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Cable-stayed bridges have become the form of choice over the past several decades for bridges in the medium- to long-span range. In some cases, serviceability problems involving large amplitude vibrations of stay cables under certain wind and rain conditions have been observed. This study was conducted to develop a set of consistent design guidelines for mitigation of excessive cable vibrations on cable-stayed bridges.
 
The project team started with a thorough review of existing literature; this review indicated that while the rain/wind problem is known in sufficient detail, galloping of dry inclined cables was the most critical wind-induced vibration mechanism in need of further experimental research. A series of wind tunnel tests was performed to study this mechanism. Analytical and experimental research was performed to study mitigation methods, covering a range of linear and nonlinear dampers and crossties. The study also included brief studies on live load-induced vibrations and establishing driver/pedestrian comfort criteria.

Based on the above, design guidelines for the mitigation of wind-induced vibrations of stay cables were developed. As a precautionary note, the state of the art in stay cable vibration mitigation is not an exact science. These new guidelines are only intended for use by professionals with experience in cable-stayed bridge design, analysis, and wind engineering, and should only be applied with engineering judgment and due consideration of special conditions surrounding each project.
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