A Pedestrian Hybrid Beacon head consists of two red lenses above a single yellow lens. Unlike a traffic signal, the PHB rests in dark until a pedestrian activates it via pushbutton or other form of detection. When activated, the beacon displays a sequence of flashing and solid lights that indicate the pedestrian walk interval and when it is safe for drivers to proceed (see figure on back page).

The PHB is often considered for installation at locations where pedestrians need to cross and vehicle speeds or volumes are high, but traffic signal warrants are not met. These devices have been successfully used at school crossings, parks, senior centers, and other pedestrian crossings on multilane streets. PHBs are typically installed at the side of the road or on mast arms over midblock pedestrian crossings.
Pedestrian Hybrid Beacon (PHB)

EDC-4 STEP: https://www.fhwa.dot.gov/innovation/everydaycounts/edc_4/step.cfm

Figure 4F-3. Sequence for a Pedestrian Hybrid Beacon from FHWA’s Manual on Uniform Traffic Control Devices, 2009 Edition, p. 511

1. Dark Until Activated
2. Flashing Yellow Upon Activation
3. Steady Yellow
4. Steady Red During Pedestrian Walk Interval
5. Alternating Flashing Red During Pedestrian Clearance Interval
6. Dark Again Until Activated

Legend
SY Steady yellow
FY Flashing yellow
SR Steady red
FR Flashing red

When a pedestrian activates a PHB, a flashing yellow light is followed by a solid yellow light, alerting drivers to slow. A solid red light requires drivers to stop while pedestrians have the right-of-way to cross the street. When the pedestrian signals display a flashing DON’T WALK indication, the overhead beacon flashes red, and drivers may proceed if the crosswalk is clear.

CONSIDERATIONS

PHBs are a candidate treatment for roads with three or more lanes that generally have annual average daily traffic (AADT) above 9,000. PHBs should be strongly considered for all midblock and intersection crossings where the roadway speed limits are equal to or greater than 40 miles per hour (mph). The PHB should meet the application guidelines provided in the Manual on Uniform Traffic Control Devices for existing or projected pedestrian volumes.

PHBs are intended for installation at midblock locations, but can be installed at intersections. They should only be installed in conjunction with marked crosswalks and pedestrian countdown signals.

When PHBs are not in common use in a community, consider conducting an outreach effort to educate the public and law enforcement officers on the PHBs’ purpose and use.

COST

The PHB is often less expensive than a full traffic signal installation. The costs range from $21,000 to $128,000, with an average per unit cost of $57,680.

References

Crosswalk Visibility Enhancements

This example combines curb extensions, high-visibility markings, and in-street signs on a two-lane roadway.

This example combines advance markings and signage, overhead lighting, parking restrictions, and high-visibility markings on a multilane roadway.

Poor lighting conditions, obstructions such as parked cars, and horizontal or vertical roadway curvature can reduce visibility at crosswalks, contributing to higher crash rates.

Crosswalk visibility enhancements help make crosswalks and/or pedestrians more visible and can help pedestrians decide where to cross.

Crosswalk visibility enhancements can reduce crashes by 23–48%.

FEATURES:
- High-visibility marking improves visibility of the crosswalk compared to the standard parallel lines.
- Parking restriction on the crosswalk approach improves the sightlines for motorists and pedestrians.
- Advance STOP or YIELD markings & signs reduce the risk of a multiple-threat crash.
- Curb extension improves sight distance between drivers and pedestrians and narrows crossing distance.
- In-street STOP or YIELD signs may improve driver yielding rates.
CONSIDERATIONS

This group of countermeasures includes improved lighting, advance or in-street warning signage, pavement markings, and geometric design elements. Such features may be used in combination to indicate optimal or preferred locations for people to cross and to help reinforce the driver requirement to yield the right-of-way to pedestrians at crossing locations.

High-visibility crosswalk marking. High-visibility crosswalks are preferred over parallel line crosswalks and should be provided at all established midblock pedestrian crossings. They should also be considered at uncontrolled intersections.

Parking restriction on the crosswalk approach. Parking restriction can include the removal of parking space markings, installation of new “parking prohibition” pavement markings or curb paint, and signs. The minimum setback is 20 feet in advance of the crosswalk where speeds are 25 mph or less, and 30 feet where speeds are between 26 and 35 mph.

