U.S. Department of Transportation
Federal Highway Administration
1200 New Jersey Avenue, SE
Washington, DC 20590

Skip to content U.S. Department of Transportation/Federal Highway AdministrationU.S. Department of Transportation/Federal Highway Administration



Publication Details

Design of Continuously Reinforced Concrete Pavements Using Glass Fiber Reinforced Polymer Rebars Research/Reference: useful for researchers doing further work in the pavement area as well as those developing improved testing and design procedures. Includes documents of historical value.

Primary Topic: Materials-Concrete

Description: This is Task 3: Continuously Reinforced Concrete Pavement. The corrosion resistance characteristics of glass fiber reinforced polymer (GFRP) rebars make them a promising substitute for conventional steel reinforcing rebars in continuously reinforced concrete pavements (CRCPs). Studies are conducted on the effect of using GFRP rebars as reinforcement in CRCP on concrete stress development, which is directly related to the concrete crack formation that is inevitable in CRCP. Under restrained conditions, concrete volume change because of shrinkage and temperature variations is known to cause early-age cracks in CRCP. In this study, an analytical model has been developed to simulate the shrinkage and thermal stress distributions in concrete due to the restraint provided by GFRP rebars in comparison with the stresses induced by steel rebars. The results show that the stress level in concrete is reduced with GFRP rebars because of a low Young's modulus of GFRP. In addition, the analytical model has been used to estimate concrete strain variation in reinforced concrete slabs because of changes in concrete volume, and the results were compared with the experimental observation. Finite element (FE) methods are also developed to predict the stress distribution and crack width in the GFRP-reinforced CRCP section that is subjected to the concrete volume changes under various CRCP design considerations, such as the coefficient of thermal expansion (CTE) of concrete, the friction from the pavement's subbase, and the bond-slip between concrete and reinforcement. Based on the results from the FE simulation along with the mechanistic analysis, a series of feasible designs of the GFRP-reinforced CRCP is proposed. The stress levels in the GFRP reinforcement, the crack widths, and the crack spacings of the proposed pavements are shown to be within the allowable design requirements.

FHWA Publication Number: FHWA-HRT-05-081

Publication Year: 2005

View Pavement Publications

Updated: 04/11/2022
Federal Highway Administration | 1200 New Jersey Avenue, SE | Washington, DC 20590 | 202-366-4000