U.S. Department of Transportation
Federal Highway Administration
1200 New Jersey Avenue, SE
Washington, DC 20590
202-366-4000
Federal Highway Administration Research and Technology
Coordinating, Developing, and Delivering Highway Transportation Innovations
![]() |
This report is an archived publication and may contain dated technical, contact, and link information |
|
Publication Number: FHWA-RD-01-103
Date: May 2001 |
Highway Design Handbook for Older Drivers and PedestriansII. INTERCHANGES (GRADE SEPARATION)
Background and Scope of Handbook RecommendationsOverall, freeways are characterized by the highest safety level (lowest fatality rates) when compared with other types of highways in rural and urban areas (American Automobile Association Foundation for Traffic Safety, 1995). At the same time, freeway interchanges have design features that have been shown to result in significant safety and operational problems. Taylor and McGee (1973) reported more than 20 years ago that erratic maneuvers are a common occurrence at freeway exit ramps, and that the number of crashes there is four times greater than at any other freeway location. Two decades later, Lunenfeld (1993) reiterated that most freeway crashes and directional uncertainty occur in the vicinity of interchanges. Distinct patterns in the occurrence of freeway interchange crashes emerge in studies that look specifically at driver age. Staplin and Lyles (1991) conducted a statewide (Michigan) analysis of the crash involvement ratios and types of violations for drivers in four age groups: age 76 and older; ages 56 to 75; ages 27 to 55; and age 26 and younger. Using induced-exposure methods to gauge crash involvement levels, this analysis showed that drivers over age 75 were overrepresented as the driver at fault in merging and weaving crashes near interchange ramps. With respect to violation types, the older driver groups were cited most frequently for failing to yield and for improper use of lanes. Similarly, Harkey, Huang, and Zegeer's study (1996) of the precrash maneuvers and contributing factors in older driver freeway crashes indicated that older drivers were much more likely than younger drivers to be merging or changing lanes, or passing/overtaking prior to a crash, and that older drivers' failure to yield was the most common contributing factor. These data raise concerns about the use of freeway interchanges by older drivers. Broader demographic and societal changes suggest that the dramatic growth in older driver freeway travel between 1977 and 1988 reported by Lerner and Ratté (1991) will continue and even accelerate in the years ahead. Age differences in interchange crashes and violations may be understood in terms of driving task demands and age-related diminished driver capabilities. The exit gore area is a transitional area that requires a major change in tracking. A driver (especially in an unfamiliar location) must process a large amount of directional information during a short period of time and at high speeds, while maintaining or modifying his/her position within the traffic stream. When drivers must perform guidance and navigation tasks in close proximity, the chances increase that they will become overloaded and commit errors (Lunenfeld, 1993). Erratic maneuvers resulting from driver indecisiveness in such situations include encroaching on the gore area, and even backing up on the ramp or the through lane. When weaving actions are required, the information-processing task demands for both entry and exit maneuvers are further magnified. On a population basis, the age-related diminished capabilities that contribute most to older drivers' difficulties at freeway interchanges include losses in vision and information-processing ability, and decreased physical flexibility in the neck and upper body. Specifically, older adults show declines in static and dynamic acuity, increased sensitivity to glare, poor night vision, and reduced contrast sensitivity (McFarland, Domey, Warren, and Ward, 1960; Weymouth, 1960; Richards, 1972; Pitts, 1982; Sekuler, Kline, and Dismukes, 1982; Owsley, Sekuler, and Siemsen, 1983). These sensory losses are compounded by the following perceptual and cognitive deficits, the first two of which are recognized as being especially critical to safety: reduction in the ability to rapidly localize the most relevant stimuli in a driving scene; reduction in the ability to efficiently switch attention between multiple targets; reduction in working memory capacity; and reduction in processing speed (Avolio, Kroeck, and Panek, 1985; Plude and Hoyer, 1985; Ponds, Brouwer, and van Wolffelaar, 1988; Brouwer, Ickenroth, Ponds, and van Wolffelaar, 1990; Brouwer, Waterink, van Wolffelaar, and Rothengatter, 1991). The most important physical losses are reduced range of motion (head and neck), which impairs visual search, and slowed response time to execute a vehicle control movement, especially when a sequence of movements--such as braking, steering, and accelerating to weave and then exit a freeway--is required (Smith and Sethi, 1975; Goggin, Stelmach, and Amrhein, 1989; Goggin and Stelmach, 1990; Hunter-Zaworski, 1990; Staplin, Lococo, and Sim, 1990; Ostrow, Shaffron, and McPherson, 1992). One result of these age-related diminished capabilities is demonstrated by a driver who waits when merging and entering freeways at on-ramps until he/she is alongside traffic, then relies on mirror views of overtaking vehicles on the mainline to begin searching for an acceptable gap (McKnight and Stewart, 1990). Exclusive use of mirrors to check for gaps, and slowing or stopping to look for a gap, increase the likelihood of crashes and have a negative effect on traffic flow. Malfetti and Winter (1987), in a critical incident study of merging and yielding problems, reported that older drivers on freeway acceleration lanes merged so slowly that traffic was disrupted, or they stopped completely at the end of the ramp instead of attempting to approach the speed of the traffic flow before entering the mainline. In a survey of 692 older drivers, 25 percent reported that they stop on a freeway entrance ramp before merging onto the highway, and 17 percent indicated that they have trouble finding a large enough gap in which to merge onto the mainline (Knoblauch, Nitzburg, and Seifert, 1997). Thirty-four percent of the "young-old" respondents (ages 50 to 72) and 26 percent of the "old-old" respondents (ages 73 to 97) responded that they wish entrance lanes were longer. In Lerner and Ratté's research (1991), older drivers in focus group discussions commented that they experienced difficulty maintaining vehicle headway because of slower reaction times, difficulty reading signs, fatigue, mobility limitations, a tendency to panic or become disoriented, and loss of daring or confidence. Merging onto the freeway was the most difficult maneuver discussed. Needed improvements identified by these older drivers included the elimination of weaving sections and short merge areas, which would facilitate the negotiation of on-ramps at interchanges. Improvements identified to ease the exit process included better graphics, greater use of sign panels listing several upcoming exits, and other methods to improve advance signing for freeway exits. This section will provide recommendations for highway design elements in four areas to enhance the performance of diminished-capacity drivers at interchanges: A. exit signing and exit ramp gore delineation; B. acceleration/deceleration lane design features; C. fixed lighting installations; and D. traffic control devices for restricted or prohibited movements on freeways, expressways, and ramps.
Recommendations by Design Element
FHWA-RD-01-103 |