Advance YIELD or STOP markings and signs.¹

The stop bar or “sharks teeth” yield markings are placed 20 to 50 feet in advance of a marked crosswalk to indicate where vehicles are required to stop or yield in compliance with the accompanying “STOP Here for Pedestrians” or “YIELD Here to Pedestrians” sign.

¹MUTCD section 2B.12 In-Street and Overhead Pedestrian Crossing Signs (R1-6, R1-6a, R1-9, and R1-9a)
²MUTCD reference: Section 2B.11 Yield Here To Pedestrians Signs and Stop Here For Pedestrians Signs (R1-5 Series)

Curb extension. This treatment, also referred to as bulb-outs, extends the sidewalk or curb line out into the parking lane, which reduces the effective street width. Curb extensions must not extend into travel lanes and should not extend across bicycle lanes.

Improved nighttime lighting. Consideration should be given to placing lights in advance of midblock and intersection crosswalks on both approaches to illuminate the front of the pedestrian and avoid creating a silhouette.

In-street STOP or YIELD to pedestrian sign.²

These signs serve to remind road users of laws regarding right-of-way, and they may be appropriate on 2-lane or 3-lane roads where speed limits are 30 mph or less. The sign can be placed in between travel lanes or in a median.

COST

<table>
<thead>
<tr>
<th>Countermeasure</th>
<th>Range</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>High visibility crosswalk marking</td>
<td>$600-5,700 each</td>
<td>$2,540 each</td>
</tr>
<tr>
<td>Lighting</td>
<td>Varies based on fixture type and utility service agreement</td>
<td></td>
</tr>
<tr>
<td>Parking restriction</td>
<td>Varies based on the required signs and pavement markings</td>
<td></td>
</tr>
<tr>
<td>Curb extension</td>
<td>$2,000-20,000</td>
<td>$13,000 each</td>
</tr>
<tr>
<td>Advance STOP/YIELD sign</td>
<td>N/A</td>
<td>$300 each</td>
</tr>
<tr>
<td>Advance STOP/YIELD line</td>
<td>N/A</td>
<td>$320 each</td>
</tr>
<tr>
<td>In-street STOP/YIELD sign</td>
<td>N/A</td>
<td>$240 each</td>
</tr>
</tbody>
</table>

References

A pedestrian refuge island is a median with a refuge area that is intended to help protect pedestrians who are crossing a multilane road. This countermeasure is sometimes referred to as a crossing island, refuge island, or pedestrian island. The presence of a pedestrian refuge island at a midblock location or intersection allows pedestrians to focus on one direction of traffic at a time as they cross, and gives them a place to wait for an adequate gap in oncoming traffic before finishing the second phase of a crossing.

 Refuge islands are highly desirable for midblock pedestrian crossings on roads with four or more travel lanes, especially where speed limits are 35 mph or greater and/or where annual average daily traffic (AADT) is 9,000 or higher. They are also a candidate treatment option for uncontrolled pedestrian crossings on 3-lane or 2-lane roads that have high vehicle speeds or volumes. When installed at a midblock crossing, the island should be supplemented with a marked high-visibility crosswalk.
CONSIDERATIONS

The design must accommodate pedestrians with disabilities. Islands should be at least 4 feet wide (preferably 8 feet) and of adequate length to allow the anticipated number of pedestrians to stand and wait for gaps in traffic before crossing. The cut-through must include detectable warnings if island width is at least 6 feet.

Islands should be illuminated or highlighted with street lights, signs, and/or reflectors to ensure that they are visible to motorists. They can be constructed so that crossing pedestrians are directed to the right, so they can more easily view oncoming traffic after they are halfway through the crossing. If applicable, evaluate the impact of the island on bicycle facility design.

COST

The cost of a median island depends on its size and construction materials. The costs range from $2,140 to $41,170 per island, depending on the length of the island, with an average cost of $13,520. The average cost per square foot is approximately $10. Costs will be higher for concrete islands versus asphalt islands, though the lifespan of concrete is longer compared to the lifespan of asphalt. Cost reductions may be realized if the refuge island can be incorporated into planned roadway improvements or utility work.

References

Raised Crosswalks are ramped speed tables spanning the entire width of the roadway, often placed at midblock crossing locations. The crosswalk is demarcated with paint and/or special paving materials. These crosswalks act as traffic-calming measures that allow the pedestrian to cross at grade with the sidewalk.

