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FOREWORD

Petrographic Methods of Examining Hardened Concrete: A Petrographic Manual was originally published in 1992 by the Virginia Transportation Research Council (VTRC) as Report VTRC-92-R14. Authored by Hollis N. Walker, it was the culmination of a quarter century of work by her in concrete petrography at the VTRC.

This edition, revised by D. Stephen Lane, senior research scientist at the VTRC, builds on the original work. It has been revised and updated to reflect recent advances in techniques and work in concrete petrography. Major additions to the manual include a new chapter (chapter 14, written by Paul E. Stutzman, physical scientist, National Institute of Standards and Technology) on the use of the scanning electron microscope to examine concrete and concretemaking materials, and additional information on the identification and classification of rocks and minerals in aggregates (appendix D). Chapter 10, Alkali-Aggregate Reactions, was reorganized to outline the process one would follow to investigate a case of concrete deterioration and illustrate the features that provide evidence of alkali-silica or alkali-carbonate reactions. It is hoped that the manual will be of great use both to those entering the field of concrete petrography and to the experienced petrographer.

This edition is an example of the continuing cooperation in infrastructure research and development between State and Federal agencies.

The following quotation from K. Mather (1966), serves as a mission statement for concrete petrographers:

The best petrographic examination is the one that finds the right questions and answers them with maximum economy in minimum time, with a demonstration clear to all concerned that the right questions were answered with all necessary and no superfluous detail. In practice, the approach to the ideal varies depending on the problem, the skill with which the questions are asked, and the skill of the petrographer. One measure of the petrographer’s skill is knowing when to stop, either because the problem is adequately solved, or, in some cases, because it has been shown to be insoluble under the circumstances.

Katherine Mather served as chair of the American Society for Testing and Materials Subcommittee on Petrography of Concrete and Aggregates for many years. She was an expert in the practice and use of petrography, contributed to many publications, and participated actively in cement and concrete research carried on by the U.S. Army Corps of Engineers, Vicksburg, Mississippi.

Gary L. Henderson, Director
Office of Infrastructure Research
and Development

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. Trade and manufacturers’ names appear in this report only because they are considered essential to the object of the document.

QUALITY ASSURANCE STATEMENT

The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.
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