorporated UAS into their operations (AASHTO, 
2019), and with this influx of use, data storage and data governance requirements increase. As State 
DOTs incorporate enterprise-level data management systems and assist with streamlining processes for 

UAS with 12 Megapixel Camera Data Set Size 

634 Raw Red, Green, Blue Images 3.04 GB 

LAS Point Cloud 1.39 GB 

TIF Ortho Aerial Imagery 432 GB 

Combined Deliverable 1.82 GB 

Raw Images and Deliverables Total 4.86 GB 
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digital delivery, including UAS data management and governance may help streamline multiple data 
sources.  

Although organizations may strive in theory to achieve data governance goals, they may not be able to 
justify the effort without identifying a practical, concrete impact on the organization (Panian, 2010). 
Documenting the use of UAS data and their return on investment may justify their use further and provide 
a better understanding of the organizational impacts. Moreover, as data governance systems are 
developed, the use of open standard formats may assist with information sharing, which could reduce the 
limitations of proprietary software formats.  

It is becoming clearer that enterprise data needs to be shared across multiple applications and business 
processes and not tied to one specific application (Panian, 2010) For example, Utah DOT has reported 
using a central image server database to store all aerial imagery collected from UAS. The image server 
facilitates information sharing and reduces redundant collection efforts. Utah DOT has also incorporated 
its UAS data into the entire project life cycle from conception to post-construction to assist with the 
creation of digital twins for each asset throughout its life. Setting organizational and enterprise-wide 
policies and goals for data management could be an effective means to help streamline data governance 
for UAS data. Panian describes the goals of data governance as: 

• Ensure data meet the needs of the business. 

• Protect and manage data as a valued enterprise asset. 

• Lower the costs of managing data. 

Panian also identified six attributes for creating a data governance roadmap: 

• Accessibility: Ensure that all enterprise data can be accessed, regardless of their source or 
structure. 

• Availability: Ensure that the data are available to users and applications, when, where, and how 
they are needed. 

• Quality: Ensure data completeness, accuracy, and integrity. 

• Consistency: Ensure data meaning is consistent and reconciled across all systems, processes, 
and organizational units. 

• Auditability: Ensure there are controls and an audit trail for all data. 

• Security: Ensure secure access to the data. 

Replacing data solos to integrate data efficiently in an organization may create challenges that may 
require careful planning, phasing, and selection of an appropriate implementation path (Mallela and 
Bhargava, 2021). It may be helpful to review existing data governance standards to formulate a data 
governance framework. Resources include Control Objectives for Information and Related Technologies 
(COBIT) and ISO/IEC 38500.2 

CONCLUSION 
Multiple solutions are emerging for processing UAS data and incorporating them into a larger data 
management and governance workflow. State DOTs could benefit from an understanding of the variety of 
UAS sensors, platforms, and processing methods to select a solution that best meets their goals. 
Opportunities to use AI and gather more data may continue to improve the final deliverables, saving time 

 
2 The use of these resources is not a Federal requirement. 



Data Management and Governance in Unmanned Aerial Systems 

11 

and increasing the return on investment as the AI learns from additional training data over time 
(Krizhevsky et al., 2012).  

Opportunities also may arise for State DOTs to collaborate and research similar data to improve 
algorithms that benefit multiple States using AI and machine learning. As UAS use expands further, it 
may be helpful for organizations to understand the potential solutions that big data may provide, and 
address barriers that may limit their ability to take advantage of this new strategic resource (Alharthi et al., 
2017). Setting organizational and enterprise-wide policies and goals for data management may help 
organizations streamline their data governance for UAS data and prevent potential issues arising from 
large data-gathering efforts. 
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