In addition to their use on local and collector streets, raised crosswalks can be installed in campus settings, shopping centers, and pick-up/drop-off zones (e.g., airports, schools, transit centers).

Raised crosswalks are flush with the height of the sidewalk. The crosswalk table is typically at least 10 feet wide and designed to allow the front and rear wheels of a passenger vehicle to be on top of the table at the same time. Detectable warnings (truncated domes) and curb ramps are installed at the street edge for pedestrians with impaired vision.

FEATURES:
- Elevated crossing makes the pedestrian more prominent in the driver’s field of vision, and allows pedestrians to cross at grade with the sidewalk
- Approach ramps may reduce vehicle speeds and improve motorist yielding

OFTEN USED WITH:
- Crosswalk visibility enhancements

Local and collector roads with high speeds pose a significant challenge for pedestrians crossing the roadway.

A raised crosswalk can reduce vehicle speeds and enhance the pedestrian crossing environment.

Raised crosswalks can reduce pedestrian crashes by 45%
CONSIDERATIONS

Raised crosswalks are typically installed on 2-lane or 3-lane roads with speed limits of 30 mph or less and annual average daily traffic (AADT) below about 9,000. Raised crossings should generally be avoided on truck routes, emergency routes, and arterial streets.

Drainage can be an issue. Raised crosswalks may be installed with curb extensions where parking exists. They may also be used at intersections, particularly at the entrance of the minor street.

Since this countermeasure can cause discomfort and noise (especially with larger vehicles), it may be appropriate to get public buy-in. Raised crosswalks may not be appropriate for bus transit routes or primary emergency vehicle routes. For States that experience regular snowfall, snowplowing can be a concern.

COST

The cost associated with a raised crosswalk ranges from $7,110 to $30,880 each, with the average cost estimated at $8,170.
Road Diet

SAFE TRANSPORTATION FOR EVERY PEDESTRIAN
COUNTERMEASURE TECH SHEET

Multilane roads can take longer to cross and vehicle speeds may be high.

Road Diets can decrease the lane crossing distance and reduce vehicle speeds.

Road Diets can reduce total crashes by 19–47%*

*19% in urban areas, 47% in suburban areas.

FEATURES:
• Reduced crossing distance and exposure.
• Reduced vehicle speeds.
• Promote Complete Streets.
• Provide space for installing curb extensions and widening sidewalks.
• Create space for bicycle, transit, and/or parking lanes.

Before

After
A typical Road Diet converts an existing four-lane, undivided roadway to two through lanes and a center, two-way left turn lane. This design allows left-turning drivers to exit the traffic stream while waiting for a gap to complete their turn and frees up space that can be reallocated to other uses, including:

» Pedestrian refuge island
» Crosswalk visibility enhancements, such as curb extensions
» On-street parking, with parking restrictions on crosswalk approaches
» Widened sidewalks and landscaped buffers
» Bicycle lane and/or transit lanes

A Road Diet can be a relatively low-cost safety solution, particularly where only pavement marking modifications are required to implement the reconfigured roadway design. When planning in conjunction with reconstruction or overlay projects, the change in cross section may be completed without any additional cost.

CONSIDERATIONS

While Road Diets are effective countermeasures for midblock collisions, they are not recommended for all multilane roadways. Typically, a suitable roadway has a current and future average daily traffic (ADT) equal to or less than about 20,000. In some instances, Road Diets have been successfully used on roads with ADTs as high as 25,000.

FHWA’s Road Diet Informational Guide provides a closer look at the safety and operational benefits of Road Diets to help agencies determine if this countermeasure may suit their needs. Communities will need to consider a range of factors, including:

» Vehicle speed
» Level of Service (LOS)
» Quality of Service
» Vehicle volume (ADT)
» The operation and volume of pedestrians, bicyclists, transit, and freight
» Peak hour and peak direction traffic flow
» Vehicle turning volumes and patterns
» Frequency of stopping and slow moving vehicles
» Presence of parallel roadways

Since Road Diets may be new or uncommon in a community, consider conducting an outreach effort to educate the public on the purpose and potential benefits.

COST

The cost associated with a Road Diet can vary widely. Restriping costs for the three lanes plus bicycle lanes are estimated at $25,000 to $40,000 per mile, depending on the amount of lane lines that need to be repainted. When a Road Diet involves geometric features like extended sidewalks, curb extensions, a raised median or refuge island, the costs can increase to $100,000 or more per mile.

References

