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Foreword


This research project was performed to investigate the possibility that, by measuring the dynamic response characteristics of a bridge substructure, it might be possible to determine the condition and safety of the substructure and identify its foundation type (shallow or deep). Determining bridge foundation conditions with this approach may be applied to quantify losses in foundation stiffness caused by earthquakes, scour, and impact events. Identifying bridge foundation type may be used to estimate bridge stability and vulnerability under dead and live load ratings, particularly for unknown bridge foundations. Of several protocols evaluated, Hilbert-Huang Transforms (HHT) showed the most promise for structural damage diagnosis. Further work using the HHT method is recommended. The results of this study will be of interest to geotechnologists and others who are involved in nondestructive bridge condition assessment.


Steven B. Chase, Ph.D.Acting Director,Office of Infrastructure Research and Development
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